-
Van der Waals (vdW) materials have attracted extensive research interest in the field of strain engineering due to their unique structure and excellent performance. By changing the atomic lattice and electronic structure, strain can modulate the novel physical properties of vdW materials and generate new quantum states, ultimately realize high-performance electronic devices based on new principles. In this paper, we first comprehensively review various experimental strategies of inducing in-situ strain, which include the bending deformation of flexible substrates, mechanical stretching of microelectromechanical systems and electrodeformation of piezoelectric substrates. Then, we outline the recent research progresses of in-situ strain-modulated magnetism, superconductivity and topological properties in vdW materials, as well as the development of strain-related device applications, such as intelligent strain sensors and strain-programmable probabilistic computing. Finally, we examine the current challenges and provide insights into potential opportunities in the field of strain engineering.
-
Keywords:
- Van der Waals materials /
- strain engineering /
- in-situ strain /
- strain sensor
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451
Google Scholar
[3] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[4] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703
Google Scholar
[5] Geim A K 2009 Science 324 1530
Google Scholar
[6] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[7] Ma H X, Xing Y H, Cui B Y, Han J, Wang B H, Zeng Z M 2022 Chin. Phys. B 31 108502
Google Scholar
[8] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193
Google Scholar
[9] Geim A K, Grigorieva I V 2013 Nature 499 419
Google Scholar
[10] Qian X, Liu J, Fu L, Li J 2014 Science 346 1344
Google Scholar
[11] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274
Google Scholar
[12] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270
Google Scholar
[13] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
Google Scholar
[14] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X, Cobden D H 2018 Nature 560 336
Google Scholar
[15] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895
Google Scholar
[16] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国 2022 71 048502
Google Scholar
Wu Y F, Zhu M Y, Zhao R J, Liu X J, Zhao Y C, Wei H X, Zhang J Y, Zheng X Q, Shen J X, Huang H, Wang S G 2022 Acta Phys. Sin. 71 048502
Google Scholar
[17] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[18] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
Google Scholar
[19] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, Duan X 2016 Nat. Rev. Mater. 1 16042
Google Scholar
[20] Burch K S, Mandrus D, Park J G 2018 Nature 56 3 47
[21] Deng S, Sumant A V, Berry V 2018 Nano Today 22 14
Google Scholar
[22] Miao F, Liang S J, Cheng B 2021 npj Quantum Mater. 6 59
Google Scholar
[23] Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678
Google Scholar
[24] Dai Z, Liu L, Zhang Z 2019 Adv. Mater. 31 1805417
Google Scholar
[25] Pandey M, Pandey C, Ahuja R, Kumar R 2023 Nano Energy 109 108278
Google Scholar
[26] Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S 2022 Chin. Phys. Lett. 39 127301
Google Scholar
[27] Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B 2013 Phys. Rev. B 88 121301
Google Scholar
[28] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平 2023 72 076301
Google Scholar
Sun T Y, Wu L, He X J, Jiang N, Zhou W Z, Ouyang F P 2023 Acta Phys. Sin. 72 076301
Google Scholar
[29] Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470
Google Scholar
[30] Yang S, Chen Y, Jiang C 2021 InfoMat 3 397
Google Scholar
[31] Chen C, Das P, Aytan E, Zhou W, Horowitz J, Satpati B, Balandin A A, Lake R K, Wei P 2020 ACS Appl. Mater. Interfaces 12 38744
Google Scholar
[32] Kim J M, Haque M F, Hsieh E Y, Nahid S M, Zarin I, Jeong K Y, So J P, Park H G, Nam S 2023 Adv. Mater. 35 2107362
