-
由一个质子、一个氘核和一个电子组成的氢分子离子“HD+”是最简单的异核双原子分子, 其有着丰富的、可精确计算和测量的振转跃迁谱线. 通过HD+振转光谱实验测量和理论计算的对比, 可实现物理常数的精确确定, 量子电动力学理论的检验, 并开启了超越标准模型新物理的探寻. 目前, HD+的振转跃迁频率确定的相对精度已经进入了10–12量级, 并由此获得了当前最高精度的质子电子质量比, 相对精度达到20 ppt (1 ppt = 10–12). 本文全面介绍了目前HD+振转光谱的研究现状与理论背景, 阐述了基于Be+离子协同冷却HD+分子离子的高精度振转光谱测量方法, 包括Be+离子和HD+分子离子的产生与囚禁, HD+外态冷却与内态制备, 双组分库仑晶体中HD+数目的确定, 以及HD+振转跃迁的探测. 最后, 文章展望了进一步提高频率测量精度的光谱前沿技术, 及同位素氢分子离子的振转光谱在未来研究中的发展前景.A molecular hydrogen ion HD+, composed of a proton, a deuteron, and an electron, has a rich set of rovibrational transitions that can be theoretically calculated and experimentally measured precisely. Currently, the relative accuracy of the rovibrational transition frequencies of the HD+ molecular ions has reached 10–12. By comparing experimental measurements with theoretical calculations of the HD+ rovibrational spectrum, the precise determination of the proton-electron mass ratio, the testing of quantum electrodynamics(QED) theory, and the exploration of new physics beyond the standard model can be achieved. The experiment on HD+ rovibrational spectrum has achieved the highest accuracy (20 ppt, 1 ppt = 10–12) in measuring proton-electron mass ratio. This ppaper comprehensively introduces the research status of HD+ rovibrational spectroscopy, and details the experimental method of the high-precision rovibrational spectroscopic measurement based on the sympathetic cooling of HD+ ions by laser-cooled Be+ ions. In Section 2, the technologies of generating and trapping both Be+ ions and HD+ ions are introduced. Three methods of generating ions, including electron impact, laser ablation and photoionization, are also compared. In Section 3, we show the successful control of the kinetic energy of HD+ molecular ions through the sympathetic cooling, and the importance of laser frequency stabilization for sympathetic cooling of HD+ molecular ions. In Section 4, two methods of preparing internal states of HD+ molecular ions, optical pumping and resonance enhanced threshold photoionization, are introduced. Both methods show the significant increase of population in the ground rovibrational state. In Section 5, we introduce two methods of determining the change in the number of HD+ molecular ions, i.e. secular excitation and molecular dynamic simulation. Both methods combined with resonance enhanced multiphoton dissociation can detect the rovibrational transitions of HD+ molecular ions. In Section 6, the experimental setup and process for the rovibrational spectrum of HD+ molecular ions are given and the up-to-date results are shown. Finally, this paper summarizes the techniques used in HD+ rovibrational spectroscopic measurements, and presents the prospects of potential spectroscopic technologies for further improving frequency measurement precision and developing the spectroscopic methods of different isotopic hydrogen molecular ions.
