搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al纳米孔阵列/(AlxGa1–x)2O3薄膜中的紫外波段超常透射

朱文慧 冯磊 张克雄 朱俊

引用本文:
Citation:

Al纳米孔阵列/(AlxGa1–x)2O3薄膜中的紫外波段超常透射

朱文慧, 冯磊, 张克雄, 朱俊

Extraordinary transmission in ultraviolet band in (AlxGa1–x)2O3/Al nanopore array

Zhu Wen-Hui, Feng Lei, Zhang Ke-Xiong, Zhu Jun
cstr: 32037.14.aps.73.20240928
PDF
HTML
导出引用
  • 采用有限差分时域算法计算(AlxGa1–x)2O3薄膜衬底上的周期性三角晶格Al纳米孔阵列的透过率, 研究不同(AlxGa1–x)2O3衬底的Al组分x以及Al纳米孔阵列的厚度、孔径和周期对其光学传输特性的影响. 数值计算结果表明, 当x = 0时, 在263 nm和358 nm波长范围处出现两个强透射峰, 随着x的增大, 其中位于263 nm处的透射峰发生轻微蓝移, 强度则先增强后下降; 358 nm处的透射峰发生明显蓝移且不断加强. 若纳米孔阵列的周期不变, 随着空气柱孔径增大时, 紫外波段两强透射峰峰值位置分别位于244 nm和347 nm处, 两峰均先发生红移再蓝移, 透过率不断增大, 反射率减小. 随着周期扩大, 紫外波段两强透射峰分别位于249 nm和336 nm处, 两透射峰均发生明显红移, 其中249 nm处的透射峰红移至304 nm, 336 nm处的透射峰红移至417 nm, 并且透过率不断降低. 随着Al厚度的增大, 位于380 nm处的透射峰峰值位置发生蓝移, 且透过率不断下降. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00036中访问获取.
    The finite difference time domain method is used to compute the transmissions of periodic triangular-lattice Al nanopore arrays on (AlxGa1–x)2O3 thin film substrates. The influences of Al component x in(AlxGa1–x)2O3 substrate, and the thickness, aperture and period of Al nanopore array on their optical transmission behaviors are studied systematically.The numerical results indicate that when x = 0, there are two strong transmission peaks at 263 nm and 358 nm, respectively. As x increases, the transmission peak at 263 nm exhibits a slight blue-shift, with intensity first increasing and then decreasing. Meanwhile, the transmission peak at 358 nm demonstrates a noticeable blue-shift and its intensity strengthens continuously. The change of Al component x has a significant effect on the peak position of the transmission peak in the longer ultraviolet band and the peak transmission in the shorter ultraviolet band. If the periodic structure of the nanopore array keeps unchangeable, the two prominent transmission peaks appear near 244 nm and 347 nm, respectively, as the air column apertures enlarge. Remarkably, these dual peaks initially undergo a red-shift, followed by a blue-shift, while the transmission steadily increases and the reflectivity decreases. The change in aperture size can significantly affect the peak transmission, and by controlling the aperture size appropriately, the transmission intensity can be significantly enhanced. With the expansion of the period, the two strong transmission peaks are located at 249 nm and 336 nm, respectively, and the two transmission peaks show obvious red-shift. The former transmission peak is redshifted to 304 nm, and the latter one is redshifted to 417 nm. Moreover, the transmissions at these peaks continue to decrease. The change in period can significantly affect the central wavelength of the transmission peak, and the periodicity of the array plays a dominant role in modulating the peak position in a large wavelength range. As Al thickness increases, a blue-shift of the transmission peak occurs at 380 nm , and the transmission decreases continuously. The change in thickness significantly affects the transmission intensity of the transmission peak in the longer ultraviolet band and the visible light region, but it is not so pronounced as the effect of aperture size on transmission intensity.Through reasonable design and optimization of structural parameters of Al nanopore array/(AlxGa1–x)2O3, the peak position of transmission peak can be effectively regulated and the extraordinary transmission in ultraviolet band can be achieved.
      通信作者: 朱俊, jiulye@126.com
    • 基金项目: 国家自然科学基金 (批准号: 62364014, 12164031)资助的课题.
      Corresponding author: Zhu Jun, jiulye@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62364014, 12164031).
    [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [2]

