搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究

佟磊 赵明亮 张钰如 宋远红 王友年

引用本文:
Citation:

带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究

佟磊, 赵明亮, 张钰如, 宋远红, 王友年

Hybrid simulation of radio frequency biased inductively coupled Ar/O2/Cl2 plasmas

Tong Lei, Zhao Ming-Liang, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian
PDF
HTML
导出引用
  • 在刻蚀工艺中, 通常会在感性耦合等离子体源的下极板上施加偏压源, 以实现对离子能量和离子通量的独立调控. 本文采用整体模型双向耦合一维流体鞘层模型, 在Ar/O2/Cl2放电中, 研究了偏压幅值和频率对等离子体特性及离子能量角度分布的影响. 研究结果表明: 当偏压频率为2.26 MHz时, 随着偏压的增加, 除了Cl离子和ClO+离子的密度先增加后降低最后再增加外, 其余带电粒子、O原子和Cl原子的密度都是先增加后基本保持不变最后再增加. 当偏压频率为13.56和27.12 MHz时, 除了Cl离子和$ {\text{Cl}}_2^ + $离子外, 其余粒子密度随偏压的演化趋势与低频结果相似. 随着偏压频率的提高, 在低偏压范围内(<200 V), 由于偏压源对等离子体加热显著增加, 导致了带电粒子、O原子和Cl原子的密度增加; 而在高偏压范围内(>300 V), 由于偏压源对等离子体加热先减弱后增强, 导致除了$ {\text{Cl}}_2^ + $离子和Cl离子外, 其余带电粒子、O原子和Cl原子的密度都是先下降后增加的. 此外, 随着偏压频率的增加, 离子能量分布中的高能峰和低能峰彼此靠近, 离子能峰间距变窄, 并最终变成单峰结构. 本文的结论对于优化等离子体刻蚀工艺具有重要意义.
    In the etching process, a bias source is usually applied to the substrate of the inductively coupled plasma (ICP) to realize independent modulation of the ion energy and ion flux. In this work, a hybrid model, i.e. a global model combined bi-directionally with a fluid sheath model, is employed to investigate the plasma properties and ion energy distribution function (IEDF) in biased inductively coupled Ar/O2/Cl2 plasmas. The results indicate that at a bias frequency of 2.26 MHz, the Cl ion density and ClO+ ion density first increase with bias voltage rising, and then they decrease, and finally they rise again, which is different from the densities of other charged species, such as O and Cl atoms. At the bias frequency of 13.56 MHz and 27.12 MHz, except Cl and $ {\text{Cl}}_2^ + $ ions, the evolutions of other species densities with bias voltage are similar to the results at lower bias frequency. The evolution of the species densities with bias frequency depends on the bias voltage. For instance, in the low bias voltage range (< 200 V), the densities of charges species, O and Cl atoms increase with bias frequency increasing due to a significant increase in the heating of the plasma by the bias source. However, when the bias voltage is high, say, higher than 300 V, except $ {\text{Cl}}_2^ + $ and Cl ions, the densities of other charged species, O and Cl atoms first decrease with bias frequency increasing and then they increase due to a decrease and then an increase in the heating of the plasma by the bias source. In addition, as the bias frequency increases, the peak separation of IEDF becomes narrow, the high energy peak and low energy peak approach each other and they almost merge into one peak at high bias frequency. The results obtained in this work are of significant importance in improving the etching process.
      通信作者: 张钰如, yrzhang@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275041, 11935005, 12020101005)资助的课题.
      Corresponding author: Zhang Yu-Ru, yrzhang@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275041, 11935005, 12020101005).
    [1]

    Efremov A M, Kim D P, Kim C I 2004 IEEE Trans. Plasma Sci. 32 1344Google Scholar

    [2]

    Efremov A M, Kim D P, Kim C I 2003 J. Vac. Sci. Technol., A 21 1568Google Scholar

    [3]

    Bogaerts A, Neyts E, Gijbels R, Van Der Mullen J 2002 Spectrochim Acta, Part B 57 609Google Scholar

    [4]

    Choi S K, Kim D P, Kim C I, Chang E G 2001 J. Vac. Sci. Technol., A 19 1063Google Scholar

    [5]

    Lee Y J, Han H R, Lee J, Yeom G Y 2000 Surf. Coat. Technol. 131 257Google Scholar