-
Keywords:
- rovibrational spectroscopy /
- HD+ molecular ion /
- sympathetic cooling
[1] Karr J P, Hilico L, Koelemeij J C, Korobov V 2016 Phys. Rev. A 94 050501
Google Scholar
[2] Colbourn E A, Bunker P R 1976 J. Mol. Spectrosc 63 155
Google Scholar
[3] Korobov V I, Karr J P 2021 Phys. Rev. A 104 032806
Google Scholar
[4] Korobov V I 2022 Phys. Part. Nuclei 53 1
Google Scholar
[5] Yan Z C, Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1055
Google Scholar
[6] Ye N, Yan Z C 2014 Phys. Rev. A 90 032516
Google Scholar
[7] Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99 012501
Google Scholar
[8] Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97 243001
Google Scholar
[9] Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106 042815
Google Scholar
[10] Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86 064502
Google Scholar
[11] Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98 032502
Google Scholar
[12] Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102 022804
Google Scholar
[13] Wing W H, Ruff G A, Lamb Jr W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488
Google Scholar
[14] Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98 173002
Google Scholar
[15] Bressel U, Borodin A, Shen J, Hansen M G, Ernsting I, Schiller S 2012 Phys. Rev. Lett. 108 183003
Google Scholar
[16] Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14 555
Google Scholar
[17] Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581 152
Google Scholar
[18] Kortunov I V, Alighanbari S, Hansen M G, Giri G, Korobov V I, Schiller S 2021 Nat. Phys. 17 569
Google Scholar
[19] Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 19 1263
Google Scholar
[20] Biesheuvel J, Karr J P, Hilico L, Eikema K, Ubachs W, Koelemeij J 2016 Nat. Commun. 7 10385
Google Scholar
[21] Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 369 1238
Google Scholar
[22] Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H, Blaum K 2014 Nature 506 467
Google Scholar
[23] Heiße F, Rau S, Köhler-Langes F, Quint W, Werth G, Sturm S, Blaum K 2019 Phys. Rev. A 100 022518
Google Scholar
[24] Hori M, Aghai-Khozani H, Sótér A, Barna D, Dax A, Hayano R, Kobayashi T, Murakami Y, Todoroki K, Yamada H, Horváth D, Venturelli L 2016 Science 354 610
Google Scholar
[25] Borkowski M, Buchachenko A A, Ciuryo R, Julienne P S, Takahashi Y 2019 Sci. Rep. 9 14807
Google Scholar
[26] Germann M, Patra S, Karr J P, Hilico L, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028
Google Scholar
[27] Shi W, Jacobi J, Knopp H, Schippers S, Müller A 2003 Nucl. Instrum. Methods B 205 201
Google Scholar
[28] Udrescu S M, Torres D A, Garcia Ruiz R F 2024 Phys. Rev. Res. 6 013128
Google Scholar
[29] Leibrandt D R, Clark R J, Labaziewicz J, Antohi P, Bakr W, Brown K R, Chuang I L 2007 Phys. Rev. A 76 055403
Google Scholar
[30] Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201
Google Scholar
[31] Benda J, Mašín Z 2021 Sci. Rep. 11 11686
Google Scholar
[32] Hashimoto Y, Matsuoka L, Osaki H, Fukushima Y, Hasegawa S 2006 Jpn. J. Appl. Phys. 45 7108
Google Scholar
[33] Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002
Google Scholar
[34] Wahnschaffe M 2016 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz University
[35] Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G, Tong X 2023 Chin. J. Phys. 84 164
Google Scholar
[36] Roth B, Blythe P, Wenz H, Daerr H, Schiller S 2006 Phys. Rev. A 73 042712
Google Scholar
[37] Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281
Google Scholar
[38] Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95 183002
Google Scholar
[39] Carollo R A, Lane D A, Kleiner E K, Kyaw P A, Teng C C, Ou C Y, Qiao S, Hanneke D 2017 Opt. Express 25 7220
Google Scholar
