搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究

宜子琪 王彦明 王硕 隋雪 石佳辉 杨壹涵 王德煜 冯秋菊 孙景昌 梁红伟

引用本文:
Citation:

基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究

宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟

Performance of UV photodetector of mechanical exfoliation prepared PEDOT:PSS/β-Ga2O3 microsheet heterojunction

Yi Zi-Qi, Wang Yan-Ming, Wang Shuo, Sui Xue, Shi Jia-Hui, Yang Yi-Han, Wang De-Yu, Feng Qiu-Ju, Sun Jing-Chang, Liang Hong-Wei
PDF
HTML
导出引用
  • β-Ga2O3具有超宽带隙(约4.9 eV)、高的击穿电场(约8 MV/cm)、良好的化学稳定性和热稳定性等优点, 是一种很有前途的制备紫外光电探测器的候选材料. 由于未掺杂的β-Ga2O3为n型导电, 所以制备p型β-Ga2O3面临很多困难, 从而制约了同质PN结的开发与应用. 聚(3, 4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)是一种p型导电聚合物, 在250—700 nm有着较高的透明度, 采用p型有机材料PEDOT:PSS和n型β-Ga2O3构成的异质结可能为PN结型光电器件的研制提供一种途径. 本文利用机械剥离法从β-Ga2O3单晶衬底上剥离出单根β-Ga2O3微米片, 微米片的长度为4 mm, 宽度为500 μm, 厚度为57 μm. 将有机材料PEDOT:PSS涂覆在剥离出来的微米片的一侧制备出PEDOT:PSS/β-Ga2O3无机-有机异质结的紫外光电探测器, 器件表现出典型的整流特性, 而且发现器件对254 nm紫外光敏感, 具有良好的自供电性能. 该异质结紫外探测器的响应度和外量子效率分别为7.13 A/W和3484%, 上升时间和下降时间分别为0.25 s和0.20 s. 此外, 3个月后器件对254 nm紫外光的探测性能并未发现明显的衰减现象. 本文的相关研究工作将对研发新型紫外探测器提供了新的思路和理论基础.
    Ultrawide-bandgap (4.9 eV) β-Ga2O3 material possesses exceptional properties such as a high critical-breakdown field (~8 MV/cm) and robust chemical and thermal stability. However, due to the challenges in the growth of p-type β-Ga2O3, the preparation of homojunction devices is difficult. Therefore, the utilization of heterojunctions based on β-Ga2O3 provides a viable approach for fabricating ultraviolet photodetectors. Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS), a p-type organic polymer material, exhibits high transparency in a 250–700 nm wavelength range. Additionally, its remarkable conductivity (>1000 S/cm), high hole mobility (1.7 cm2·V–1·s–1), and excellent chemical stability make it an outstanding candidate for serving as a hole transport layer. Consequently, the combination of p-type PEDOT:PSS with n-type β-Ga2O3 in a heterojunction configuration provides a promising way for developing PN junction optoelectronic devices.In this study, a β-Ga2O3 microsheet with dimensions: 4 mm in length, 500 μm in width, and 57 μm in thickness, is successfully exfoliated from a β-Ga2O3 single crystal substrate by using a mechanical exfoliation technique. Subsequently, a PEDOT:PSS/β-Ga2O3 organic/inorganic p-n heterojunction UV photodetector is fabricated by depositing the PEDOT:PSS organic material onto a side of the β-Ga2O3 microsheet. The obtained device exhibits typical rectification characteristics, sensitivity to 254 nm ultraviolet light, and impressive self-powering performance. Furthermore, the heterojunction photodetector demonstrates exceptional photosensitive properties, achieving a responsivity of 7.13 A/W and an external quantum efficiency of 3484% under 254 nm UV light illumination (16 μW/cm2) at 0 V. Additionally, the device exhibits a rapid photoresponse time of 0.25 s/0.20 s and maintains good stability and repeatability over time. Notably, after a three-month duration, the photodetection performance for 254 nm UV light detection remained unchanged, without any significant degradation. This in-depth research provides a novel perspective and theoretical foundation for developing innovative UV detectors and paving the way for future advancements in the field of optoelectronics.
      通信作者: 冯秋菊, qjfeng@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075045)、大连市科技创新基金(批准号: 2023JJ12GX016, 2023JJ12GX013, 2022JJ12GX023)、辽宁师范大学2022年高端科研成果培育资助计划(批准号: 22GDL002)和辽宁师范大学教育教学改革研究项目(批准号: LSJGJXFF202330)资助的课题.
      Corresponding author: Feng Qiu-Ju, qjfeng@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075045), the Dalian Technological Innovation Fund Project, China (Grant Nos. 2023JJ12GX016, 2023JJ12GX013, 2022JJ12GX023), the Liaoning Normal University 2022 Outstanding Research Achievements Cultivation Fund, China (Grant No. 22GDL002), and the Liaoning Normal University Education Teaching Reform Research Project, China (Grant No. LSJGJXFF202330).
    [1]

