搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究

赵明亮 邢思雨 唐雯 张钰如 高飞 王友年

引用本文:
Citation:

面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究

赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年

Three-dimensional fluid simulation of a planar coil inductively coupled argon plasma source for semiconductor processes

Zhao Ming-Liang, Xing Si-Yu, Tang Wen, Zhang Yu-Ru, Gao Fei, Wang You-Nian
cstr: 32037.14.aps.73.20240952
PDF
HTML
导出引用
  • 针对平面线圈感性耦合氩气放电, 本文基于自主开发的三维等离子体流体力学程序, 数值模拟了线圈结构以及放电气压对等离子体空间分布的影响. 研究表明, 由于线圈在环向上具有不对称性, 电子密度也具有明显的环向不均匀性. 随着气压的增大, 这种环向不均匀性逐渐增强. 通过减小线圈的开口, 可以提高等离子体的环向均匀性. 此外, 针对双线圈驱动放电, 还研究了内外双线圈电流幅值之比对于等离子体均匀性的影响. 结果表明, 通过改变内外线圈电流幅值的比值, 有利于提高等离子体的径向均匀性.
    In this paper, the effect of the coil structure, as well as the gas pressure, on the spatial distribution of an inductively coupled argon plasma is numerically investigated based on our developed three-dimensional fluid model. The model is based on a modified ambipolar diffusion model, in which the electron density is solved under the quasi-neutral condition, the ion density and neutral particle density are obtained by solving continuity equations, and the ion flux is achieved by solving the full momentum balance equation. In addition, the inductive electric field is governed by the Maxwell equations, which are solved in the frequency domain. The results show that the electron density is nonuniform along the azimuthal direction due to the asymmetry of the coil structure, and the uniformity becomes better as gas pressure decreases. Besides, the plasma azimuthal uniformity can also be improved by reducing the opening of the coil. As the coil radius increases, the plasma density decreases, while the radial uniformity of the plasma improves, and the azimuthal uniformity deteriorates. In addition, the influence of the current amplitude ratio between the inner coil and outer coil on the plasma uniformity in dual-coil discharge is also investigated. It is found that the plasma radial uniformity becomes better by reducing the inter-to-outer coil current amplitude ratio. The results obtained in this work demonstrate that the plasma uniformity can be improved by optimizing the coil structure and adjusting the discharge parameters, which is of significant importance in etching and deposition processes.
      通信作者: 高飞, fgao@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11935005)资助的课题.
      Corresponding author: Gao Fei, fgao@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11935005).
    [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp350–351

    [2]

    王友年, 宋远红, 张钰如 2024 射频等离子体物理基础(北京: 科学出版社) 第314页

    Wang Y N, Song Y H, Zhang Y R 2024 Fundamentals of Radio-frequency Plasma Physics (Beijing: Science Press) p314

    [3]

    Rauf S, Kenney J, Collins K S 2009 J. Appl. Phys. 105 103301Google Scholar

    [4]

    Kenney J, Rauf S, Collins K S 2009 J. Appl. Phys. 106 103302Google Scholar

    [5]

    Agarwal A, Bera K, Kenney J, Likhanskii A, Rauf S 2017 J. Phys. D: Appl. Phys. 50 424001Google Scholar

    [6]

    Ventzek P L, Sommerer T J, Hoekstra R J, Kushner M J 1993 Appl. Phys. Lett. 63 605Google Scholar

    [7]

    Thorsteinsson E, Gudmundsson J 2010 J. Phys. D: Appl. Phys. 43 115201Google Scholar

    [8]

    Thorsteinsson E, Gudmundsson J 2010 J. Phys. D: Appl. Phys. 43 115202Google Scholar

    [9]

    Hjartarson A, Thorsteinsson E, Gudmundsson J 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [10]

    Takao Y, Kusaba N, Eriguchi K, Ono K 2010 J. Appl. Phys. 108 093309Google Scholar

    [11]

    Mattei S, Nishida K, Onai M, Lettry L, Tran M Q, Hatayama A 2017 J. Comput. Phys. 350 891Google Scholar

    [12]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [13]

    Sun X Y, Zhang Y R, Li X C, Wang Y N 2015 Phys. Plasmas 22 053508Google Scholar

    [14]

    Wang Y H, Wei L, Zhang Y R, Wang Y N 2015 Chin. Phys. B 24 095203Google Scholar

    [15]