    Wang L S, Wang G X, Yang K, Zhang W N, Liu W J 2023 Opt. Commun. 535 129336Google Scholar

    [3]

    Hou Y M 2011 Plasmonics 6 289Google Scholar

    [4]

    Tam H T T, Kajikawa K 2021 Opt. Express 29 35191Google Scholar

    [5]

    Yue W S, Wang Z H, Yang Y, Li J Q, Wu Y, Chen L Q, Ooi B, Wang X B, Zhang X X 2014 Nanoscale 6 7917Google Scholar

    [6]

    关建飞, 俞潇, 丁冠天, 陈陶, 陆云清 2024 73 117301Google Scholar

    Guan J F, Yu X, Ding G T, Chen T, Lu y Q 2024 Acta Phys. Sin. 73 117301Google Scholar

    [7]

    陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 65 204207Google Scholar

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207Google Scholar

    [8]

    Du B B, Yang Y, Zhang Y, Jia P P, Ebendorff-Heidepriem H, Ruan Y L, Yang D X 2019 J. Phys. D Appl. Phys. 52 275201Google Scholar

    [9]

    Ozbay E 2006 Science 311 189Google Scholar

    [10]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [11]

    Ekinci Y, Solak H H, David C 2007 Opt. Lett. 32 172Google Scholar

    [12]

    Hu J L, Shen M Z, Li Z G, Li X H, Liu G Q, Wang X D, Kan C X, Li Y 2017 Nanotechnology 28 215205Google Scholar

    [13]

    Zhang X G, Liu G Q, Liu, Z Q, Hu Y, Cai Z J, Liu X S, Fu G L, Liu M L 2014 Opt. Eng. 53 107108Google Scholar

    [14]

    Watanabe Y, Inami W, Kawata Y 2011 J. Appl. Phys. 109 023112Google Scholar

    [15]

    Ekinci Y, Solak H H, Loeffler J F 2008 J. Appl. Phys. 104 083107Google Scholar

    [16]

    Li H J, Wu Z Y, Wu S Y, Tian P F, Fang Z L 2023 J. Alloys Compd. 960 170671Google Scholar

    [17]

    Bhuiyan A F M A U, Feng Z X, Meng L Y, Fiedler A, Huang H L, Neal A T, Steinbrunner E, Mou S, Hwang J, Rajan S, Zhao H P 2022 J. Appl. Phys. 131 145301Google Scholar

    [18]

    Huang R, Wang Z Y, Wu K, Xu H, Wang Q, Guo Y C 2024 J. Semicond. 45 69Google Scholar

    [19]

    Xi H R, Yang T F, Xie M Y, Liang X J, Fang Z L, Ye Y, Chen Y, Wei Y M, Wang Z, Guan H Y, Lu H H 2024 Laser Photon. Rev. 18 2301129

    [20]

    Dashkov A S, Khakhulin S A, Shapran D A, Glinskii G F, KostrominN A, Vasilev A L, Yakunin S N, Komkov O S, Pirogov E V, Sobolev M S, Goray L I, Bouravleuv A D 2024 J. Semicond. 45 57Google Scholar

    [21]

    Zhukovsky S V, Andryieuski A, Takayama O, Shkondin E, Malureanu R, Jensen F, Lavrinenko A V 2015 Phys. Rev. Lett. 115 177402Google Scholar

    [22]

    Tolmachev V A, Mavlyanov R K, Kalinin D A, Zharova Y A, Zaitseva N V, Pavlov S I 2017 Opt. Spectrosc. 123 928Google Scholar

    [23]