    [6]

    Wen D Q, Liu W, Gao F, Lieberman M A, Wang Y N 2016 Plasma Sources Sci. Technol. 25 045009Google Scholar

    [7]

    Wen D, Zhang Y, Lieberman M A, Wang Y 2017 Plasma Processes Polym. 14 1600100Google Scholar

    [8]

    Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol., A 33 061303Google Scholar

    [9]

    Lee H C, Lee M H, Chung C W 2010 Appl. Phys. Lett. 96 071501Google Scholar

    [10]

    Lee H C, Chung C W 2012 Appl. Phys. Lett. 101 244104Google Scholar

    [11]

    Lee H C, Bang J Y, Chung C W 2011 Thin Solid Films 519 7009Google Scholar

    [12]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol., A 13 368Google Scholar

    [13]

    Gudmundsson J T 2004 J. Phys. D: Appl. Phys. 37 2073Google Scholar

    [14]

    Jung J, Kim M S, Park J, Lim C M, Hwang T W, Seo B J, Chung C W 2023 Phys. Plasmas 30 023504Google Scholar

    [15]

    Tong L, Zhang Y R, Huang J W, Zhao M L, Wen D Q, Song Y H, Wang Y N 2021 Phys. Plasmas 28 053512Google Scholar

    [16]

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2023 J. Phys. D: Appl. Phys. 56 365202

    [17]

    Khater M H, Overzet L J 2004 Plasma Sources Sci. Technol. 13 466Google Scholar

    [18]

    Dai Z L, Zhang S Q, Wang Y N 2013 Vacuum 89 197Google Scholar

    [19]

    Zhang S Q, Dai Z L, Song Y H, Wang Y N 2014 Vacuum 99 180Google Scholar

    [20]

    Levko D, Raja L L 2022 J. Vac. Sci. Technol., B 40 052205Google Scholar

    [21]

    Levko D, Upadhyay R R, Suzuki K, Raja L L 2023 J. Vac. Sci. Technol., A 41 012205Google Scholar

    [22]

    Malyshev M V, Donnelly V M, Colonell J I, Samukawa S 1999 J. Appl. Phys. 86 4813Google Scholar

    [23]

    Malyshev M V, Donnelly V M 2000 Plasma Sources Sci. Technol. 9 353Google Scholar

    [24]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [25]

    Malyshev M V, Donnelly V M 2001 J. Appl. Phys. 90 1130Google Scholar

    [26]

    Malyshev M V, Fuller N C M, Bogart K H A, Donnelly V M, Herman I P 2000 J. Appl. Phys. 88 2246Google Scholar

    [27]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 88 6207Google Scholar

    [28]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 87 1642Google Scholar

    [29]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 015001Google Scholar

    [30]

    Thorsteinsson E G, Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115201Google Scholar

    [31]

    Thorsteinsson E G, Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115202Google Scholar

    [32]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar

    [33]

    Gudmundsson J T, Hjartarson A T, Thorsteinsson E G 2012 Vacuum 86 808Google Scholar

    [34]

    Zhang Y R, Zhao Z Z, Xue C, Gao F, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 295204

    [35]

    Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar

    [36]

    范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶, 费嘉瑞 2017 真空科学与技术学报 37 286Google Scholar

    Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y, Fei J R 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar

    [37]

    Smith S A, Lampert W V, Rajagopal P, Banks A D, Thomson D, Davis R F 2000 J. Vac. Sci. Technol., A 18 879Google Scholar

    [38]

    Lee J M, Chang K M, Lee I H, Park S J 2000 J. Vac. Sci. Technol., B 18 1409Google Scholar

    [39]

    Taube A, Kamiński M, Ekielski M, et al. 2021 Mater. Sci. Semicond. Process. 122 105450Google Scholar

    [40]

    Chung C W, Chung I 2000 J. Vac. Sci. Technol., A 18 835Google Scholar

    [41]

    Park J S, Kim T H, Choi C S, Hahn Y B 2002 Korean J. Chem. Eng. 19 486Google Scholar

    [42]

    Kwon K H, Efremov A, Yun S J, Chun I, Kim K 2014 Thin Solid Films 552 105Google Scholar

    [43]