    Wu H M, Yu B W, Li M, Yang Y 2002 IEEE Trans. Plasma Sci. 25 1Google Scholar

    [16]

    Kushner M J, Collison W Z, Grapperhaus M J, Holland J P, Barnes M S 1996 J. Appl. Phys. 80 1337Google Scholar

    [17]

    Panagopoulos T, Kim D, Midha V, Economou D J 2002 J. Appl. Phys. 91 2687Google Scholar

    [18]

    Brcka J 2016 Jpn. J. Appl. Phys. 55 07LD08Google Scholar

    [19]

    赵明亮, 张钰如, 高飞, 宋远红, 王友年 2023 力学学报 55 2891Google Scholar

    Zhao M L, Zhang Y R, Gao F, Song Y H, Wang Y N 2023 Chin. J. Theor. Appl. Mech. 55 2891Google Scholar

    [20]

    De Bleecker K, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409Google Scholar

    [21]

    Ariskin D, Schweigert I, Alexandrov A, Bogaerts A, Peeters F M 2009 J. Appl. Phys. 105 063305Google Scholar

    [22]

    Lee C, Lieberman M 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

  • 图 1  计算区域示意图

    Fig. 1.  Schematic diagram of the calculation region.

    图 2  网格划分示意图

    Fig. 2.  Schematic diagram of the grid.

    图 3  (a)单线圈腔室结构示意图; (b)单组线圈

    Fig. 3.  Schematic diagram of (a) the single-coil chamber structure and (b) the single coil.

    图 4  (a)电子密度、(b)电子温度、(c)感应电场幅值以及(d)感性沉积功率密度的三维空间分布, 其中气压为2 Pa, 放电功率100 W

    Fig. 4.  Three-dimensional spatial distribution of the (a) electron density, (b) electron temperature, (c) induced electric field amplitude, and (d) induced deposited power density. The gas pressure is 2 Pa, the discharge power is 100 W.

    图 5  不同轴向位置的$r{\text{-}}\phi $平面上的电子密度的分布(气压分别为3 Pa和13 Pa, 功率为100 W)  (a), (d) 介质窗下方8 cm; (b), (e) 介质窗下方5 cm; (c), (f) 介质窗下方2 cm

    Fig. 5.  Distribution of electron density in the $r{\text{-}}\phi $ cross section for different axial positions: (a), (d) 8 cm below the quartz window; (b), (e) 5 cm below the quartz window; (c), (f) 2 cm below the quartz window. The gas pressure is 3 Pa and 13 Pa, the power is 100 W

    图 6  基片台上方1 cm处的$r{\text{-}}\phi $平面的电子密度分布(气压为2 Pa) (a) 200 W; (b) 300 W; (c) 400 W; (d) 500 W

    Fig. 6.  Distribution of electron density in the $r{\text{-}}\phi $ plane which is 1 cm above the substrate: (a) 200 W; (b) 300 W; (c) 400 W; (d) 500 W. The gas pressure is 2 Pa.

    图 7  不同线圈的开口弧度的单匝线圈 (a) ${\text{π}}/15$; (b) ${\text{π/}}5$; (c) ${\text{π/}}3$; (d) $7{\text{π/}}15$

    Fig. 7.  Single circle coil with different opening sizes: (a) ${\text{π}}/15$; (b) ${\text{π/}}5$; (c) ${\text{π/}}3$; (d) $7{\text{π/}}15$.

    图 8  气压为12 Pa, 功率为300 W时, 线圈开口的大小对于电子密度环向分布的影响 (a) ${\text{π}}/15$; (b) ${\text{π/}}5$; (c) ${\text{π/}}3$; (d) $7{\text{π/}}15$

    Fig. 8.  Effect of the size of the coil opening on the azimuthal distribution of electron density: (a) ${\text{π}}/15$; (b) ${\text{π/}}5$; (c) ${\text{π/}}3$; (d) $7{\text{π/}}15$

    图 9  气压为12 Pa, 功率为300 W时, (a), (b)不同$x$轴方向位置的$y{\text{-}}z$平面上的电子密度的分布, 线圈开口弧度分别为${\text{π}}/15$和$7{\text{π/}}15$; (c), (d)不同$y$轴方向位置的$x{\text{-}}z$平面上的电子密度的分布, 线圈开口弧度分别为${\text{π}}/15$和$7{\text{π/}}15$

    Fig. 9.  (a), (b) Distributions of electron density in the $y{\text{-}}z$ plane at different x-direction positions with coil openings of ${\text{π}}/15$ and $7{\text{π/}}15$; (c), (d) the distributions of electron density in the $x{\text{-}}z$ plane at different y-direction positions with coil openings of ${\text{π}}/15$ and $7{\text{π/}}15$. The gas pressure is 12 Pa and the power is 300 W.