Google Scholar
[33] Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y, Chen Y P 2023 Adv. Mater. 35 2205714
[34] Ren H, Xiang G 2023 Nanomaterials 13 2378
Google Scholar
[35] Wang G, Yang K, Ma Y, Liu L, Lu D, Zhou Y, Wu H 2023 Chin. Phys. Lett. 40 077301
Google Scholar
[36] Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C, Chu J H 2019 Sci. Adv. 5 eaav9771
Google Scholar
[37] Wang Y, Wang C, Liang S-J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S-W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533
Google Scholar
[38] Ghini M, Bristow M, Prentice J C A, Sutherland S, Sanna S, Haghighirad A A, Coldea A I 2021 Phys. Rev. B 103 205139
Google Scholar
[39] Kim H, Uddin S Z, Lien D H, Yeh M, Azar N S, Balendhran S, Kim T, Gupta N, Rho Y, Grigoropoulos C P, Crozier K B, Javey A 2021 Nature 596 232
Google Scholar
[40] Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J H, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256
Google Scholar
[41] Cenker J, Ovchinnikov D, Yang H, Chica D G, Zhu C, Cai J, Diederich G M, Liu Z, Zhu X, Roy X, Cao T, Daniels M W, Chu J H, Xiao D, Xu X 2023 arXiv: 2301.03759v1 [cond-mat. mes-hall]
[42] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544
Google Scholar
[43] Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G 2011 ACS Nano 5 3645
Google Scholar
[44] Wang L, Zihlmann S, Baumgartner A, Overbeck J, Watanabe K, Taniguchi T, Makk P, Schönenberger C 2019 Nano Lett. 19 4097
Google Scholar
[45] Wang L, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147
Google Scholar
[46] Goldsche M, Sonntag J, Khodkov T, Verbiest G J, Reichardt S, Neumann C, Ouaj T, Von den Driesch N, Buca D, Stampfer C 2018 Nano Lett. 18 1707
Google Scholar
[47] Cao K, Feng S, Han Y, Gao L, Ly T H, Xu Z, Lu Y 2020 Nat. Commun. 11 284
Google Scholar
[48] Nicholl R J T, Lavrik N V, Vlassiouk I, Srijanto B R, Bolotin K I 2017 Phys. Rev. Lett. 118 266101
Google Scholar
[49] Cui X, Dong W, Feng S, Wang G, Wang C, Wang S, Zhou Y, Qiu X, Liu L, Xu Z, Zhang Z 2023 Small 19 2301959
Google Scholar
[50] Roldán R, Castellanos-Gomez A, Cappelluti E, Guinea F 2015 J. Phys. Condens. Matter 27 313201
Google Scholar
[51] Hwangbo K, Rosenberg E, Cenker J, Jiang Q, Wen H, Xiao D, Chu J H, Xu X 2024 arXiv: 2308.08734v2 [cond-mat. str-el]
[52] Pérez Garza H H, Kievit E W, Schneider G F, Staufer U 2014 Nano Lett. 14 4107
Google Scholar
[53] Pasquier V, Scarfato A, Martinez-Castro J, Guipet A, Renner C 2023 Rev. Sci. Instrum. 94 013905
Google Scholar
[54] Hou W, Azizimanesh A, Sewaket A, Peña T, Watson C, Liu M, Askari H, Wu S M 2019 Nat. Nanotechnol. 14 668
Google Scholar
[55] Huang S, Zhang G, Fan F, Song C, Wang F, Xing Q, Wang C, Wu H, Yan H 2019 Nat. Commun. 10 2447
Google Scholar
[56] Ci W, Yang H, Xue W, Yang R, L B, Wang P, Li R-W, Xu X-H 2022 Nano Res. 15 7597
Google Scholar
[57] Lin Z, Peng Y, Wu B, Wang C, Luo Z, Yang J 2022 Chin. Phys. B 31 087506
Google Scholar
[58] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94
Google Scholar
[59] Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z 2018 Nat. Nanotechnol. 13 554
Google Scholar
[60] Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549
Google Scholar
[61] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544
Google Scholar
[62] Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406
Google Scholar
[63] Song T, Fei Z, Yankowitz M, Lin Z, Jiang Q, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J-H, Cobden D H, Dean C R, Xiao D, Xu X 2019 Nat. Mater. 18 1298
Google Scholar
[64] Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303
Google Scholar
[65] Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646
Google Scholar
[66] Sheng P, Wang B, Li R 2018 J. Semicond. 39 011006
Google Scholar
[67] Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K-M C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187
Google Scholar