    Zhang C X, Xu C B, Wen G J, Lian Y F 2018 Opt. Eng. 57 053109Google Scholar

    [2]

    Guo D K, Chen K, Wang S L, Wu F M, Liu A P, Li C R, Li P G, Tan C K, Tang W H 2020 Phys. Rev. Appl. 13 024051Google Scholar

    [3]

    Wu C, He C R, Guo D K, Zhang F B, Li P G, Wang S L, Liu A P, Wu F M, Tang W H 2020 Mater. Today Phys. 12 100193Google Scholar

    [4]

    Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar

    [5]

    Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X, Shen D Z 2014 Appl. Phys. Lett. 105 011117Google Scholar

    [6]

    Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T 2003 Appl. Phys. Lett. 82 3424Google Scholar

    [7]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar

    [8]

    Rathkanthiwar S, Kalra A, Solanke S V, Mohta N, Muralidharan R, Raghavan S, Nath D N 2017 Appl. Phys. 121 164502Google Scholar

    [9]

    Pearton S J, Yang J C, IV P H C, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [10]

    Jubu P R, Yam F K 2020 Sens. Actuators A 312 112141Google Scholar

    [11]

    刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟 2023 72 198503Google Scholar

    Liu W, Feng Q J, Yi Z Q, Yu C, Wang S, Wang Y M, Sui X, Liang H W 2023 Acta Phys. Sin. 72 198503Google Scholar

    [12]

    Zhou Y M, Mei S J, Sun D W, Liu N, Shi W X, Feng J H, Mei F, Xu J X, Jiang Y, Cao X N 2019 Micromachines 10 459Google Scholar

    [13]

    Feng Q, Du K, Li Y K, Shi P, Feng Q 2014 Chin. Phys. B 23 077303Google Scholar

    [14]

    Liu Z Y, Khaled P, Li R J, Dong R H, Feng X L, Klaus M 2015 Adv. Mater. 27 669Google Scholar

    [15]

    Son J, Kwon Y, Kim J, Kim J 2018 ECS J. Solid State Sci. Technol. 7 Q148Google Scholar

    [16]

    Kwon Y, Lee G, Oh S, Kim J, Pearton S J, Ren F 2017 Appl. Phys. Lett. 110 131901Google Scholar

    [17]

    Feng Q J, Dong Z J, Liu W, Liang S, Yi Z Q, Yu C, Xie J Z, Song Z 2022 Micro Nanostruct. 167 207255Google Scholar

    [18]

    Xu C X, Shen L Y, Liu H, Pan X H, Ye Z Z 2021 J. Electron. Mater. 50 2043Google Scholar

    [19]

    Liu Z, Wang X, Liu Y Y, Guo D K, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar

    [20]

    张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 72 160201Google Scholar

    Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar

    [21]

    Lin R C, Zheng W, Zhang D, Zhang Z J, Liao Q X, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [22]

    Qi S, Liu J H, Yue J Y, Ji X Q, Shen J Y, Yang Y T, Wang J J, Li S, Wu Z P, Tang W H 2023 J. Mater. Chem. C 11 8454Google Scholar

    [23]

    Pasupuleti K S, Reddeppa M, Park B G, Peta K R, Oh J E, Kim S G, Kim M D 2020 ACS Appl. Mater. Interfaces 12 54181Google Scholar

    [24]

    Yan Z Y, Li S, Liu Z, Zhi Y S, Dai J, Sun X Y, Sun S Y, Guo D Y, Wang X, Li P G, Wu Z P, Li L L, Tang W H 2020 J. Mater. Chem. C 8 4502Google Scholar

    [25]

    Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar

    [26]

    Zhang D, Zheng W, Lin R C, Li Y Q, Huang F 2019 Adv. Funct. Mater. 29 1900935Google Scholar