[40] Wellers C, Schenkel M R, Giri G S, Brown K R, Schiller S 2022 Mol. Phys. 120 e2001599
Google Scholar
[41] Okada K, Wada M, Nakamura T, Iida R, Ohtani S, Tanaka J-i, Kawakami H, Katayama I 1998 J. Phys. Soc. Jpn. 67 3073
Google Scholar
[42] Wu Q M, Filzinger M, Shi Y, Wang Z H, Zhang J H 2021 Rev. Sci. Instrum. 92 063201
Google Scholar
[43] Li Z, Li L, Hua X, Tong X 2024 J. Appl. Phys. 135 144402
Google Scholar
[44] Li L, Li Z, Hua X, Tong X 2024 J. Phys. D: Appl. Phys. 57 315205
Google Scholar
[45] Buica G, Nakajima T 2008 J. Quant. Spectrosc. Radiat. Transfer 109 107
Google Scholar
[46] Tang X, Bachau H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 75
Google Scholar
[47] Wolf S, Studer D, Wendt K, Schmidt-Kaler F 2018 Appl. Phys. B 124 30
Google Scholar
[48] Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107 043101
Google Scholar
[49] Chandler D W, Thorne L R 1986 J. Chem. Phys. 85 1733
Google Scholar
[50] Buck J D, Robie D C, Hickman A P, Bamford D J, Bischel W K 1989 Phys. Rev. A 39 3932
Google Scholar
[51] Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R, Lous R S 2022 New J. Phys. 24 035004
Google Scholar
[52] Wayne M I, Bergquist J C, Bollinger J J, Wineland D J 1995 Phys. Scr. 1995 106
Google Scholar
[53] Larson D J, Bergquist J C, Bollinger J J, Itano W M, Wineland D J 1986 Phys. Rev. Lett. 57 70
Google Scholar
[54] Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, Collaboration B 2021 Nature 596 514
Google Scholar
[55] Karl R, Yin Y, Willitsch S 2024 Mol. Phys. 122 2199099
Google Scholar
[56] Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2023 Chin. Phys. B 32 036402
Google Scholar
[57] Cozijn F M J, Biesheuvel J, Flores A S, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij J C J 2013 Opt. Lett. 3813 2370
Google Scholar
[58] King S A, Leopold T, Thekkeppatt P, Schmidt P O 2018 Appl. Phys. B 124 214
Google Scholar
[59] Ohmae N, Katori H 2019 Rev. Sci. Instrum. 90 063201
Google Scholar
[60] Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S 2011 Appl. Phys. B 103 27
Google Scholar
[61] Lo H Y, Alonso J, Kienzler D, Keitch B C, de Clercq L E, Negnevitsky V, Home J P 2014 Appl. Phys. B 114 17
Google Scholar
[62] Schnitzler H, Fröhlich U, Boley T K W, Clemen A E M, Mlynek J, Peters A, Schiller S 2002 Appl. Opt. 41 7000
Google Scholar
[63] Wilson A C, Ospelkaus C, VanDevender A P, Mlynek J A, Brown K R, Leibfried D, Wineland D J 2011 Appl. Phys. B 105 741
Google Scholar
[64] Ahmadi M, Alves B X R, Baker C J, Bertsche W, Butler E, Capra A, Carruth C, Cesar C L, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara M C, Gill D R, Gutierrez A, Hangst J S, Hardy W N, Hayden M E, Isaac C A, Ishida A, Johnson M A, Jones S A, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna J T K, Menary S, Michan J M, Momose T, Munich J J, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen C Ø, Robicheaux F, Sacramento R L, Sameed M, Sarid E, Silveira D M, Stracka S, Stutter G, So C, Tharp T D, Thompson J E, Thompson R I, van der Werf D P, Wurtele J S 2017 Nature 541 506
Google Scholar
[65] Kraus B, Dawel F, Hannig S, Kramer J, Nauk C, Schmidt P O 2022 Opt. Express 30 44992
Google Scholar
[66] Cook E C, Vira A D, Patterson C, Livernois E, Williams W D 2018 Phys. Rev. Lett. 121 053001
Google Scholar
[67] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
Google Scholar
[68] Bai W L, Peng W C, Zhang Q Y, Wang C, Ao Z Y, Tong X 2024 Chin. J. Phys. 89 1500
Google Scholar
[69] Hirota A, Igosawa R, Kimura N, Kuma S, Chartkunchand K C, Mishra P M, Lindley M, Yamaguchi T, Nakano Y, Azuma T 2020 Phys. Rev. A 102 023119
Google Scholar