    Kang S, Efremov A, Yun S J, Son J, Kwon K H 2013 Plasma Chem. Plasma Process. 33 527Google Scholar

    [44]

    Tinck S, Boullart W, Bogaerts A 2009 J. Phys. D: Appl. Phys. 42 095204Google Scholar

    [45]

    Tinck S, Boullart W, Bogaerts A 2011 Plasma Sources Sci. Technol. 20 045012Google Scholar

    [46]

    Tinck S, Bogaerts A, Shamiryan D 2011 Plasma Processes Polym. 8 490Google Scholar

    [47]

    Hsu C C, Coburn J W, Graves D B 2006 J. Vac. Sci. Technol., A 24 1Google Scholar

    [48]

    Efremov A, Amirov I, Izyumov M 2023 Vacuum 207 111664Google Scholar

    [49]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [50]

    Schulze J, Schüngel E, Czarnetzki U 2012 Appl. Phys. Lett. 100 024102Google Scholar

    [51]

    Ahr P, Schüngel E, Schulze J, Tsankov T V, Czarnetzki U 2015 Plasma Sources Sci. Technol. 24 044006Google Scholar

    [52]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, NJ, USA: John Wiley & Sons, Inc.) p268

    [53]

    张钰如, 高飞, 王友年 2021 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N A 2021 Acta Phys. Sin. 70 095206Google Scholar

    [54]

    Yang W, Zhao S X, Wen D Q, Liu W, Liu Y X, Li X C, Wang Y N 2016 J. Vac. Sci. Technol., A 34 031305Google Scholar

    [55]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar

    [56]

    Proto A 2021 Ph. D. Dissertation (Iceland: University of Iceland

    [57]

    Stafford L, Khare R, Guha J, Donnelly V M, Poirier J S, Margot J 2009 J. Phys. D: Appl. Phys. 42 055206Google Scholar

    [58]

    Guha J, Donnelly V M 2009 J. Appl. Phys. 105 113307Google Scholar

    [59]

    Boyd R L F, Thomson J B 1959 Proc. R. Soc. London, Ser. A 252 102Google Scholar

    [60]

    Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211Google Scholar

    [61]

    Dai Z L, Wang Y N, Ma T C 2002 Phys. Rev. E 65 036403Google Scholar

    [62]

    Dai Z L, Wang Y N 2004 Phys. Rev. E 69 036403Google Scholar

    [63]

    Dai Z L, Wang Y N 2002 Phys. Rev. E 66 026413Google Scholar

    [64]

    Dai Z L, Wang Y N 2002 J. Appl. Phys. 92 6428Google Scholar

    [65]

    Dai Z L, Wang Y N 2003 Surf. Coat. Technol. 165 224Google Scholar

    [66]

    Wen D Q, Zhang Q Z, Jiang W, Song Y H, Bogaerts A, Wang Y N 2014 J. Appl. Phys. 115 233303Google Scholar

    [67]

    Hong Y H, Kim T W, Kim B S, Lee M Y, Chung C W 2022 Plasma Sources Sci. Technol. 31 075008Google Scholar

    [68]

    Huang S, Gudmundsson J T 2013 Plasma Sources Sci. Technol. 22 055020Google Scholar

    [69]

    Hennad A, Yousfi M 2010 J. Phys. D: Appl. Phys. 44 025201Google Scholar

    [70]

    Manenschijn A, Janssen G C A M, Van Der Drift E, Radelaar S 1991 J. Appl. Phys. 69 1253Google Scholar

    [71]

    Hayden C, Gahan D, Hopkins M B 2009 Plasma Sources Sci. Technol. 18 025018Google Scholar

    [72]

    Gahan D, Dolinaj B, Hopkins M B 2008 Rev. Sci. Instrum. 79 033502Google Scholar

    [73]

    Edelberg E A, Aydil E S 1999 J. Appl. Phys. 86 4799Google Scholar

    [74]

    Edelberg E A, Perry A, Benjamin N, Aydil E S 1999 J. Vac. Sci. Technol., A 17 506Google Scholar

    [75]

    Edelberg E A, Perry A, Benjamin N, Aydil E S 1999 Rev. Sci. Instrum. 70 2689Google Scholar

  • 图 1  混合模型示意图

    Fig. 1.  Schematic of configuration for the hybrid model.

