搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算

朱洪强 罗磊 吴泽邦 尹开慧 岳远霞 杨英 冯庆 贾伟尧

引用本文:
Citation:

利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算

朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧

Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping

Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao
cstr: 32037.14.aps.73.20240992
PDF
HTML
导出引用
  • 为了研究NO2在未掺杂石墨烯和掺杂石墨烯(N掺杂、Zn掺杂、N-Zn双掺杂)上的吸附, 本工作采用密度泛函理论的第一性原理平面波超软赝势对其吸附过程进行模拟. 计算了石墨烯表面吸附NO2分子的吸附能、Mulliken分布、差分电荷密度、态密度和光学性质. 研究结果表明, 与未掺杂石墨烯表面相比, 掺杂石墨烯表面对吸附NO2表现出了更高的敏感性, 吸附能大小顺序为: N-Zn双掺杂表面 > Zn掺杂表面 > N掺杂表面 > 未掺杂表面. 未掺杂石墨烯和N掺杂石墨烯表面与NO2的相互作用较弱, 是物理吸附. Zn掺杂和N-Zn双掺杂石墨烯表面与NO2之间形成了化学键, 是化学吸附. 在可见光范围内, 3种掺杂方式中 N-Zn双掺杂表面对于提高石墨烯光学性能效果最佳, 其吸收系数和反射系数的峰值较未掺杂石墨烯表明分别提高了约1.12倍和3.42倍. N-Zn双掺杂石墨烯不但能增强表面与NO2的相互作用, 同时也能提高材料的光学性能, 这为基于石墨烯基底的NO2气体检测传感提供了理论支撑和实验指导.
    In order to study the adsorption of NO2 on pristine graphene and doped graphene (N-doped, Zn-doped, and N-Zn co-doped), we simulate the adsorption process by applying the first-principles plane-wave ultrasoft pseudopotentials of the density-functional theory in this work. The adsorption energy, Mulliken distribution, differential charge density, density of states, and optical properties of NO2 molecules adsorbed on the graphene surface are calculated. The results show that the doped graphene surface exhibits higher sensitivity to the adsorption of NO2 compared with the pristine graphene surface, and the order of adsorption energy is as follows: N-Zn co-doped surface > Zn-doped surface > N-doped surface > pristine surface. Pristine graphene surface and N-doped graphene surface have weak interactions with and physical adsorption of NO2. Zn-doped graphene surfac and N-Zn co-doped graphene surface form chemical bonds with NO2 and are chemisorbed. In the visible range, among the three doping modes, the N-Zn co-doped surface is the most effective for improving the optical properties of graphene, with the peak absorption and reflection coefficients improved by about 1.12 and 3.42 times, respectively, compared with pristine graphene. The N-Zn co-doped graphene not only enhances the interaction between the surface and NO2, but also improves the optical properties of the material, which provides theoretical support and experimental guidance for NO2 gas detection and sensing based on graphene substrate.
      通信作者: 朱洪强, 20132013@cqnu.edu.cn ; 贾伟尧, wyjia@swu.edu.cn
    • 基金项目: 重庆市自然科学基金(批准号: CSTB2023SCQ-MSX0207, CSTB2023SCQ-MSX0425)、重庆市教委科学技术研究计划(批准号: KJQN202200569, KJQN202200507, KJQN202300513, KJZD-K202300516)、重庆市高等教育教学改革研究项目(批准号: 223145)和重庆市研究生教育“课程思政”示范项目(批准号: YKCSZ23102)资助的课题.
      Corresponding author: Zhu Hong-Qiang, 20132013@cqnu.edu.cn ; Jia Wei-Yao, wyjia@swu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2023SCQ-MSX0207, CSTB2023SCQ-MSX0425), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202200569, KJQN202200507, KJQN202300513, KJZD-K202300516), the Higher Education Teaching Reform Research Project of Chongqing, China (Grant No. 223145), and the “Curriculum Ideological and Political” Demonstration Project of Chongqing Municipal Education Commission, China (Grant No. YKCSZ23102).
    [1]