    [27]

    Dong Y H, Zou Y S, Song J Z, Zhu Z F, Li J H, Zeng H B 2016 Nano Energy 30 173Google Scholar

    [28]

    Ouyang J Y 2013 Displays 34 423Google Scholar

    [29]

    Yu P P, Hu K, Chen H Y, Zheng L X, Fang X S 2017 Adv. Funct. Mater. 27 1703166Google Scholar

  • 图 1  PEDOT:PSS/β-Ga2O3紫外光电探测器的制作流程示意图

    Fig. 1.  Schematic diagram of the preparation processes of the PEDOT:PSS/β-Ga2O3-based UV photodetector.

    图 2  (a)单根β-Ga2O3微米片的SEM图; (b)单根PEDOT:PSS/β-Ga2O3异质结的SEM图

    Fig. 2.  The SEM images for (a) the single β-Ga2O3 microsheet and (b) single PEDOT:PSS/β-Ga2O3 heterojunction.

    图 3  (a)器件在黑暗和254 nm光照下的I-V曲线, 插图为黑暗条件下器件的I-V曲线; (b) Ag-PEDOT:PSS-Ag的I-V曲线; (c) Ag-β-Ga2O3-Ag的I-V曲线

    Fig. 3.  (a) I-V curves of devices under dark and 254 nm light illumination, inset shows the I-V curve of the device in dark; (b) I-V curve of Ag-PEDOT:PSS-Ag; (c) I-V curve of Ag-β-Ga2O3-Ag.

    图 4  零偏压下, 器件在不同光功率密度下的响应I-t曲线

    Fig. 4.  I-t curves of the device under various light intensity at 0 V bias.

    图 5  单个周期的响应-恢复时间曲线

    Fig. 5.  Response-recovery time curve of device for a single cycle.

    图 6  器件的响应度和EQE随光功率密度的变化

    Fig. 6.  Responsivity and EQE of the device under various light intensities.

    图 7  3个月后, 器件在0 V偏压下的时间响应

    Fig. 7.  Time response of the device at 0 V bias after retested three months.

    图 8  PEDOT:PSS/β-Ga2O3异质结光电器件在254 nm和0 V偏压下的能带图

    Fig. 8.  Schematic energy-band diagram of PEDOT:PSS/β-Ga2O3 heterojunction photodetector at 254 nm UV light illumination under zero bias.

    表 1  自供电型无机/有机日盲紫外探测器的性能参数比较

    Table 1.  Performance comparison of inorganic/organic self-powered solar blind UV detectors.

    Structure R/(mA·W–1) Light intensity/(μW·cm–2) Rise/decay time EQE/% Ref.
    PEDOT:PSS/Ga2O3 microwire 3.25×103 16 0.25 s/0.20 s 1591 This work
    Ppy-PEDOT:PSS/GaN 1.1×103 6.56×103 0.25 s/0.28 s 4.0×105 [23]
    Ga2O3/spiro-OMeTAD 65 1 2.98 μs/28.49 μs 32 [24]
    PEDOT:PSS/Ga2O3 (Bulk) 37 1.5×10–3 9 ms/9 ms 18 [25]
    PEDOT:PSS/Ga2O3/Si 29 12 60 ms/88 ms 15 [26]
    ZnO/PVK/PEDOT/CNT 9.96 210 1.5 s/6 s ~0.6 [27]
    下载: 导出CSV
    Baidu
  • [1]

    Zhang C X, Xu C B, Wen G J, Lian Y F 2018 Opt. Eng. 57 053109Google Scholar

    [2]

    Guo D K, Chen K, Wang S L, Wu F M, Liu A P, Li C R, Li P G, Tan C K, Tang W H 2020 Phys. Rev. Appl. 13 024051Google Scholar

    [3]

    Wu C, He C R, Guo D K, Zhang F B, Li P G, Wang S L, Liu A P, Wu F M, Tang W H 2020 Mater. Today Phys. 12 100193Google Scholar

    [4]

    Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar

    [5]

    Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X, Shen D Z 2014 Appl. Phys. Lett. 105 011117Google Scholar

    [6]

    Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T 2003 Appl. Phys. Lett. 82 3424Google Scholar

    [7]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar

    [8]