    图 2  不同偏压频率下, 基态中性粒子密度随偏压幅值的变化

    Fig. 2.  Evolutions of the densities of ground state neutral particles with bias voltage for different bias frequencies.

    图 3  不同偏压频率下, 吸收功率和损失功率随偏压幅值的变化 (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz

    Fig. 3.  Evolutions of the power deposition and power loss with bias voltage for different bias frequencies: (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz.

    图 4  不同偏压频率下, ClO分子的产生速率和损失速率随偏压幅值的变化 (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz

    Fig. 4.  Evolutions of the generation and loss rates of ClO molecules with bias voltage for different bias frequencies: (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz.

    图 5  不同偏压频率下, 带电粒子密度随偏压幅值的变化 (a) Ar+; (b) $ {\text{O}}_2^ + $; (c) O+; (d) O; (e) $ {\text{Cl}}_2^ + $; (f) Cl+; (g) Cl; (h) ClO+; (i) 电子密度

    Fig. 5.  Evolutions of the densities of charged species with bias voltage for different bias frequencies: (a) Ar+; (b) $ {\text{O}}_2^ + $; (c) O+; (d) O; (e) $ {\text{Cl}}_2^ + $; (f) Cl+; (g) Cl; (h) ClO+; (i) electron density.

    图 6  不同偏压频率下, Cl离子的产生速率和损失速率随偏压幅值的变化 (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz

    Fig. 6.  Evolutions of the generation and loss rates of Cl ions with bias voltage for different bias frequencies: (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz.

    图 7  不同偏压频率下, ClO+离子的产生速率和损失速率随偏压幅值的变化 (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz

    Fig. 7.  Evolutions of the generation and loss rates of ClO+ ions with bias voltage for different bias frequencies: (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz.

    图 8  偏压频率为27.12 MHz时, $ {\text{Cl}}_2^ + $离子的产生速率和损失速率随偏压幅值的变化

    Fig. 8.  Evolutions of the generation and loss rates of $ {\text{Cl}}_2^ + $ ions with bias voltage at bias frequency of 27.12 MHz.

    图 9  不同偏压频率下, 解离率随偏压幅值的变化 (a) Cl2 (ν = 0); (b) O2

    Fig. 9.  Evolutions of the dissociation fraction with bias voltage for different bias frequencies: (a) Cl2 (ν = 0); (b) O2

    图 10  不同偏压频率下, 电负度随偏压幅值的变化

    Fig. 10.  Evolution of the electronegativity with bias voltage for different bias frequencies.

    图 11  不同偏压频率和幅值下, Ar+离子的离子能量角度分布

    Fig. 11.  IEADFs of Ar+ ions for different bias frequencies and bias voltages.

    图 12  偏压幅值为125 V, 不同偏压频率下各离子的能量分布 (a) $ {\text{O}}_2^ + $; (b) O+; (c) $ {\text{Cl}}_2^ + $; (d) Cl+

    Fig. 12.  IEDFs of ions for different bias frequencies at bias voltage of 125 V: (a) $ {\text{O}}_2^ + $; (b) O+; (c) $ {\text{Cl}}_2^ + $; (d) Cl+.

    表 1  Ar/O2/Cl2混合气体放电中考虑的粒子

    Table 1.  Plasma species considered in Ar/O2/Cl2 discharges.

    基态中性粒子 Ar, O2, O3, O, Cl2 (ν = 0), Cl, ClO
    激发态中性
    粒子
    Arm, Arr, Ar(4p), O2(a), O(D),
    Cl2 (ν = 1), Cl2 (ν = 2), Cl2 (ν = 3)
    正离子 Ar+, $ {\text{O}}_2^ + $, O+, $ {\text{Cl}}_2^ + $, Cl+, ClO+
    负离子/电子 O, Cl, e
    下载: 导出CSV

    表 2  中性粒子与器壁的相互作用[6,29-32,35]

    Table 2.  Reactions of neutral species on the wall[6,29-32,35].