    Cooper M J, Martin R V, Hammer M S, Levelt P F, Veefkind P, Lamsal L N, Krotkov N A, Brook J R, McLinden C A 2022 Nature 601 380Google Scholar

    [2]

    Gholami F, Tomas M, Gholami Z, Vakili M 2020 Sci. Total. Environ. 714 136712Google Scholar

    [3]

    Wang S, Liu J, Yi H, Tang X L, Yu Q J, Zhao S Z, Gao F Y, Zhou Y S, Zhong T T, Wang Y X 2022 Chemosphere 291 132917Google Scholar

    [4]

    Lim H, Kwon H, Kang H, Jang J E, Kwon H J 2023 Nat. Commun. 14 3114Google Scholar

    [5]

    Gao Z Y, Li L L, Huang H Y, Xu S P, Yan G, Zhao M L, Ding Z 2020 Appl. Surf. Sci. 527 146939Google Scholar

    [6]

    Geng X, Li S W, Mawella-Vithanage L, Ma T, Kilani M, Wang B W, Ma L, Hewa-Rahinduwage C C, Shafikova A, Nikolla E, Mao G Z, Brock S L, Zhang L, Luo L 2021 Nat. Commun. 12 4895Google Scholar

    [7]

    熊枫, 彭志敏, 丁艳军, 杜艳君 2022 71 203302Google Scholar

    Xiong F, Peng Z M, Ding Y J, Du Y J 2022 Acta Phys. Sin. 71 203302Google Scholar

    [8]

    Zhao S K, Shen Y B, Zhou P F, Zhong X X, Han C, Zhao Q, Wei D Z 2019 Sens. Actuat. B-Chem. 282 917Google Scholar

    [9]

    Choi M S, Kim M Y, Mirzaei A, Kim S I, Baek S H, Chun D W, Jin C H, Lee K H 2021 Appl. Surf. Sci. 568 150910Google Scholar

    [10]

    Brophy R E, Junker B, Fakhri E A, Arnason H Ö, Svavarsson H G, Weimar U, Bârsan N, Manolescu A 2024 Sens. Actuat. B-Chem. 410 135648Google Scholar

    [11]

    Rani S, Kumar M, Garg P, Rani S, Kumar M, Garg P, Parmar R, Kumar A, Singh Y, Baloria V, Deshpande U, Singh V N 2022 ACS Appl. Mater. Interfaces 14 15381Google Scholar

    [12]

    Yu W, Sisi L, Haiyan Y, Luo J 2020 Rsc Adv. 10 15328Google Scholar

    [13]

    Dong Q C, Xiao M, Chu Z Y, Li G C, Zhang Y 2021 Sensors 21 3386Google Scholar

    [14]

    Gui Y G, Peng X, Liu K Ding Z Y 2020 Physicas E 119 113959Google Scholar

    [15]

    Zhu P C, Tang F, Wang S F, Cao W, Wang Q 2022 Mater. Today Commun. 33 104280Google Scholar

    [16]

    Li Q F, Chen W L, Liu W H, Sun M L, Xu M H, Peng H L, Wu H Y, Song S X, Li T H, Tang X H 2022 Appl. Surf. Sci. 586 152689Google Scholar

    [17]

    Hong H S, Ha N H, Thinh, D D, Nam N H, Huong N T, Hue N T, Hoang T V 2021 Nano Energy 87 106165Google Scholar

    [18]

    Zhang T, Sun H, Wang F D, Zhang W D, Tang S W, Ma J M, Gong H W, Zhang J P 2017 Appl. Surf. Sci. 425 340Google Scholar

    [19]

    Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B 2015 J. Phys. Chem. C 119 24827Google Scholar

    [20]

    Shukri M S M, Saimin M N S, Yaakob M K, Yahya M Z A, Taib M F M 2019 Appl. Surf. Sci. 494 817Google Scholar

    [21]