    潘磊, 宋宝安, 肖传富, 张培晴, 林常规, 戴世勋 2020 69 114201Google Scholar

    Pan L, Song B A, Xiao C F, Zhang P Q, Lin C G, Dai S X 2020 Acta Phys. Sin. 69 114201Google Scholar

    [24]

    Schmidt-Grund R, Kranert C, von Wenckstern H, Zviagin V, Lorenz M, Grundmann M 2015 J. Appl. Phys. 117 165307Google Scholar

    [25]

    MALITSON I H 1962 J. Opt. Soc. Am. 52 1377Google Scholar

    [26]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [27]

    Van der Molen K L, Klein Koerkamp K J, Enoch S, Segerink F B, van Hulst N F, Kuipers L 2005 Phys. Rev. B 72 045421Google Scholar

    [28]

    Han J G, Azad A K, Gong M F, Lu X C, Zhang W L 2007 Appl. Phys. Lett. 91 071122Google Scholar

    [29]

    Liu Z W, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano Lett. 5 1726Google Scholar

    [30]

    Bethe H A 1944 Phys. Rev. 66 163Google Scholar

  • 图 1  Al纳米孔阵列/(AlxGa1–x)2O3薄膜的结构示意图 (d为孔径, P为周期, H为Al厚度)

    Fig. 1.  Schematic diagram of a Al nanopore array on a (AlxGa1–x)2O3 thin film, here, d is the aperture, P is the period and H is the thickness of Al.

    图 2  x = 0, 0.2, 0.3, 0.4, 1.0时, (AlxGa1–x)2O3的折射率n(λ)

    Fig. 2.  Refractive index n(λ) of (AlxGa1–x)2O3 with x = 0, 0.2, 0.3, 0.4, 1.0.

    图 3  d = 120 nm, P = 200 nm, H = 50 nm (a) Al纳米孔阵列/(AlxGa1–x)2O3薄膜的透射谱; (b) 平均透过率

    Fig. 3.  Transmission spectrum (a) and average transmission (b) of a nanopore array/(AlxGa1–x)2O3 when d = 120 nm, P = 200 nm, H = 50 nm.

    图 4  P = 200 nm, H = 50 nm, d从60 nm到160 nm改变时 (a) Al纳米孔阵列/ (Al0.3Ga0.7)2O3的透射谱; (b) 平均透过率

    Fig. 4.  Transmission spectrum (a) and average transmission (b) of a Al nanopore array/(Al0.3Ga0.7)2O3 when P = 200 nm, H = 50 nm and d changes from 60 to 160 nm.

    图 5  d = 120 nm, H = 50 nm, P从180 nm到260 nm改变时 (a) Al纳米孔阵列/(Al0.3Ga0.7)2O3的透射谱; (b) 平均透过率

    Fig. 5.  Transmission spectrum (a) and average transmission (b) of a Al nanopore array/(Al0.3Ga0.7)2O3 when d = 120 nm, H = 50 nm and P changes from 180 nm to 260 nm.

    图 6  d = 120 nm, P = 200 nm, H从20 nm到60 nm改变时 (a) (Al0.3Ga0.7)2O3/Al纳米孔阵列的透射谱; (b) 平均透过率

    Fig. 6.  Transmission spectrum (a) and average transmission (b) of a Al nanopore array/(Al0.3Ga0.7)2O3 when d = 120 nm, P = 200 nm and H changes from 20 nm to 60 nm.

    图 7  紫外波段透射峰中心波长λ1λ2随结构参数x, d, P, H的变化 (a) 中心波长随Al组分x的演变规律; (b) 中心波长随孔径d的演变规律; (c) 中心波长随周期P的演变规律; (d) 中心波长随厚度H的演变规律

    Fig. 7.  Changes of the peak position of the transmission peaks in the ultraviolet band with structural parameters x, d, P and H: (a) Evolution of peak position with Al component x; (b) evolution of peak position with aperture d; (c) evolution of peak position with period P; (d) evolution of peak position with thickness H.