[68] Šiškins M, Lee M, Mañas-Valero S, Coronado E, Blanter Y M, Van der Zant H S J, Steeneken P G 2020 Nat. Commun. 11 2698
Google Scholar
[69] Bukharaev A A, Zvezdin A K, Pyatakov A P, Fetisov Y K 2018 Phys. Usp. 61 1175
Google Scholar
[70] Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407
Google Scholar
[71] Webster L, Yan J A 2018 Phys. Rev. B 98 144411
Google Scholar
[72] Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587
Google Scholar
[73] Wadley P, Reimers S, Grzybowski M J, Andrews C, Wang M, Chauhan J S, Gallagher B L, Campion R P, Edmonds K W, Dhesi S S, Maccherozzi F, Novak V, Wunderlich J, Jungwirth T 2018 Nat. Nanotechnol. 13 362
Google Scholar
[74] Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229
Google Scholar
[75] Ni Z, Haglund A V, Wang H, Xu B, Bernhard C, Mandrus D G, Qian X, Mele E J, Kane C L, Wu L 2021 Nat. Nanotechnol. 16 782
Google Scholar
[76] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214
Google Scholar
[77] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218
Google Scholar
[78] Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y, Mackenzie A P 2014 Science 344 283
Google Scholar
[79] Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710
Google Scholar
[80] Lin C, Ochi M, Noguchi R, Kuroda K, Sakoda M, Nomura A, Tsubota M, Zhang P, Bareille C, Kurokawa K, Arai Y, Kawaguchi K, Tanaka H, Yaji K, Harasawa A, Hashimoto M, Lu D, Shin S, Arita R, Tanda S, Kondo T 2021 Nat. Mater. 20 1093
Google Scholar
[81] Zhu C S, Lei B, Sun Z L, Cui J H, Shi M Z, Zhuo W Z, Luo X G, Chen X H 2021 Phys. Rev. B 104 024509
Google Scholar
[82] Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001
Google Scholar
[83] Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, Davis J C S 2017 Science 357 75
Google Scholar
[84] Li J, Lei B, Zhao D, Nie L P, Song D W, Zheng L X, Li S J, Kang B L, Luo X G, Wu T, Chen X H 2020 Phys. Rev. X 10 011034
Google Scholar
[85] Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, Takahashi T 2017 Phys. Rev. B 95 224507
Google Scholar
[86] Nabeshima F, Kawai M, Ishikawa T, Shikama N, Maeda A 2018 Jpn. J. Appl. Phys. 57 120314
Google Scholar
[87] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P, Hicks C W 2021 Phys. Rev. X 11 021038
Google Scholar
[88] Cheng Z, Lei B, Luo X, Ying J, Wang Z, Wu T, Chen X 2021 Chin. Phys. B 30 097403
Google Scholar
[89] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
Google Scholar
[90] Xiao D, Chang MC, Niu Q 2010 Rev. Mod. Phys. 82 1959
Google Scholar
[91] You J S, Fang S, Xu S Y, Kaxiras E, Low T 2018 Phys. Rev. B 98 121109
Google Scholar
[92] Son J, Kim K H, Ahn Y H, Lee H W, Lee J 2019 Phys. Rev. Lett. 123 036806
Google Scholar
[93] Fu L, Kane C L 2007 Phys. Rev. B 76 045302
Google Scholar
[94] Murakami S, Kuga S I 2008 Phys. Rev. B 78 165313
Google Scholar
[95] Zhao C, Hu M, Qin J, Xia B, Liu C, Wang S, Guan D, Li Y, Zheng H, Liu J, Jia J 2020 Phys. Rev. Lett. 125 046801
Google Scholar
[96] Zhang P, Noguchi R, Kuroda K, Lin C, Kawaguchi K, Yaji K, Harasawa A, Lippmaa M, Nie S, Weng H, Kandyba V, Giampietri A, Barinov A, Li Q, Gu G D, Shin S, Kondo T 2021 Nat. Commun. 12 406
Google Scholar
[97] Flötotto D, Bai Y, Chan Y H, Chen P, Wang X, Rossi P, Xu C Z, Zhang C, Hlevyack J A, Denlinger J D, Hong H, Chou M Y, Mittemeijer E J, Eckstein J N, Chiang T C 2018 Nano Lett. 18 5628
Google Scholar
[98] Liu J, Zhou Y, Yepez Rodriguez S, Delmont M A, Welser R A, Ho T, Sirica N, McClure K, Vilmercati P, Ziller J W, Mannella N, Sanchez-Yamagishi J D, Pettes M T, Wu R, Jauregui L A 2024 Nat. Commun. 15 332
Google Scholar
[99] Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z 2013 Adv. Mater. 25 5997
Google Scholar
[100] Chortos A, Liu J, Bao Z 2016 Nat. Mater. 15 937
Google Scholar
[101] Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X 2020 Adv. Mater. 32 1902062
Google Scholar
[102] Qi J, Lan Y W, Stieg A Z, Chen J H, Zhong Y L, Li L J, Chen C D, Zhang Y, Wang K L 2015 Nat. Commun. 6 7430
Google Scholar