[70] Windberger A, Schwarz M, Versolato O O, Baumann T, Bekker H, Schmöger L, Hansen A K, Gingell A D, Klosowski L, Kristensen S, Schmidt P O, Ullrich J, Drewsen M, López-Urrutia J R C 2013 10th International Workshop on Non-Neutral Plasmas Greifswald, GERMANY, Aug 27–30, 2013 pp250–256
[71] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol. 4 014004
Google Scholar
[72] Kas M, Liévin J, Vaeck N, Loreau J 2020 31st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) Deauville, France, Jul. 23–30, 2020
[73] Dörfler A D, Yurtsever E, Villarreal P, González-Lezana T, Gianturco F A, Willitsch S 2020 Phys. Rev. A 101 012706
Google Scholar
[74] Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P, Hilico L 2020 Phys. Rev. Appl. 14 024053
Google Scholar
[75] Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001
Google Scholar
[76] Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783
Google Scholar
[77] Schneider T, Roth B, Duncker H, Ernsting I, Schiller S 2010 Nat. Phys. 6 275
Google Scholar
[78] Wu H, Mills M, West E, Heaven M C, Hudson E R 2021 Phys. Rev. A 104 063103
Google Scholar
[79] Kilaj A, Käser S, Wang J, Straňák P, Schwilk M, Xu L, von Lilienfeld O A, Küpper J, Meuwly M, Willitsch S 2023 Phys. Chem. Chem. Phys. 25 13933
Google Scholar
[80] Calvin A, Eierman S, Peng Z, Brzeczek M, Satterthwaite L, Patterson D 2023 Nature 621 295
Google Scholar
[81] Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 1
Google Scholar
[82] Okada K, Ichikawa M, Wada M, Schuessler H A 2015 Phys. Rev. Appl. 4 054009
Google Scholar
[83] Germann M, Tong X, Willitsch S 2014 Nat. Phys. 10 820
Google Scholar
[84] Tran V Q, Karr J P, Douillet A, Koelemeij J C J, Hilico L 2013 Phys. Rev. A 88 033421
Google Scholar
[85] Karr J P 2014 J. Mol. Spectrosc. 300 37
Google Scholar
[86] Schiller S, Bakalov D, Korobov V I 2014 Phys. Rev. Lett. 113 023004
Google Scholar
[87] Koelemeij J C J, Roth B, Schiller S 2007 Phys. Rev. A 76 023413
Google Scholar
[88] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749
Google Scholar
[89] Myers E G 2018 Phys. Rev. A 98 010101
Google Scholar
[90] Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001
Google Scholar
[91] Danev P, Bakalov D, Korobov V I, Schiller S 2021 Phys. Rev. A 103 012805
Google Scholar
[92] Schenkel M, Alighanbari S, Schiller S 2024 Nat. Phys. 20 383
Google Scholar
[93] Zammit M C, Charlton M, Jonsell S, Colgan J, Savage J S, Fursa D V, Kadyrov A S, Bray I, Forrey R C, Fontes C J, Leiding J A, Kilcrease D P, Hakel P, Timmermans E 2019 Phys. Rev. A 100 042709
Google Scholar
-
图 4 Be原子和HD分子光电离的相关能级 (a) Be原子光电离的相关能级, 黑色箭头表示双光子非共振电离, 紫色箭头表示[1+1]双光子共振电离, 蓝色箭头表示[2+1]三光子共振电离; (b) HD分子光电离的相关能级, 3个蓝色箭头组合表示[2+1]三光子共振电离, 两个蓝色箭头和一个红色箭头组合表示[2+1']三光子共振电离
Fig. 4. The related levels of Be atom and HD molecule photoionization: (a) The relevant energy levels for photoionization of the Be atom, black arrows indicate two-photon non-resonant ionization, purple arrows indicate [1+1] two-photon resonant ionization, and blue arrows indicate [2+1] three-photon resonant ionization; (b) the relevant energy levels for photoionization of the HD molecule, three blue arrows represent [2+1] three-photon resonant ionization, and combination of two blue arrows and a red arrow represent [2+1'] three-photon resonant ionization.
图 5 双组分库仑晶体径向分离示意图, 该图视角为径向截面图, 其中M1为内层被协同冷却离子的质量, M2为外层冷却剂离子的质量, b2和a2分别为质量为M2离子壳层的外径和内径, b1为内层离子的外径
Fig. 5. The schematic diagram of a bi-component Coulomb crystal in the view of a radial cross-section, where M1 is the mass of the sympathetically cooled ions in the inner shell, M2 is the mass of the laser-cooled ions in the outer shell, b2 and a2 are the radius of the outer and inner surface of the ions with the mass of M2, respectively, b1 is the radius of the outer surface of the ions with the mass of M1.