    Shamim S U D, Roy D, Alam S, Piya A A, Rahman M S, Hossain M K, Ahmed F 2022 Appl. Surf. Sci. 596 153603Google Scholar

    [22]

    Zhang X X, Yu L, Gui Y G, Hu W H 2016 Appl. Surf. Sci. 367 259Google Scholar

    [23]

    Jia X, An L 2019 Mod. Phys. Lett. B 33 1950044Google Scholar

    [24]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Mat. 14 2717Google Scholar

    [25]

    Yang Z H, Wang Z Y, Su X P 2012 J. Cent. South Univ. 19 1796Google Scholar

    [26]

    Basiuk V A, Henao-Holguin L V 2014 J. Comput. Theor. Nanosci. 11 1609Google Scholar

    [27]

    朱洪强, 冯庆 2014 63 133101Google Scholar

    Zhu H Q, Feng Q 2014 Acta Phys. Sin. 63 133101Google Scholar

    [28]

    Gao X, Zhou Q, Wang J X, Xu L N, Zeng W 2020 Appl. Surf. Sci. 517 146180Google Scholar

    [29]

    Zheng T, Traian D, Thomas F 2021 Phys. Chem. Chem. Phys. 23 19627Google Scholar

    [30]

    Ping L K, Mohamed M A, Mondal A K, Taib M F M, Samat M H, Berhanuddin D D, Menon P S, Bahru R 2021 Micromachines 12 348Google Scholar

  • 图 1  石墨烯表面吸附NO2分子结构的俯视图和侧视图 (a) 未掺杂石墨烯; (b) N掺杂石墨烯; (c) Zn掺杂石墨烯; (d) N-Zn双掺杂石墨烯

    Fig. 1.  Structure of NO2 adsorbed on graphene surface: (a) Pristine graphene; (b) N-doped graphene; (c) Zn-doped graphene; (d) N-Zn co-doped graphene.

    图 2  优化后石墨烯表面吸附NO2分子结构的俯视图和侧视图 (a) 未掺杂石墨烯; (b) N掺杂石墨烯; (c) Zn掺杂石墨烯; (d) N-Zn双掺杂石墨烯

    Fig. 2.  Top and side views of the molecular structure of NO2 adsorbed on the optimized graphene surface: (a) Pristine graphene; (b) N-doped graphene; (c) Zn-doped graphene; (d) N-Zn co-doped graphene.

    图 3  石墨烯表面吸附NO2分子 (a) 总电子密度等面图(TCD)、(b) 电荷密度差图(CDD)和(c)电子密度差图(ECD). TCD图等面设为0.02 e3; CDD图等面设为0.01 e3, 蓝色代表电子积累, 黄色代表电子耗尽; ECD图红色代表电荷聚集, 蓝色代表电荷耗尽

    Fig. 3.  (a) Charge density difference (CDD), (b) total charge density (TCD), and (c) electron density difference (EDD) plots of NO2 molecules adsorbed on different graphene surfaces. The isosurfaces of TCD plots are set to 0.02 e3; the isosurfaces of CDD plots are set to 0.01 e3, blue represents electron accumulation and yellow represents electron depletion; in EDD plots, red represents charge accumulation and blue represents charge depletion.

    图 4  石墨烯表面吸附NO2分子的分态密度 (a) 未掺杂石墨烯; (b) N掺杂石墨烯; (c) Zn掺杂石墨烯; (d) N-Zn双掺杂石墨烯

    Fig. 4.  Fractional density of adsorbed NO2 molecules on graphene surfaces: (a) Pristine graphene; (b) N-doped graphene; (c) Zn-doped graphene; (d) N-Zn co-doped graphene.

    图 5  石墨烯的介电函数虚部

    Fig. 5.  The imaginary parts of the dielectric function of graphene.

    图 6  石墨烯的(a)吸收谱和(b)反射谱

    Fig. 6.  (a) Absorption spectrum and (b) reflection spectrum of graphene.