    图 8  紫外波段透射峰峰值处透过率T1T2随结构参数x, d, P, H的变化 (a) 峰值处透过率随Al组分x的演变规律; (b) 峰值处透过率随孔径d的演变规律; (c) 峰值处透过率随周期P的演变规律; (d) 峰值处透过率随厚度H的演变规律

    Fig. 8.  Changes of peak transmission in the ultraviolet band with structural parameters x, d, P and H: (a) Evolution of peak transmission with Al component x; (b) evolution of peak transmission with aperture d; (c) evolution of peak transmission with period P; (d) evolution of peak transmission with thickness H.

    Baidu
  • [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [2]

    Wang L S, Wang G X, Yang K, Zhang W N, Liu W J 2023 Opt. Commun. 535 129336Google Scholar

    [3]

    Hou Y M 2011 Plasmonics 6 289Google Scholar

    [4]

    Tam H T T, Kajikawa K 2021 Opt. Express 29 35191Google Scholar

    [5]

    Yue W S, Wang Z H, Yang Y, Li J Q, Wu Y, Chen L Q, Ooi B, Wang X B, Zhang X X 2014 Nanoscale 6 7917Google Scholar

    [6]

    关建飞, 俞潇, 丁冠天, 陈陶, 陆云清 2024 73 117301Google Scholar

    Guan J F, Yu X, Ding G T, Chen T, Lu y Q 2024 Acta Phys. Sin. 73 117301Google Scholar

    [7]

    陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 65 204207Google Scholar

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207Google Scholar

    [8]

    Du B B, Yang Y, Zhang Y, Jia P P, Ebendorff-Heidepriem H, Ruan Y L, Yang D X 2019 J. Phys. D Appl. Phys. 52 275201Google Scholar

    [9]

    Ozbay E 2006 Science 311 189Google Scholar

    [10]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [11]

    Ekinci Y, Solak H H, David C 2007 Opt. Lett. 32 172Google Scholar

    [12]

    Hu J L, Shen M Z, Li Z G, Li X H, Liu G Q, Wang X D, Kan C X, Li Y 2017 Nanotechnology 28 215205Google Scholar

    [13]

    Zhang X G, Liu G Q, Liu, Z Q, Hu Y, Cai Z J, Liu X S, Fu G L, Liu M L 2014 Opt. Eng. 53 107108Google Scholar

    [14]

    Watanabe Y, Inami W, Kawata Y 2011 J. Appl. Phys. 109 023112Google Scholar

    [15]

    Ekinci Y, Solak H H, Loeffler J F 2008 J. Appl. Phys. 104 083107Google Scholar

    [16]

    Li H J, Wu Z Y, Wu S Y, Tian P F, Fang Z L 2023 J. Alloys Compd. 960 170671Google Scholar

    [17]

    Bhuiyan A F M A U, Feng Z X, Meng L Y, Fiedler A, Huang H L, Neal A T, Steinbrunner E, Mou S, Hwang J, Rajan S, Zhao H P 2022 J. Appl. Phys. 131 145301Google Scholar

    [18]

    Huang R, Wang Z Y, Wu K, Xu H, Wang Q, Guo Y C 2024 J. Semicond. 45 69Google Scholar

    [19]

    Xi H R, Yang T F, Xie M Y, Liang X J, Fang Z L, Ye Y, Chen Y, Wei Y M, Wang Z, Guan H Y, Lu H H 2024 Laser Photon. Rev. 18 2301129

    [20]

    Dashkov A S, Khakhulin S A, Shapran D A, Glinskii G F, KostrominN A, Vasilev A L, Yakunin S N, Komkov O S, Pirogov E V, Sobolev M S, Goray L I, Bouravleuv A D 2024 J. Semicond. 45 57Google Scholar

    [21]

    Zhukovsky S V, Andryieuski A, Takayama O, Shkondin E, Malureanu R, Jensen F, Lavrinenko A V 2015 Phys. Rev. Lett. 115 177402Google Scholar