图 8 将冷却激光的锁定在ULE腔(a)和波长计(b)上的Be+库仑晶体的图像[68], 图像时间点在激光频率锁定后的2, 40, 80, 120, 160, 200, 240 s
Fig. 8. The images of Be+ Coulomb crystals with cooling laser locked to ULE cavity (a) or wavelength meter (b)[68], the image time points are at 2, 40, 80, 120, 160, 200, 240 s after the laser frequency is locked.
图 9 利用光泵浦方法后HD+振动基态的转动态分布[77], 红色、黑色、蓝色的数据点分别为为使用光泵浦方法后的实验采集的信号、模拟的信号、模拟的态布居数, 灰色数据点为没有使用光泵浦方法实验采集的信号
Fig. 9. Rotational-state distribution of the vibrational ground state after applying the optical pumping scheme[77], the red, black, and blue data points represent the experimental collected signals, simulated signals, and simulated population after using the optical pumping method, respectively, the gray data points represent the experimental collected signals without using the optical pumping method.
图 12 HD+分子离子宏运动激发扫频信号[48], 红线、蓝线分别为HD+分子离子解离前后的扫频信号
Fig. 12. The change of fluorescent signals when sweeping frequency of the secular excitation for HD+ molecular ions[48], the red and blue lines represent the fluorescent signals before and after the dissociation of HD+ molecular ions, respectively.
图 13 通过分子动力学模拟确定离子阱内装载的HD+分子离子的数量[35], 比较实验与模拟图像的晶体结构, 其内部暗核的形状和尺寸与HD+离子的数量有关(红框内), 含有(15 ± 1)个HD+分子离子的模拟图像与实验图像最为符合
Fig. 13. Determination of the number of sympathetically cooled HD+ ions by molecular dynamics simulation[35], comparing the crystal structures in the experimental and simulated images, the shape and size of the internal dark core are related to the number of HD+ ions (within the red square), and the simulated image containing (15 ± 1) HD+ molecular ions is the most consistent with the experimental image.
图 14 HD+分子离子共振增强多光子解离(REMPD)过程 (a)解离前后二维电子概率密度ρ的分布图, 其色度正比于lgρ; (b) REMPD过程的相关能级; (c)为转跃迁(v, L):(0, 0)→(6, 1)相关的超精细结构能级图, 其中的量子数F, S, J是电子自旋se、质子自旋Ip、氘核自旋Id和分子旋转N按耦合强弱通过以下耦合方案形成, J = S+L, 其中S = F+Id, F = se+Ip, 4种不同颜色带箭头的线表示符合ΔF = 0, ΔS = 0选择定则的超精细跃迁
Fig. 14. Resonance enhanced multiphoton dissociation (REMPD) process of HD+ molecular ions: (a) The distribution of electrons two-dimensional probability density ρ before and after dissociation, and its chromaticity is proportional to log10ρ; (b) the relevant energy levels of the REMPD process; (c) the relevant hyperfine structure levels of the rovibrational transition (v, L):(0, 0)→(6, 1), the quantum numbers refer to the following coupling scheme for the electron spin se, proton spin Ip, deuteron spin Id, and molecular rotation N: J = S+L, where S = F+Id, F = se+Ip. The four strongest hyperfine transitions for ΔF = 0 and ΔS = 0 are represented by four different colored arrows.
表 1 基本物理常数对HD+分子离子振转跃迁频率不确定度的影响[1]
Table 1. Influences of fundamental physical constants on the uncertainty of the vibrational transition frequencies of HD+ molecular ions[1].
R∞ μpe μde rp rd α 当前物理量的相对不确定度 1.9 ppt 60 ppt 35 ppt 0.002 350 ppm 0.15 ppb 频率值对物理量的敏感系数 ~1 ~0.1 ~0.01 ~10–9 ~10–9 ~10–6 物理量对频率相对不确定度影响 ~1 ppt ~10 ppt ~1 ppt ~1 ppt ~0.1 ppt ~0.1 ppq 注: 表中ppm(part per million), ppb(part per billion), ppt(part per trillion), ppq(part per quadrillion)分别表示10–6, 10–9, 10–12, 10–15. 表 2 QED理论计算的HD+振转跃迁 (v, L):(0, 0)→(6, 1)各项贡献
Table 2. Contribution of QED theory calculation of HD+ rovibrational transition (v, L):(0, 0)→(6, 1).
