搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用银纳米立方增强效率的多层溶液加工白光有机发光二极管

张雅男 詹楠 邓玲玲 陈淑芬

引用本文:
Citation:

利用银纳米立方增强效率的多层溶液加工白光有机发光二极管

张雅男, 詹楠, 邓玲玲, 陈淑芬

Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes

Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen
PDF
HTML
导出引用
  • 金属纳米粒子的局域表面等离子体共振效应常被用于增强有机发光二极管中激子辐射强度, 其增强效果与金属纳米粒子的共振波长、共振强度及其与激子之间的耦合密切相关. 本文将具有较强局域表面等离子体共振效应的银纳米立方引入多层溶液加工白光有机发光二极管中提升器件性能. 在传统的溶液加工有机发光二极管中, 发光层主体一般具有较强的空穴传输性, 因此激子主要在发光层/电子传输层界面附近复合. 本文将银纳米立方掺入电子传输层中, 使银纳米立方与激子之间产生充分的耦合作用, 提高激子发光强度. 对银纳米立方包裹二氧化硅外壳, 一方面优化纳米立方与激子之间的距离, 另一方面减小其对器件中电荷传输的影响. 通过优化银纳米立方的浓度, 多层溶液加工白光有机发光二极管的电流效率达到30.0 cd/A, 是基础器件效率的2倍. 另外, 由于银纳米立方的等离子体共振光谱较宽, 同时增强了白光中蓝光和黄光的强度, 因此引入银纳米立方基本没有影响白光的色度. 研究结果表明引入金属纳米粒子是提升多层溶液加工发光二极管性能的有效方法.
    Localized surface plasmon resonance (LSPR) effect of metal nanoparticles (MNs) has been widely applied in organic light-emitting diodes (OLEDs) to improve the radiation of excitons. The LSPR wavelength and intensity of MNs and the coupling between MNs and excitons greatly affect the LSPR effect on exciton radiation. In this work, silica coated silver nanocubes (Ag@SiO2 NCs) were doped in the electron transport layer (ETL) of a solution-processed multilayered white OLED (WOLED). Due to the sharp edges and corners, Ag NCs have strong LSPR effect and can effectively enhance the radiation of nearby excitons. With an appropriate concentration of Ag@SiO2 NCs, the WOLED achieved two fold improvement in the current efficiency comparing with the control device without Ag@SiO2 NCs incorporated. The working mechanism of the Ag@SiO2 NCs based WOLED was investigated in detail. For the solution-processed OLED, excitons usually form and recombine near the interface of emission layer and electron transport layer (EML/ETL) because the commonly used host material (such as polyvinylcarbazole, PVK) has the unipolar hole transport property. So the Ag@SiO2 NCs in ETL greatly enhanced the radiation of the excitons located near the EML/ETL interface, which mostly contributed to the performance enhancement of the Ag@SiO2 NCs based WOLED. Study on a group of devices with Ag@SiO2 NCs doped in different locations indicated that Ag@SiO2 NCs in ETL showed more effective LSPR effect than those in hole injection layer. Electroluminescence and photoluminescence spectra of the WOLEDs declared that the Ag@SiO2 NCs simultaneously improved the radiation intensities of the blue and yellow excitons and helped the WOLED maintain the good chromaticity stability, which was mainly attributed to the wide LSPR wavelength range (450–650 nm) of the Ag@SiO2 NCs. The SiO2 coating layer of the Ag@SiO2 NCs played the important role in the LSPR enhanced emission. On the one hand, it formed an appropriated distance between the Ag NCs and the extions, helping to generate the strong coupling between them. On the other hand, it suppressed the effect of Ag NCs on charge trapping, keeping the stability of the carrier transport in the device. Our research demonstrate MNs can effectively improve the performance of OLEDs by carefully designing the device structure.
      通信作者: 陈淑芬, iamsfchen@njupt.edu.cn
    • 基金项目: 国家级-国家重点基础研究发展计划(2015CB932203)
      Corresponding author: Chen Shu-Fen, iamsfchen@njupt.edu.cn
    [1]

    Kido J, Kimura M, Nagai K 1995 Science 267 1332Google Scholar

    [2]

    Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C, Kido J 2010 Adv. Mater. 22 5003Google Scholar

    [3]

    Sun Y, Giebink N C, Kanno H, Ma B, Thompson M, Forrest S 2006 Nature 44090 8

    [4]