    No. Reaction ${\gamma _l}$
    1 ${\text{Cl + wall }} \to {\text{ }}\dfrac{{1}}{{2}}{\text{C}}{{\text{l}}_{2}}\left( {\nu = {0}} \right)$ 方程(3)
    2 ${\text{Cl + wall }} \to {\text{ }}\dfrac{{1}}{{2}}{\text{ClO}}$ 方程(4)
    3 ${\text{O + wall }} \to {\text{ }}\dfrac{{1}}{{2}}{{\text{O}}_{2}}$ 0.09
    4 ${\text{O}}\left( {\text{D}} \right){\text{ + wall }} \to {\text{ }}\dfrac{{1}}{{2}}{{\text{O}}_{2}}$ 0.09
    5 ${\text{C}}{{\text{l}}_{2}}\left( \nu \right){\text{ + wall }} \to {\text{ C}}{{\text{l}}_{2}}\left( {\nu - {1}} \right)$ 1
    6 ${{\text{O}}_{2}}\left( {\text{a}} \right){\text{ + wall }} \to {\text{ }}{{\text{O}}_{2}}$ 0.007
    7 ${\text{O}}\left( {\text{D}} \right){\text{ + wall }} \to {\text{ O}}$ 0.1
    8 ${\text{A}}{{\text{r}}^ * }{\text{ + wall }} \to {\text{ Ar}}$ 1
    下载: 导出CSV

    表 3  偏压频率为13.56 MHz时, 不同偏压幅值下的时间平均鞘层厚度和鞘层电压降

    Table 3.  Time-averaged sheath thickness and voltage drop across the sheath for different bias voltage amplitudes, at bias frequency of 13.56 MHz.

    25 V50 V75 V100 V125 V150 V175 V200 V
    ${\bar d_{\text{s}}}{\text{ /mm}}$4.674.754.794.804.814.854.935.03
    ${\bar V_{\text{s}}}{\text{ /V}}$31.3255.4779.98104.63129.34154.1178.88203.70
    下载: 导出CSV
    Baidu
  • [1]

    Efremov A M, Kim D P, Kim C I 2004 IEEE Trans. Plasma Sci. 32 1344Google Scholar

    [2]

    Efremov A M, Kim D P, Kim C I 2003 J. Vac. Sci. Technol., A 21 1568Google Scholar

    [3]

    Bogaerts A, Neyts E, Gijbels R, Van Der Mullen J 2002 Spectrochim Acta, Part B 57 609Google Scholar

    [4]

    Choi S K, Kim D P, Kim C I, Chang E G 2001 J. Vac. Sci. Technol., A 19 1063Google Scholar

    [5]

    Lee Y J, Han H R, Lee J, Yeom G Y 2000 Surf. Coat. Technol. 131 257Google Scholar

    [6]

    Wen D Q, Liu W, Gao F, Lieberman M A, Wang Y N 2016 Plasma Sources Sci. Technol. 25 045009Google Scholar

    [7]

    Wen D, Zhang Y, Lieberman M A, Wang Y 2017 Plasma Processes Polym. 14 1600100Google Scholar

    [8]

    Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol., A 33 061303Google Scholar

    [9]

    Lee H C, Lee M H, Chung C W 2010 Appl. Phys. Lett. 96 071501Google Scholar

    [10]

    Lee H C, Chung C W 2012 Appl. Phys. Lett. 101 244104Google Scholar

    [11]

    Lee H C, Bang J Y, Chung C W 2011 Thin Solid Films 519 7009Google Scholar

    [12]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol., A 13 368Google Scholar

    [13]

    Gudmundsson J T 2004 J. Phys. D: Appl. Phys. 37 2073Google Scholar

    [14]

    Jung J, Kim M S, Park J, Lim C M, Hwang T W, Seo B J, Chung C W 2023 Phys. Plasmas 30 023504Google Scholar

    [15]

    Tong L, Zhang Y R, Huang J W, Zhao M L, Wen D Q, Song Y H, Wang Y N 2021 Phys. Plasmas 28 053512Google Scholar

    [16]

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2023 J. Phys. D: Appl. Phys. 56 365202

    [17]

    Khater M H, Overzet L J 2004 Plasma Sources Sci. Technol. 13 466Google Scholar

    [18]

    Dai Z L, Zhang S Q, Wang Y N 2013 Vacuum 89 197Google Scholar

    [19]

    Zhang S Q, Dai Z L, Song Y H, Wang Y N 2014 Vacuum 99 180Google Scholar

    [20]