频率/MHz 贡献项 vnr 303393178.0114(8) 三体非相对论薛定谔方程能量 vnuc –0.096(1) 有限核效应 vα2 4571.102 59(3) Breit–Pauli近似中的相对论修正 vα3 –1 234.8136(3) 辐射修正领头项 vα4 –8.9607(3) 1圈、2圈辐射修正; 高阶的相对论修正 vα5 0.537(1) 3圈的辐射修正; Wichmann–Kroll贡献项 vα6 0.003(5) 高阶的辐射修正 vtot 303303396505.784(5) -
[1] Karr J P, Hilico L, Koelemeij J C, Korobov V 2016 Phys. Rev. A 94 050501
Google Scholar
[2] Colbourn E A, Bunker P R 1976 J. Mol. Spectrosc 63 155
Google Scholar
[3] Korobov V I, Karr J P 2021 Phys. Rev. A 104 032806
Google Scholar
[4] Korobov V I 2022 Phys. Part. Nuclei 53 1
Google Scholar
[5] Yan Z C, Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1055
Google Scholar
[6] Ye N, Yan Z C 2014 Phys. Rev. A 90 032516
Google Scholar
[7] Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99 012501
Google Scholar
[8] Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97 243001
Google Scholar
[9] Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106 042815
Google Scholar
[10] Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86 064502
Google Scholar
[11] Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98 032502
Google Scholar
[12] Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102 022804
Google Scholar
[13] Wing W H, Ruff G A, Lamb Jr W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488
Google Scholar
[14] Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98 173002
Google Scholar
[15] Bressel U, Borodin A, Shen J, Hansen M G, Ernsting I, Schiller S 2012 Phys. Rev. Lett. 108 183003
Google Scholar
[16] Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14 555
Google Scholar
[17] Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581 152
Google Scholar
[18] Kortunov I V, Alighanbari S, Hansen M G, Giri G, Korobov V I, Schiller S 2021 Nat. Phys. 17 569
Google Scholar
[19] Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 19 1263
Google Scholar
[20] Biesheuvel J, Karr J P, Hilico L, Eikema K, Ubachs W, Koelemeij J 2016 Nat. Commun. 7 10385
Google Scholar
[21] Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 369 1238
Google Scholar
[22] Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H, Blaum K 2014 Nature 506 467
Google Scholar
[23] Heiße F, Rau S, Köhler-Langes F, Quint W, Werth G, Sturm S, Blaum K 2019 Phys. Rev. A 100 022518
Google Scholar
[24] Hori M, Aghai-Khozani H, Sótér A, Barna D, Dax A, Hayano R, Kobayashi T, Murakami Y, Todoroki K, Yamada H, Horváth D, Venturelli L 2016 Science 354 610
Google Scholar
[25] Borkowski M, Buchachenko A A, Ciuryo R, Julienne P S, Takahashi Y 2019 Sci. Rep. 9 14807
Google Scholar
[26] Germann M, Patra S, Karr J P, Hilico L, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028
Google Scholar
[27] Shi W, Jacobi J, Knopp H, Schippers S, Müller A 2003 Nucl. Instrum. Methods B 205 201
Google Scholar
[28] Udrescu S M, Torres D A, Garcia Ruiz R F 2024 Phys. Rev. Res. 6 013128
Google Scholar
[29] Leibrandt D R, Clark R J, Labaziewicz J, Antohi P, Bakr W, Brown K R, Chuang I L 2007 Phys. Rev. A 76 055403
Google Scholar
[30] Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201
Google Scholar
[31] Benda J, Mašín Z 2021 Sci. Rep. 11 11686
Google Scholar
[32] Hashimoto Y, Matsuoka L, Osaki H, Fukushima Y, Hasegawa S 2006 Jpn. J. Appl. Phys. 45 7108
Google Scholar
[33] Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002
Google Scholar
[34] Wahnschaffe M 2016 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz University