    Sax S, Mauthner G, Piok T, Pradhan S, Scherf U, List E J W 2007 Org. Electron. 8 791Google Scholar

    [5]

    Lee T, Noh T, Shin H, Kwon O, Park J, Choi B, Kim M, Shin D W, Kim Y 2009 Adv. Funct. Mater. 19 1625Google Scholar

    [6]

    You J, Tseng S, Meng H, Yen F, Lin I, Horng S 2009 Org. Electron. 10 1610Google Scholar

    [7]

    Kim K, Lee J, Park T, Jeon W, Kennedy G, Kwon J 2010 Synth. Met. 160 631Google Scholar

    [8]

    Zhao Q, Zhang W, Fan Z, Li J, Chen X, Luo G, Zhang X 2015 Synth. Met. 204 70Google Scholar

    [9]

    Ho S, Liu S, Chen Y, So F 2015 J. Photon. Energy 5 057611Google Scholar

    [10]

    Yook K, Lee J 2014 Adv. Mater. 26 4218Google Scholar

    [11]

    Noh Y, Lee C, Kim J, Yase K 2003 J. Chem. Phys. 118 2853Google Scholar

    [12]

    Kim D H, Kim T W 2016 Org. Electron. 34 262Google Scholar

    [13]

    Xu Y, Zhou H, Zhang R, Liu Y, Zhang Q, Zhang S, Zhang L, Chen S, Deng L, Qian Y, Wang L, Huang W 2015 AIP Adv. 5 067121Google Scholar

    [14]

    Deng L, Zhou Z, Jia B, Zhou H, Peng L, Shang W, Feng J, Chen S 2018 Org. Electron. 53 346Google Scholar

    [15]

    Kim T, Kang S, Heo J, Cho S, Kim J W, Choe A, Walker B, Shanker R, Ko H, Kim J Y 2019 Adv. Mater. 30 1800659

    [16]

    Chen P, Xiong Z, Wu X, Shao M, Meng Y, Xiong Z H, Guo C 2017 J. Phys. Chem. Lett. 8 3961Google Scholar

    [17]

    Shi Z, Li Y, Li S, Li X, Wu D, Xu T, Tian Y, Chen Y, Zhang Y, Zhang B, Shan C, Du G 2018 Adv. Funct. Mater. 28 1707031Google Scholar

    [18]

    Cho C, Kang H, Baek S, Kim T, Lee C 2016 ACS Appl. Mater. Interfaces 8 911

    [19]

    贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民 2017 66 237801Google Scholar

    Jia B L, Deng L L, Chen R X, Zhang Y N, Fang X M 2017 Acta Phys. Sin. 66 237801Google Scholar

    [20]

    Siekkinen A, Mclellan J, Chen J, Xia Y 2006 Chem. Phys. Lett. 432 491Google Scholar

    [21]

    Deng L, Yang J, Zhan N, Yu T, Yu H, Chen S 2019 Opt. Lett. 44 983Google Scholar

    [22]

    Kim T, Kang H, Jeong S, Kang D J, Lee C, Lee C H, Seo M K, Lee J Y, Kim B J 2014 ACS Appl. Mater. Interfaces 6 16956Google Scholar

  • 图 1  电子传输层中掺有Ag@SiO2 NCs的WOLED器件结构示意图

    Fig. 1.  Schematic structure of the WOLED with Ag@SiO2 NCs doped in ETL.

    图 2  (a)银纳米立方和(b) Ag@SiO2 NCs的TEM图像; (c) TPBi和掺有Ag@SiO2 NCs的TPBi的吸收光谱, 以及FIrpic和PO-01的PL光谱; (d)掺有Ag@SiO2 NCs的TPBi表面的SEM图像

    Fig. 2.  TEM images of (a) Ag NCs and (b) Ag@SiO2 NCs; (c) Absorption spectra of TPBi and TPBi:Ag@SiO2 NCs, and PL spectra of FIrpic and PO-01; (d) SEM image of the surface of ETL doped with Ag@SiO2 NCs.

    图 3  掺有1%, 1.5%, 2% Ag@SiO2 NCs 的WOLED以及基础器件的光电性能 (a)亮度-电压; (b)电流密度-电压; (c)电流效率-亮度; (d)归一化光谱. 图(d)中的插图为掺有1.5%Ag@SiO2 NCs 的WOLED在不同电压下的归一化光谱

    Fig. 3.  (a) Luminance-voltage, (b) current density-voltage, (c) efficiency-luminance properties and (d) normalized electroluminescent spectra of the WOLEDs with 1%, 1.5%, 2% Ag@SiO2 NCs and the control device. The inset of Fig. (d) is the normalized electroluminescent spectra of the WOLED with 1.5% Ag@SiO2 NCs at different luminance.