    [22]

    Tolmachev V A, Mavlyanov R K, Kalinin D A, Zharova Y A, Zaitseva N V, Pavlov S I 2017 Opt. Spectrosc. 123 928Google Scholar

    [23]

    潘磊, 宋宝安, 肖传富, 张培晴, 林常规, 戴世勋 2020 69 114201Google Scholar

    Pan L, Song B A, Xiao C F, Zhang P Q, Lin C G, Dai S X 2020 Acta Phys. Sin. 69 114201Google Scholar

    [24]

    Schmidt-Grund R, Kranert C, von Wenckstern H, Zviagin V, Lorenz M, Grundmann M 2015 J. Appl. Phys. 117 165307Google Scholar

    [25]

    MALITSON I H 1962 J. Opt. Soc. Am. 52 1377Google Scholar

    [26]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [27]

    Van der Molen K L, Klein Koerkamp K J, Enoch S, Segerink F B, van Hulst N F, Kuipers L 2005 Phys. Rev. B 72 045421Google Scholar

    [28]

    Han J G, Azad A K, Gong M F, Lu X C, Zhang W L 2007 Appl. Phys. Lett. 91 071122Google Scholar

    [29]

    Liu Z W, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano Lett. 5 1726Google Scholar

    [30]

    Bethe H A 1944 Phys. Rev. 66 163Google Scholar

  • [1] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器.  , 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [2] 陈颖, 李美洁, 赵蒙, 王建坤. 基于群论的晶格扰动介质纳米孔阵列多重Fano共振机理及演变.  , 2022, 71(10): 107801. doi: 10.7498/aps.71.20212375
    [3] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振.  , 2021, (): . doi: 10.7498/aps.70.20211629
    [4] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性.  , 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [5] 徐超, 丁继军, 陈海霞, 李国利. Ag纳米线四聚体中的局域表面等离子体共振腔模态变化.  , 2021, 70(23): 235201. doi: 10.7498/aps.70.20211230
    [6] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管.  , 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [7] 洪昕, 王晨晨, 刘江涛, 王晓强, 尹雪洁. 芯帽纳米颗粒的光热性质.  , 2018, 67(19): 195202. doi: 10.7498/aps.67.20180909
    [8] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究.  , 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [9] 刘钰薇, 张文海, 张继成, 范全平, 魏来, 晏卓阳, 赵屹东, 崔明启, 邱荣, 曹磊峰. 准随机矩形孔阵列透射光栅.  , 2015, 64(7): 074201. doi: 10.7498/aps.64.074201
    [10] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式.  , 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [11] 高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛. Z箍缩Al等离子体发射谱的非局域平衡模拟.  , 2012, 61(1): 015201. doi: 10.7498/aps.61.015201
    [12] 栾伯晗, 乔增熙, 刘鹏, 赵伟, 鄂鹏, 于达仁. 氢氩等离子体中H原子Balmer 谱线超常展宽研究.  , 2012, 61(1): 015202. doi: 10.7498/aps.61.015202
    [13] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列.  , 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [14] 孙中华, 王红艳, 王辉, 张志东, 张中月. 金纳米环双体尺寸和耦合效应对表面等离子体共振特性的影响.  , 2012, 61(12): 125202. doi: 10.7498/aps.61.125202
    [15] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究.  , 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [16] 王媛媛, 张彩虹, 马金龙, 金飙兵, 许伟伟, 康琳, 陈健, 吴培亨. 亚波长孔阵列的太赫兹波异常透射研究.  , 2009, 58(10): 6884-6888. doi: 10.7498/aps.58.6884
    [17] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应.  , 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [18] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻.  , 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [19] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振.  , 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [20] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应.  , 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
计量
  • 文章访问数:  632
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-09-04
  • 上网日期:  2024-09-12
  • 刊出日期:  2024-10-20

/

返回文章
返回
Baidu
map