    图 10  线圈半径对电子密度环向分布的影响 (a) 3 cm; (b) 9 cm; (c) 12 cm

    Fig. 10.  Effect of coil radius on the azimuthal distribution of electron density: (a) 3 cm; (b) 9 cm; (c) 12 cm.

    图 11  (a)双线圈腔室结构示意图; (b)内外双线圈

    Fig. 11.  (a) Schematic diagram of the dual-coil chamber structure; (b) the internal and external dual coil.

    图 12  不同的内外线圈的相对位置下, 电子密度在$r{\text{-}}\phi $平面上的分布(气压为12 Pa, 功率为300 W, 内外线圈电流幅值比为1∶1) (a) case 1; (b) case 2; (c) case 3; (d) case 4

    Fig. 12.  Distribution of electron density in the $r{\text{-}}\phi $ plane for different relative positions of the inner and outer coils: (a) case 1; (b) case 2; (c) case 3; (d) case 4. The pressure is 12 Pa, the power is 300 W, and the coil current ratio is 1∶1.

    图 13  不同的内外线圈电流幅值比下, (a), (b)电子密度、(c), (d)电子温度、(e), (f)感性沉积功率密度和(g), (h)感应电场的幅值在$r{\text{-}}\phi $平面上的分布, 气压为12 Pa, 功率为300 W

    Fig. 13.  Distribution of (a), (b) electron density, (c), (d) electron temperature, (e), (f) induced deposition power density and (g), (h) amplitude of induced electric field in the $r{\text{-}}\phi $ plane for different relative positions of the inner and outer coils. The pressure is 12 Pa and the power is 300 W.

    表 1  氩等离子体中的碰撞反应及速率系数

    Table 1.  Collision reactions and rate coefficients in argon plasma.

    编号 反应表达式 反应系数/(m3·s–1) 文献
    1 ${\text{e + Ar}} \to {\text{e + Ar}}$ $ 2.336 \times {10^{ - 14}}T_{\text{e}}^{1.609}\exp \left[ {0.0618{{\left( {\ln {T_{\text{e}}}} \right)}^2} - 0.1171{{\left( {\ln {T_{\text{e}}}} \right)}^3}} \right] $ [1]
    2 ${\text{e + Ar}} \to {\text{e + A}}{{\text{r}}^*}$ $2.48 \times {10^{ - 14}}T_{\text{e}}^{0.33}\exp \left( { - 12.78/{T_{\text{e}}}} \right)$ [1]
    3 ${\text{e + Ar}} \to 2{\text{e + A}}{{\text{r}}^ + }$ $2.34 \times {10^{ - 14}}T_{\text{e}}^{0.59}\exp \left( { - 17.44/{T_{\text{e}}}} \right)$ [1]
    4 ${\text{e + A}}{{\text{r}}^*} \to 2{\text{e + A}}{{\text{r}}^ + }$ $2.05 \times {10^{ - 13}}\exp \left( { - 4.95/{T_{\text{e}}}} \right)$ [22]
    5 ${\text{e + A}}{{\text{r}}^*} \to {\text{e + Ar}}$ $2.0 \times {10^{ - 13}}$ [22]
    6 $ {\text{A}}{{\text{r}}^*}{\text{ + A}}{{\text{r}}^*}{\text{ }} \to {\text{Ar + A}}{{\text{r}}^ + }{\text{ + e}} $ $6.2 \times {10^{ - 16}}$ [22]
    注: 其中电子温度用电子伏(eV)为单位.
    下载: 导出CSV
    Baidu
  • [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp350–351

    [2]

    王友年, 宋远红, 张钰如 2024 射频等离子体物理基础(北京: 科学出版社) 第314页

    Wang Y N, Song Y H, Zhang Y R 2024 Fundamentals of Radio-frequency Plasma Physics (Beijing: Science Press) p314

    [3]