    图 4  (a)未归一化和(b)归一化的PL光谱. 样品结构为: ITO/PEDOT:PSS (45 nm)/EML (50 nm)/ETL (45 nm): Ag@SiO2 NCs, 其中Ag@SiO2 NCs浓度为1%, 1.5% and 2%

    Fig. 4.  (a) PL spectra and (b) normalized PL spectra of the samples of ITO/PEDOT:PSS (45 nm)/EML (50 nm)/ETL (45 nm) doped with 1%, 1.5% and 2% Ag@SiO2 NCs and the control sample without NCs.

    图 5  单电子器件的电流密度-电压关系

    Fig. 5.  Current density-voltage property of the electron-only devices.

    图 6  在WOLED中不同位置掺入Ag@SiO2 NCs后的器件性能 (a)电流密度-电压关系; (b) 亮度-电压关系; (c)电流效率-亮度关系

    Fig. 6.  (a) Current density-voltage, (b) luminance-voltage and (c) current efficiency-luminance properties of the WOLEDs with Ag@SiO2 NCs doped in different layers and the control device without Ag@SiO2 NCs.

    表 1  WOLED器件的光电性能

    Table 1.  Summary of the optoelectrical performances of the WOLEDs.

    WOLEDMax Luminance/cd·m–2Max Current Efficiency/cd·A–1Max Power Efficiency/lm·W–1Current Efficiency Enhancement/%Power Efficiency Enhancement/%
    W/O NCs1009114.7/14.1 a8.5/7.7 a
    1% NCs in ETL1529320.713.340.8 b56.5 b
    1.5% NCs in ETL1942730.0/26.3 a18.3/16.5 a104.1/86.5 a115.3/114.3 a
    2% NCs in ETL1209116.911.115.0 b30.6 b
    1.5% NCs in HIL1654517.611.524.8 c49.4 c
    1.5% NCs in HIL&ETL1187919.217.736.9 c129.9 c
    a 图3中的器件效率或效率增强幅度/图6中的器件效率或效率增强幅度;
    b 相对于图3中基础器件的效率增强幅度;
    c 相对于图6中基础器件的效率增强幅度.
    下载: 导出CSV
    Baidu
  • [1]

    Kido J, Kimura M, Nagai K 1995 Science 267 1332Google Scholar

    [2]

    Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C, Kido J 2010 Adv. Mater. 22 5003Google Scholar

    [3]

    Sun Y, Giebink N C, Kanno H, Ma B, Thompson M, Forrest S 2006 Nature 44090 8

    [4]

    Sax S, Mauthner G, Piok T, Pradhan S, Scherf U, List E J W 2007 Org. Electron. 8 791Google Scholar

    [5]

    Lee T, Noh T, Shin H, Kwon O, Park J, Choi B, Kim M, Shin D W, Kim Y 2009 Adv. Funct. Mater. 19 1625Google Scholar

    [6]

    You J, Tseng S, Meng H, Yen F, Lin I, Horng S 2009 Org. Electron. 10 1610Google Scholar

    [7]

    Kim K, Lee J, Park T, Jeon W, Kennedy G, Kwon J 2010 Synth. Met. 160 631Google Scholar

    [8]

    Zhao Q, Zhang W, Fan Z, Li J, Chen X, Luo G, Zhang X 2015 Synth. Met. 204 70Google Scholar

    [9]

    Ho S, Liu S, Chen Y, So F 2015 J. Photon. Energy 5 057611Google Scholar

    [10]

    Yook K, Lee J 2014 Adv. Mater. 26 4218Google Scholar

    [11]

    Noh Y, Lee C, Kim J, Yase K 2003 J. Chem. Phys. 118 2853Google Scholar

    [12]

    Kim D H, Kim T W 2016 Org. Electron. 34 262Google Scholar

    [13]

    Xu Y, Zhou H, Zhang R, Liu Y, Zhang Q, Zhang S, Zhang L, Chen S, Deng L, Qian Y, Wang L, Huang W 2015 AIP Adv. 5 067121Google Scholar

    [14]

    Deng L, Zhou Z, Jia B, Zhou H, Peng L, Shang W, Feng J, Chen S 2018 Org. Electron. 53 346Google Scholar

    [15]