    表 1  石墨烯表面吸附NO2的距离和吸附能

    Table 1.  The distance and adsorption energy of NO2 adsorption on graphene surface.

    模型 初始距离/Å 优化后距离/Å 吸附能/eV
    未掺杂石墨烯 3.00 2.96 –0.22
    N掺杂 3.00 2.73 –0.69
    Zn掺杂 3.00 1.94 –4.80
    N-Zn双掺杂 3.00 1.93 –4.97
    下载: 导出CSV

    表 2  NO2分子的Mulliken的电荷分布

    Table 2.  Mulliken charge distribution of NO2.

    模型 种类 s电子 p电子 总电子 电荷/e 分子带电荷/e 布居数 键长/Å
    NO2 N 1.39 3.18 4.57 0.44 0 0.68 1.23
    O 1.85 4.36 6.22 –0.22
    O 1.85 4.36 6.22 –0.22
    未掺杂石墨烯 N 1.46 3.21 4.67 0.33 –0.25 0.63 1.24
    O 1.86 4.44 6.29 –0.29
    O 1.86 4.44 6.29 –0.29
    N掺杂 N 1.51 3.23 4.74 0.26 –0.48 0.60 1.25
    O 1.86 4.53 6.39 –0.38
    O 1.86 4.51 6.36 –0.36
    Zn掺杂 N 1.48 3.40 4.88 0.12 –0.59 0.67 1.26
    O 1.86 4.50 6.36 –0.36
    O 1.86 4.49 6.35 –0.35
    N-Zn
    双掺杂
    N 1.49 3.40 4.88 0.11 –0.60 0.67 1.27
    O 1.86 4.51 6.37 –0.37
    O 1.86 4.48 6.34 –0.34
    下载: 导出CSV
    Baidu
  • [1]

    Cooper M J, Martin R V, Hammer M S, Levelt P F, Veefkind P, Lamsal L N, Krotkov N A, Brook J R, McLinden C A 2022 Nature 601 380Google Scholar

    [2]

    Gholami F, Tomas M, Gholami Z, Vakili M 2020 Sci. Total. Environ. 714 136712Google Scholar

    [3]

    Wang S, Liu J, Yi H, Tang X L, Yu Q J, Zhao S Z, Gao F Y, Zhou Y S, Zhong T T, Wang Y X 2022 Chemosphere 291 132917Google Scholar

    [4]

    Lim H, Kwon H, Kang H, Jang J E, Kwon H J 2023 Nat. Commun. 14 3114Google Scholar

    [5]

    Gao Z Y, Li L L, Huang H Y, Xu S P, Yan G, Zhao M L, Ding Z 2020 Appl. Surf. Sci. 527 146939Google Scholar

    [6]

    Geng X, Li S W, Mawella-Vithanage L, Ma T, Kilani M, Wang B W, Ma L, Hewa-Rahinduwage C C, Shafikova A, Nikolla E, Mao G Z, Brock S L, Zhang L, Luo L 2021 Nat. Commun. 12 4895Google Scholar

    [7]

    熊枫, 彭志敏, 丁艳军, 杜艳君 2022 71 203302Google Scholar

    Xiong F, Peng Z M, Ding Y J, Du Y J 2022 Acta Phys. Sin. 71 203302Google Scholar

    [8]

    Zhao S K, Shen Y B, Zhou P F, Zhong X X, Han C, Zhao Q, Wei D Z 2019 Sens. Actuat. B-Chem. 282 917Google Scholar

    [9]

    Choi M S, Kim M Y, Mirzaei A, Kim S I, Baek S H, Chun D W, Jin C H, Lee K H 2021 Appl. Surf. Sci. 568 150910Google Scholar

    [10]

    Brophy R E, Junker B, Fakhri E A, Arnason H Ö, Svavarsson H G, Weimar U, Bârsan N, Manolescu A 2024 Sens. Actuat. B-Chem. 410 135648Google Scholar

    [11]