[35] Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G, Tong X 2023 Chin. J. Phys. 84 164
Google Scholar
[36] Roth B, Blythe P, Wenz H, Daerr H, Schiller S 2006 Phys. Rev. A 73 042712
Google Scholar
[37] Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281
Google Scholar
[38] Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95 183002
Google Scholar
[39] Carollo R A, Lane D A, Kleiner E K, Kyaw P A, Teng C C, Ou C Y, Qiao S, Hanneke D 2017 Opt. Express 25 7220
Google Scholar
[40] Wellers C, Schenkel M R, Giri G S, Brown K R, Schiller S 2022 Mol. Phys. 120 e2001599
Google Scholar
[41] Okada K, Wada M, Nakamura T, Iida R, Ohtani S, Tanaka J-i, Kawakami H, Katayama I 1998 J. Phys. Soc. Jpn. 67 3073
Google Scholar
[42] Wu Q M, Filzinger M, Shi Y, Wang Z H, Zhang J H 2021 Rev. Sci. Instrum. 92 063201
Google Scholar
[43] Li Z, Li L, Hua X, Tong X 2024 J. Appl. Phys. 135 144402
Google Scholar
[44] Li L, Li Z, Hua X, Tong X 2024 J. Phys. D: Appl. Phys. 57 315205
Google Scholar
[45] Buica G, Nakajima T 2008 J. Quant. Spectrosc. Radiat. Transfer 109 107
Google Scholar
[46] Tang X, Bachau H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 75
Google Scholar
[47] Wolf S, Studer D, Wendt K, Schmidt-Kaler F 2018 Appl. Phys. B 124 30
Google Scholar
[48] Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107 043101
Google Scholar
[49] Chandler D W, Thorne L R 1986 J. Chem. Phys. 85 1733
Google Scholar
[50] Buck J D, Robie D C, Hickman A P, Bamford D J, Bischel W K 1989 Phys. Rev. A 39 3932
Google Scholar
[51] Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R, Lous R S 2022 New J. Phys. 24 035004
Google Scholar
[52] Wayne M I, Bergquist J C, Bollinger J J, Wineland D J 1995 Phys. Scr. 1995 106
Google Scholar
[53] Larson D J, Bergquist J C, Bollinger J J, Itano W M, Wineland D J 1986 Phys. Rev. Lett. 57 70
Google Scholar
[54] Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, Collaboration B 2021 Nature 596 514
Google Scholar
[55] Karl R, Yin Y, Willitsch S 2024 Mol. Phys. 122 2199099
Google Scholar
[56] Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2023 Chin. Phys. B 32 036402
Google Scholar
[57] Cozijn F M J, Biesheuvel J, Flores A S, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij J C J 2013 Opt. Lett. 3813 2370
Google Scholar
[58] King S A, Leopold T, Thekkeppatt P, Schmidt P O 2018 Appl. Phys. B 124 214
Google Scholar
[59] Ohmae N, Katori H 2019 Rev. Sci. Instrum. 90 063201
Google Scholar
[60] Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S 2011 Appl. Phys. B 103 27
Google Scholar
[61] Lo H Y, Alonso J, Kienzler D, Keitch B C, de Clercq L E, Negnevitsky V, Home J P 2014 Appl. Phys. B 114 17
Google Scholar
[62] Schnitzler H, Fröhlich U, Boley T K W, Clemen A E M, Mlynek J, Peters A, Schiller S 2002 Appl. Opt. 41 7000
Google Scholar
[63] Wilson A C, Ospelkaus C, VanDevender A P, Mlynek J A, Brown K R, Leibfried D, Wineland D J 2011 Appl. Phys. B 105 741
Google Scholar
[64] Ahmadi M, Alves B X R, Baker C J, Bertsche W, Butler E, Capra A, Carruth C, Cesar C L, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara M C, Gill D R, Gutierrez A, Hangst J S, Hardy W N, Hayden M E, Isaac C A, Ishida A, Johnson M A, Jones S A, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna J T K, Menary S, Michan J M, Momose T, Munich J J, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen C Ø, Robicheaux F, Sacramento R L, Sameed M, Sarid E, Silveira D M, Stracka S, Stutter G, So C, Tharp T D, Thompson J E, Thompson R I, van der Werf D P, Wurtele J S 2017 Nature 541 506