    Kim T, Kang S, Heo J, Cho S, Kim J W, Choe A, Walker B, Shanker R, Ko H, Kim J Y 2019 Adv. Mater. 30 1800659

    [16]

    Chen P, Xiong Z, Wu X, Shao M, Meng Y, Xiong Z H, Guo C 2017 J. Phys. Chem. Lett. 8 3961Google Scholar

    [17]

    Shi Z, Li Y, Li S, Li X, Wu D, Xu T, Tian Y, Chen Y, Zhang Y, Zhang B, Shan C, Du G 2018 Adv. Funct. Mater. 28 1707031Google Scholar

    [18]

    Cho C, Kang H, Baek S, Kim T, Lee C 2016 ACS Appl. Mater. Interfaces 8 911

    [19]

    贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民 2017 66 237801Google Scholar

    Jia B L, Deng L L, Chen R X, Zhang Y N, Fang X M 2017 Acta Phys. Sin. 66 237801Google Scholar

    [20]

    Siekkinen A, Mclellan J, Chen J, Xia Y 2006 Chem. Phys. Lett. 432 491Google Scholar

    [21]

    Deng L, Yang J, Zhan N, Yu T, Yu H, Chen S 2019 Opt. Lett. 44 983Google Scholar

    [22]

    Kim T, Kang H, Jeong S, Kang D J, Lee C, Lee C H, Seo M K, Lee J Y, Kim B J 2014 ACS Appl. Mater. Interfaces 6 16956Google Scholar

  • [1] 朱文慧, 冯磊, 张克雄, 朱俊. Al纳米孔阵列/(AlxGa1–x)2O3薄膜中的紫外波段超常透射.  , 2024, 73(20): 207801. doi: 10.7498/aps.73.20240928
    [2] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器.  , 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [3] 徐超, 丁继军, 陈海霞, 李国利. Ag纳米线四聚体中的局域表面等离子体共振腔模态变化.  , 2021, 70(23): 235201. doi: 10.7498/aps.70.20211230
    [4] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振.  , 2021, (): . doi: 10.7498/aps.70.20211629
    [5] 管胜婕, 周林箭, 沈成梅, 张勇. 蓝色荧光有机发光二极管中的激子-电荷相互作用.  , 2020, 69(16): 167101. doi: 10.7498/aps.69.20191930
    [6] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管.  , 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [7] 洪昕, 王晨晨, 刘江涛, 王晓强, 尹雪洁. 芯帽纳米颗粒的光热性质.  , 2018, 67(19): 195202. doi: 10.7498/aps.67.20180909
    [8] 陶洪, 高栋雨, 刘佰全, 王磊, 邹建华, 徐苗, 彭俊彪. 电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升.  , 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [9] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究.  , 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [10] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性.  , 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [11] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能.  , 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [12] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管.  , 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [13] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管.  , 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [14] 陈淑芬, 邵茗, 郭旭, 钱妍, 石乃恩, 解令海, 杨洋, 黄维. 基于ZnS增透膜的顶发射白光有机发光二极管.  , 2012, 61(8): 087801. doi: 10.7498/aps.61.087801
    [15] 赵宝锋, 唐怀军, 余磊, 王保争, 文尚胜. 掺杂离子型配合物的高效聚合物白光发光二极管.  , 2011, 60(8): 088502. doi: 10.7498/aps.60.088502
    [16] 陈平, 赵理, 段羽, 程刚, 赵毅, 刘式墉. 一种用于堆叠结构有机发光二极管的新的电荷生成层.  , 2011, 60(9): 097203. doi: 10.7498/aps.60.097203
    [17] 刘荣, 张勇, 雷衍连, 陈平, 张巧明, 熊祖洪. LiF插层对有机发光二极管磁场效应的调控.  , 2010, 59(6): 4283-4289. doi: 10.7498/aps.59.4283
    [18] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应.  , 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
    [19] 夏连胜, 王 勐, 黄子平, 张开志, 石金水, 章林文, 邓建军. 强流电子二极管中阴极等离子体的膨胀.  , 2004, 53(10): 3435-3439. doi: 10.7498/aps.53.3435
    [20] 许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华. 有机层界面对双层有机发光二极管复合效率的影响.  , 2004, 53(1): 286-290. doi: 10.7498/aps.53.286
计量
  • 文章访问数:  6522
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 修回日期:  2019-12-16
  • 刊出日期:  2020-02-20

/

返回文章
返回
Baidu
map