    Levko D, Raja L L 2022 J. Vac. Sci. Technol., B 40 052205Google Scholar

    [21]

    Levko D, Upadhyay R R, Suzuki K, Raja L L 2023 J. Vac. Sci. Technol., A 41 012205Google Scholar

    [22]

    Malyshev M V, Donnelly V M, Colonell J I, Samukawa S 1999 J. Appl. Phys. 86 4813Google Scholar

    [23]

    Malyshev M V, Donnelly V M 2000 Plasma Sources Sci. Technol. 9 353Google Scholar

    [24]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [25]

    Malyshev M V, Donnelly V M 2001 J. Appl. Phys. 90 1130Google Scholar

    [26]

    Malyshev M V, Fuller N C M, Bogart K H A, Donnelly V M, Herman I P 2000 J. Appl. Phys. 88 2246Google Scholar

    [27]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 88 6207Google Scholar

    [28]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 87 1642Google Scholar

    [29]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 015001Google Scholar

    [30]

    Thorsteinsson E G, Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115201Google Scholar

    [31]

    Thorsteinsson E G, Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115202Google Scholar

    [32]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar

    [33]

    Gudmundsson J T, Hjartarson A T, Thorsteinsson E G 2012 Vacuum 86 808Google Scholar

    [34]

    Zhang Y R, Zhao Z Z, Xue C, Gao F, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 295204

    [35]

    Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar

    [36]

    范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶, 费嘉瑞 2017 真空科学与技术学报 37 286Google Scholar

    Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y, Fei J R 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar

    [37]

    Smith S A, Lampert W V, Rajagopal P, Banks A D, Thomson D, Davis R F 2000 J. Vac. Sci. Technol., A 18 879Google Scholar

    [38]

    Lee J M, Chang K M, Lee I H, Park S J 2000 J. Vac. Sci. Technol., B 18 1409Google Scholar

    [39]

    Taube A, Kamiński M, Ekielski M, et al. 2021 Mater. Sci. Semicond. Process. 122 105450Google Scholar

    [40]

    Chung C W, Chung I 2000 J. Vac. Sci. Technol., A 18 835Google Scholar

    [41]

    Park J S, Kim T H, Choi C S, Hahn Y B 2002 Korean J. Chem. Eng. 19 486Google Scholar

    [42]

    Kwon K H, Efremov A, Yun S J, Chun I, Kim K 2014 Thin Solid Films 552 105Google Scholar

    [43]

    Kang S, Efremov A, Yun S J, Son J, Kwon K H 2013 Plasma Chem. Plasma Process. 33 527Google Scholar

    [44]

    Tinck S, Boullart W, Bogaerts A 2009 J. Phys. D: Appl. Phys. 42 095204Google Scholar

    [45]

    Tinck S, Boullart W, Bogaerts A 2011 Plasma Sources Sci. Technol. 20 045012Google Scholar

    [46]

    Tinck S, Bogaerts A, Shamiryan D 2011 Plasma Processes Polym. 8 490Google Scholar

    [47]

    Hsu C C, Coburn J W, Graves D B 2006 J. Vac. Sci. Technol., A 24 1Google Scholar

    [48]

    Efremov A, Amirov I, Izyumov M 2023 Vacuum 207 111664Google Scholar

    [49]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [50]

    Schulze J, Schüngel E, Czarnetzki U 2012 Appl. Phys. Lett. 100 024102Google Scholar

    [51]

    Ahr P, Schüngel E, Schulze J, Tsankov T V, Czarnetzki U 2015 Plasma Sources Sci. Technol. 24 044006Google Scholar

    [52]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, NJ, USA: John Wiley & Sons, Inc.) p268

    [53]

    张钰如, 高飞, 王友年 2021 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N A 2021 Acta Phys. Sin. 70 095206Google Scholar

    [54]

    Yang W, Zhao S X, Wen D Q, Liu W, Liu Y X, Li X C, Wang Y N 2016 J. Vac. Sci. Technol., A 34 031305Google Scholar

    [55]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar

    [56]

    Proto A 2021 Ph. D. Dissertation (Iceland: University of Iceland

    [57]

    Stafford L, Khare R, Guha J, Donnelly V M, Poirier J S, Margot J 2009 J. Phys. D: Appl. Phys. 42 055206Google Scholar

    [58]