Google Scholar
[65] Kraus B, Dawel F, Hannig S, Kramer J, Nauk C, Schmidt P O 2022 Opt. Express 30 44992
Google Scholar
[66] Cook E C, Vira A D, Patterson C, Livernois E, Williams W D 2018 Phys. Rev. Lett. 121 053001
Google Scholar
[67] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
Google Scholar
[68] Bai W L, Peng W C, Zhang Q Y, Wang C, Ao Z Y, Tong X 2024 Chin. J. Phys. 89 1500
Google Scholar
[69] Hirota A, Igosawa R, Kimura N, Kuma S, Chartkunchand K C, Mishra P M, Lindley M, Yamaguchi T, Nakano Y, Azuma T 2020 Phys. Rev. A 102 023119
Google Scholar
[70] Windberger A, Schwarz M, Versolato O O, Baumann T, Bekker H, Schmöger L, Hansen A K, Gingell A D, Klosowski L, Kristensen S, Schmidt P O, Ullrich J, Drewsen M, López-Urrutia J R C 2013 10th International Workshop on Non-Neutral Plasmas Greifswald, GERMANY, Aug 27–30, 2013 pp250–256
[71] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol. 4 014004
Google Scholar
[72] Kas M, Liévin J, Vaeck N, Loreau J 2020 31st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) Deauville, France, Jul. 23–30, 2020
[73] Dörfler A D, Yurtsever E, Villarreal P, González-Lezana T, Gianturco F A, Willitsch S 2020 Phys. Rev. A 101 012706
Google Scholar
[74] Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P, Hilico L 2020 Phys. Rev. Appl. 14 024053
Google Scholar
[75] Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001
Google Scholar
[76] Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783
Google Scholar
[77] Schneider T, Roth B, Duncker H, Ernsting I, Schiller S 2010 Nat. Phys. 6 275
Google Scholar
[78] Wu H, Mills M, West E, Heaven M C, Hudson E R 2021 Phys. Rev. A 104 063103
Google Scholar
[79] Kilaj A, Käser S, Wang J, Straňák P, Schwilk M, Xu L, von Lilienfeld O A, Küpper J, Meuwly M, Willitsch S 2023 Phys. Chem. Chem. Phys. 25 13933
Google Scholar
[80] Calvin A, Eierman S, Peng Z, Brzeczek M, Satterthwaite L, Patterson D 2023 Nature 621 295
Google Scholar
[81] Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 1
Google Scholar
[82] Okada K, Ichikawa M, Wada M, Schuessler H A 2015 Phys. Rev. Appl. 4 054009
Google Scholar
[83] Germann M, Tong X, Willitsch S 2014 Nat. Phys. 10 820
Google Scholar
[84] Tran V Q, Karr J P, Douillet A, Koelemeij J C J, Hilico L 2013 Phys. Rev. A 88 033421
Google Scholar
[85] Karr J P 2014 J. Mol. Spectrosc. 300 37
Google Scholar
[86] Schiller S, Bakalov D, Korobov V I 2014 Phys. Rev. Lett. 113 023004
Google Scholar
[87] Koelemeij J C J, Roth B, Schiller S 2007 Phys. Rev. A 76 023413
Google Scholar
[88] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749
Google Scholar
[89] Myers E G 2018 Phys. Rev. A 98 010101
Google Scholar
[90] Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001
Google Scholar
[91] Danev P, Bakalov D, Korobov V I, Schiller S 2021 Phys. Rev. A 103 012805
Google Scholar
[92] Schenkel M, Alighanbari S, Schiller S 2024 Nat. Phys. 20 383
Google Scholar
[93] Zammit M C, Charlton M, Jonsell S, Colgan J, Savage J S, Fursa D V, Kadyrov A S, Bray I, Forrey R C, Fontes C J, Leiding J A, Kilcrease D P, Hakel P, Timmermans E 2019 Phys. Rev. A 100 042709
Google Scholar
计量
- 文章访问数: 1836
- PDF下载量: 81
- 被引次数: 0