    Rani S, Kumar M, Garg P, Rani S, Kumar M, Garg P, Parmar R, Kumar A, Singh Y, Baloria V, Deshpande U, Singh V N 2022 ACS Appl. Mater. Interfaces 14 15381Google Scholar

    [12]

    Yu W, Sisi L, Haiyan Y, Luo J 2020 Rsc Adv. 10 15328Google Scholar

    [13]

    Dong Q C, Xiao M, Chu Z Y, Li G C, Zhang Y 2021 Sensors 21 3386Google Scholar

    [14]

    Gui Y G, Peng X, Liu K Ding Z Y 2020 Physicas E 119 113959Google Scholar

    [15]

    Zhu P C, Tang F, Wang S F, Cao W, Wang Q 2022 Mater. Today Commun. 33 104280Google Scholar

    [16]

    Li Q F, Chen W L, Liu W H, Sun M L, Xu M H, Peng H L, Wu H Y, Song S X, Li T H, Tang X H 2022 Appl. Surf. Sci. 586 152689Google Scholar

    [17]

    Hong H S, Ha N H, Thinh, D D, Nam N H, Huong N T, Hue N T, Hoang T V 2021 Nano Energy 87 106165Google Scholar

    [18]

    Zhang T, Sun H, Wang F D, Zhang W D, Tang S W, Ma J M, Gong H W, Zhang J P 2017 Appl. Surf. Sci. 425 340Google Scholar

    [19]

    Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B 2015 J. Phys. Chem. C 119 24827Google Scholar

    [20]

    Shukri M S M, Saimin M N S, Yaakob M K, Yahya M Z A, Taib M F M 2019 Appl. Surf. Sci. 494 817Google Scholar

    [21]

    Shamim S U D, Roy D, Alam S, Piya A A, Rahman M S, Hossain M K, Ahmed F 2022 Appl. Surf. Sci. 596 153603Google Scholar

    [22]

    Zhang X X, Yu L, Gui Y G, Hu W H 2016 Appl. Surf. Sci. 367 259Google Scholar

    [23]

    Jia X, An L 2019 Mod. Phys. Lett. B 33 1950044Google Scholar

    [24]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Mat. 14 2717Google Scholar

    [25]

    Yang Z H, Wang Z Y, Su X P 2012 J. Cent. South Univ. 19 1796Google Scholar

    [26]

    Basiuk V A, Henao-Holguin L V 2014 J. Comput. Theor. Nanosci. 11 1609Google Scholar

    [27]

    朱洪强, 冯庆 2014 63 133101Google Scholar

    Zhu H Q, Feng Q 2014 Acta Phys. Sin. 63 133101Google Scholar

    [28]

    Gao X, Zhou Q, Wang J X, Xu L N, Zeng W 2020 Appl. Surf. Sci. 517 146180Google Scholar

    [29]

    Zheng T, Traian D, Thomas F 2021 Phys. Chem. Chem. Phys. 23 19627Google Scholar

    [30]

    Ping L K, Mohamed M A, Mondal A K, Taib M F M, Samat M H, Berhanuddin D D, Menon P S, Bahru R 2021 Micromachines 12 348Google Scholar

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究.  , 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究.  , 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [3] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测.  , 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [5] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法.  , 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [6] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [7] 刘志福, 李培, 程铁栋, 黄文. 铁掺杂多孔氧化铟的NO2传感特性.  , 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [8] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究.  , 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [9] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算.  , 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [10] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算.  , 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [11] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [12] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究.  , 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [13] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [14] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附.  , 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [15] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [16] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [17] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究.  , 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [18] 陈玉红, 曹一杰, 任宝兴. Ti原子在Al(110)表面吸氢过程中催化作用的第一性原理研究.  , 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [19] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究.  , 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [20] 魏彦薇, 杨宗献. Au在Zr掺杂的CeO2(110)面吸附的第一性原理研究.  , 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
计量
  • 文章访问数:  637
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-09-06
  • 上网日期:  2024-09-18
  • 刊出日期:  2024-10-20

/

返回文章
返回
Baidu
map