    Guha J, Donnelly V M 2009 J. Appl. Phys. 105 113307Google Scholar

    [59]

    Boyd R L F, Thomson J B 1959 Proc. R. Soc. London, Ser. A 252 102Google Scholar

    [60]

    Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211Google Scholar

    [61]

    Dai Z L, Wang Y N, Ma T C 2002 Phys. Rev. E 65 036403Google Scholar

    [62]

    Dai Z L, Wang Y N 2004 Phys. Rev. E 69 036403Google Scholar

    [63]

    Dai Z L, Wang Y N 2002 Phys. Rev. E 66 026413Google Scholar

    [64]

    Dai Z L, Wang Y N 2002 J. Appl. Phys. 92 6428Google Scholar

    [65]

    Dai Z L, Wang Y N 2003 Surf. Coat. Technol. 165 224Google Scholar

    [66]

    Wen D Q, Zhang Q Z, Jiang W, Song Y H, Bogaerts A, Wang Y N 2014 J. Appl. Phys. 115 233303Google Scholar

    [67]

    Hong Y H, Kim T W, Kim B S, Lee M Y, Chung C W 2022 Plasma Sources Sci. Technol. 31 075008Google Scholar

    [68]

    Huang S, Gudmundsson J T 2013 Plasma Sources Sci. Technol. 22 055020Google Scholar

    [69]

    Hennad A, Yousfi M 2010 J. Phys. D: Appl. Phys. 44 025201Google Scholar

    [70]

    Manenschijn A, Janssen G C A M, Van Der Drift E, Radelaar S 1991 J. Appl. Phys. 69 1253Google Scholar

    [71]

    Hayden C, Gahan D, Hopkins M B 2009 Plasma Sources Sci. Technol. 18 025018Google Scholar

    [72]

    Gahan D, Dolinaj B, Hopkins M B 2008 Rev. Sci. Instrum. 79 033502Google Scholar

    [73]

    Edelberg E A, Aydil E S 1999 J. Appl. Phys. 86 4799Google Scholar

    [74]

    Edelberg E A, Perry A, Benjamin N, Aydil E S 1999 J. Vac. Sci. Technol., A 17 506Google Scholar

    [75]

    Edelberg E A, Perry A, Benjamin N, Aydil E S 1999 Rev. Sci. Instrum. 70 2689Google Scholar

  • [1] 杨楠楠, 王尚民, 张家良, 温小琼, 赵凯. 改进型机-电模型及脉冲等离子体推力器能量转化效率分析.  , 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真.  , 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [3] 张雨涵, 赵欣茜, 梁英爽, 郭媛媛. 感性耦合Ar/O2等离子体放电特性的数值模拟.  , 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [4] 赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年. 面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究.  , 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [5] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟.  , 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [6] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展.  , 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [7] 张改玲, 滑跃, 郝泽宇, 任春生. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究.  , 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [8] 杨成, 周昕. 液态水中的多种局域结构.  , 2016, 65(17): 176501. doi: 10.7498/aps.65.176501
    [9] 李刘合, 刘红涛, 罗辑, 许亿. 带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究.  , 2016, 65(6): 065202. doi: 10.7498/aps.65.065202
    [10] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏. 高气压空气环状感性耦合等离子体实验研究和参数诊断.  , 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [11] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析.  , 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [12] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究.  , 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [13] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播.  , 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [14] 孙 恺, 辛 煜, 黄晓江, 袁强华, 宁兆元. 60MHz电容耦合等离子体中电子能量分布函数特性研究.  , 2008, 57(10): 6465-6470. doi: 10.7498/aps.57.6465
    [15] 丁振峰, 袁国玉, 高 巍, 孙景超. 柱面天线射频感性耦合等离子体放电模式特性的实验研究.  , 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响.  , 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [17] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断.  , 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [18] 刘艳红, 张家良, 王卫国, 李 建, 刘东平, 马腾才. CH4或CH4+Ar介质阻挡放电中的离子能量和类金刚石膜制备.  , 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [19] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟.  , 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [20] 王德真, 马腾才, 宫野. 等离子体源离子注入球形靶的蒙特-卡罗模拟.  , 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
计量
  • 文章访问数:  2466
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2023-11-22
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-02-20

/

返回文章
返回
Baidu
map