    Rauf S, Kenney J, Collins K S 2009 J. Appl. Phys. 105 103301Google Scholar

    [4]

    Kenney J, Rauf S, Collins K S 2009 J. Appl. Phys. 106 103302Google Scholar

    [5]

    Agarwal A, Bera K, Kenney J, Likhanskii A, Rauf S 2017 J. Phys. D: Appl. Phys. 50 424001Google Scholar

    [6]

    Ventzek P L, Sommerer T J, Hoekstra R J, Kushner M J 1993 Appl. Phys. Lett. 63 605Google Scholar

    [7]

    Thorsteinsson E, Gudmundsson J 2010 J. Phys. D: Appl. Phys. 43 115201Google Scholar

    [8]

    Thorsteinsson E, Gudmundsson J 2010 J. Phys. D: Appl. Phys. 43 115202Google Scholar

    [9]

    Hjartarson A, Thorsteinsson E, Gudmundsson J 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [10]

    Takao Y, Kusaba N, Eriguchi K, Ono K 2010 J. Appl. Phys. 108 093309Google Scholar

    [11]

    Mattei S, Nishida K, Onai M, Lettry L, Tran M Q, Hatayama A 2017 J. Comput. Phys. 350 891Google Scholar

    [12]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [13]

    Sun X Y, Zhang Y R, Li X C, Wang Y N 2015 Phys. Plasmas 22 053508Google Scholar

    [14]

    Wang Y H, Wei L, Zhang Y R, Wang Y N 2015 Chin. Phys. B 24 095203Google Scholar

    [15]

    Wu H M, Yu B W, Li M, Yang Y 2002 IEEE Trans. Plasma Sci. 25 1Google Scholar

    [16]

    Kushner M J, Collison W Z, Grapperhaus M J, Holland J P, Barnes M S 1996 J. Appl. Phys. 80 1337Google Scholar

    [17]

    Panagopoulos T, Kim D, Midha V, Economou D J 2002 J. Appl. Phys. 91 2687Google Scholar

    [18]

    Brcka J 2016 Jpn. J. Appl. Phys. 55 07LD08Google Scholar

    [19]

    赵明亮, 张钰如, 高飞, 宋远红, 王友年 2023 力学学报 55 2891Google Scholar

    Zhao M L, Zhang Y R, Gao F, Song Y H, Wang Y N 2023 Chin. J. Theor. Appl. Mech. 55 2891Google Scholar

    [20]

    De Bleecker K, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409Google Scholar

    [21]

    Ariskin D, Schweigert I, Alexandrov A, Bogaerts A, Peeters F M 2009 J. Appl. Phys. 105 063305Google Scholar

    [22]

    Lee C, Lieberman M 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

  • [1] 徐子原, 周辉, 刘光翰, 高中亮, 丁丽, 雷凡. 三维行波磁场对等离子体鞘套密度的调控作用.  , 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [2] 黄渝峰, 贾文柱, 张莹莹, 宋远红. 微重力条件下复杂等离子体中激光诱导马赫锥的三维模拟.  , 2024, 73(8): 085202. doi: 10.7498/aps.73.20231849
    [3] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟.  , 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [4] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究.  , 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [5] 张雨涵, 赵欣茜, 梁英爽, 郭媛媛. 感性耦合Ar/O2等离子体放电特性的数值模拟.  , 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [6] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟.  , 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [7] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究.  , 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [8] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟.  , 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [9] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈.  , 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [10] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布.  , 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [11] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展.  , 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [12] 张改玲, 滑跃, 郝泽宇, 任春生. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究.  , 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [13] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟.  , 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [14] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟.  , 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [15] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟.  , 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [16] 徐利军, 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体涂敷三维导体目标FDTD分析.  , 2006, 55(7): 3470-3474. doi: 10.7498/aps.55.3470
    [17] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响.  , 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [18] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波.  , 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [19] 白秀庭, 周庭东. 辉光放电等离子体三维电流的理论分析.  , 1993, 42(9): 1463-1470. doi: 10.7498/aps.42.1463
    [20] 张承福, 柯孚久. 非均匀磁化等离子体中的二维漂移孤波.  , 1985, 34(3): 298-305. doi: 10.7498/aps.34.298
计量
  • 文章访问数:  517
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-08-31
  • 上网日期:  2024-09-13
  • 刊出日期:  2024-11-05

/

返回文章
返回
Baidu
map