    Rathkanthiwar S, Kalra A, Solanke S V, Mohta N, Muralidharan R, Raghavan S, Nath D N 2017 Appl. Phys. 121 164502Google Scholar

    [9]

    Pearton S J, Yang J C, IV P H C, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [10]

    Jubu P R, Yam F K 2020 Sens. Actuators A 312 112141Google Scholar

    [11]

    刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟 2023 72 198503Google Scholar

    Liu W, Feng Q J, Yi Z Q, Yu C, Wang S, Wang Y M, Sui X, Liang H W 2023 Acta Phys. Sin. 72 198503Google Scholar

    [12]

    Zhou Y M, Mei S J, Sun D W, Liu N, Shi W X, Feng J H, Mei F, Xu J X, Jiang Y, Cao X N 2019 Micromachines 10 459Google Scholar

    [13]

    Feng Q, Du K, Li Y K, Shi P, Feng Q 2014 Chin. Phys. B 23 077303Google Scholar

    [14]

    Liu Z Y, Khaled P, Li R J, Dong R H, Feng X L, Klaus M 2015 Adv. Mater. 27 669Google Scholar

    [15]

    Son J, Kwon Y, Kim J, Kim J 2018 ECS J. Solid State Sci. Technol. 7 Q148Google Scholar

    [16]

    Kwon Y, Lee G, Oh S, Kim J, Pearton S J, Ren F 2017 Appl. Phys. Lett. 110 131901Google Scholar

    [17]

    Feng Q J, Dong Z J, Liu W, Liang S, Yi Z Q, Yu C, Xie J Z, Song Z 2022 Micro Nanostruct. 167 207255Google Scholar

    [18]

    Xu C X, Shen L Y, Liu H, Pan X H, Ye Z Z 2021 J. Electron. Mater. 50 2043Google Scholar

    [19]

    Liu Z, Wang X, Liu Y Y, Guo D K, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar

    [20]

    张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 72 160201Google Scholar

    Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar

    [21]

    Lin R C, Zheng W, Zhang D, Zhang Z J, Liao Q X, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [22]

    Qi S, Liu J H, Yue J Y, Ji X Q, Shen J Y, Yang Y T, Wang J J, Li S, Wu Z P, Tang W H 2023 J. Mater. Chem. C 11 8454Google Scholar

    [23]

    Pasupuleti K S, Reddeppa M, Park B G, Peta K R, Oh J E, Kim S G, Kim M D 2020 ACS Appl. Mater. Interfaces 12 54181Google Scholar

    [24]

    Yan Z Y, Li S, Liu Z, Zhi Y S, Dai J, Sun X Y, Sun S Y, Guo D Y, Wang X, Li P G, Wu Z P, Li L L, Tang W H 2020 J. Mater. Chem. C 8 4502Google Scholar

    [25]

    Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar

    [26]

    Zhang D, Zheng W, Lin R C, Li Y Q, Huang F 2019 Adv. Funct. Mater. 29 1900935Google Scholar

    [27]

    Dong Y H, Zou Y S, Song J Z, Zhu Z F, Li J H, Zeng H B 2016 Nano Energy 30 173Google Scholar

    [28]

    Ouyang J Y 2013 Displays 34 423Google Scholar

    [29]

    Yu P P, Hu K, Chen H Y, Zheng L X, Fang X S 2017 Adv. Funct. Mater. 27 1703166Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器.  , 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [3] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器.  , 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [4] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析.  , 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [5] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能.  , 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [6] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学.  , 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [7] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能.  , 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [8] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器.  , 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [9] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用.  , 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [10] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [11] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [12] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展.  , 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [13] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器.  , 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [14] 张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐. La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性.  , 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [15] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚. 包埋Pt纳米粒子对金属-半导体-金属结构ZnO紫外光电探测器性能的影响.  , 2015, 64(6): 067802. doi: 10.7498/aps.64.067802
    [16] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性.  , 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [17] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究.  , 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [18] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应.  , 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [19] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究.  , 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [20] 王 坤, 姚淑德, 侯利娜, 丁志博, 袁洪涛, 杜小龙, 薛其坤. 用卢瑟福背散射/沟道技术研究ZnO/Zn0.9Mg0.1O/ZnO异质结的弹性应变.  , 2006, 55(6): 2892-2896. doi: 10.7498/aps.55.2892
计量
  • 文章访问数:  1466
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-06-03
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-05

/

返回文章
返回
Baidu
map