[103] Zhao J, Wang G, Yang R, Lu X, Cheng M, He C, Xie G, Meng J, Shi D, Zhang G 2015 ACS Nano 9 1622
Google Scholar
[104] Feng W, Zheng W, Gao F, Chen X, Liu G, Hasan T, Cao W, Hu P 2016 Chem. Mater. 28 4278
Google Scholar
[105] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097
Google Scholar
[106] Yan W, Fuh H R, Lü Y, Chen K Q, Tsai T Y, Wu Y R, Shieh T H, Hung K M, Li J, Zhang D, Ó Coileáin C, Arora S K, Wang Z, Jiang Z, Chang C R, Wu H C 2021 Nat. Commun. 12 2018
Google Scholar
[107] Grabovskij G J, Peichl T, Lisenfeld J, Weiss G, Ustinov A V 2012 Science 338 232
Google Scholar
[108] Sun Y, Lin T, Lei N, Chen X, Kang W, Zhao Z, Wei D, Chen C, Pang S, Hu L, Yang L, Dong E, Zhao L, Liu L, Yuan Z, Ullrich A, Back C H, Zhang J, Pan D, Zhao J, Feng M, Fert A, Zhao W 2023 Nat. Commun. 14 3434
Google Scholar
[109] Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378
Google Scholar
[110] D’Souza N, Biswas A, Ahmad H, Fashami M S, Al-Rashid M M, Sampath V, Bhattacharya D, Abeed M A, Atulasimha J, Bandyopadhyay S 2018 Nanotechnology 29 442001
Google Scholar
[111] Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z 2019 Nat. Nanotechnol. 14 131
Google Scholar
[112] Gusev N S, Sadovnikov A V, Nikitov S A, Sapozhnikov M V, Udalov O G 2020 Phys. Rev. Lett. 124 157202
Google Scholar
[113] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
Google Scholar
[114] Borders W A, Pervaiz A Z, Fukami S, Camsari K Y, Ohno H, Datta S 2019 Nature 573 390
Google Scholar
[115] Safranski C, Kaiser J, Trouilloud P, Hashemi P, Hu G, Sun J Z 2021 Nano Lett. 21 2040
Google Scholar
[116] Camsari K Y, Faria R, Sutton B M, Datta S 2017 Phys. Rev. X 7 031014
Google Scholar
[117] Camsari K Y, Sutton B M, Datta S 2019 Appl. Phys. Rev. 6 011305
Google Scholar
[118] Kaiser J, Datta S 2021 Appl. Phys. Lett. 119 150503
Google Scholar
[119] Liu Z, Amani M, Najmaei S, Xu Q, Zou X, Zhou W, Yu T, Qiu C, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z, Dubey M, Ajayan P M, Lou J 2014 Nat. Commun. 5 5246
Google Scholar
[120] Li Z, Lü Y, Ren L, Li J, Kong L, Zeng Y, Tao Q, Wu R, Ma H, Zhao B, Wang D, Dang W, Chen K, Liao L, Duan X, Duan X, Liu Y 2020 Nat. Commun. 11 1151
Google Scholar
-
图 2 原位应变施加方式 (a) 柔性衬底弯曲诱导的单轴应变[45]; (b) 微纳机电系统实现的单轴应变[51]; (c) 柔性衬底弯曲导致的双轴应变[53]; (d) 压电衬底形变导致的双轴应变[54]
Fig. 2. Strategies for inducing in-situ strain: (a) Uniaxial strain induced by bending the flexible substrate[45]; (b) uniaxial strain induced through a microelectromechanical system (MEMs)[51]; (c) biaxial strain caused by bending the flexible substrate[53]; (d) biaxial strain caused by the deformation of the piezoelectric substrate[54].
图 3 范德瓦耳斯磁性材料的应变调控 (a) 应变对Fe3GeTe2铁磁性能的调控[37]; (b) 应变辅助的磁化翻转[37]; (c) MnPSe3中奈尔矢量与应变方向的关系[75]; (d) 应变诱导CrSBr从反铁磁态到铁磁态的转变[40]; (e) 面内反铁磁态到铁磁态转变的示意图[40]
Fig. 3. Strain-modulated magnetism in vdW materials: (a) Strain-modulated ferromagnetic properties in Fe3GeTe2[37]; (b) strain-assisted magnetization reversal[37]; (c) relationship between the Néel vector and different strain directions in MnPSe3[75]; (d) strain-induced antiferromagnetic-to-ferromagnetic phase transition in CrSBr[40]; (e) diagram of in-plane antiferromagnetic-to-ferromagnetic phase transition[40].
图 4 范德瓦耳斯超导体的应变调控 (a) FeSe块体中应变诱导的电阻各向异性[87]; (b) 不同应变类型的示意图(εA1g是非对称破缺型应变, εB1g是破坏四重旋转对称性的应变)[88]; (c) FeSe块体中超导现象与应变的关系[87]; (d) FeSe薄片中向列相和超导相与应变的关系[88]
Fig. 4. Strain-modulated superconductivity in vdW materials: (a) Strain-induced nematic resistive anisotropy in FeSe bulk[87]; (b) schematics of different strain types (εA1g is non-symmetry-breaking strain and εB1g is the strain component that breaks the four-fold rotational symmetry.)[88]; (c) strain-dependent superconductivity in FeSe bulk[87]; (d) strain-dependent nematic and superconducting transition in FeSe thin flake[88].
图 5 范德瓦耳斯拓扑材料的应变调控 (a)—(c) MoS2中应变方向(依次为无应变、沿锯齿形方向应变和沿扶手椅方向应变)依赖的谷磁化和贝里曲率偶极子[92]; (d), (e) ZrTe5在负应变和正应变下的负纵向磁阻, 分别对应强拓扑绝缘相和弱拓扑绝缘相[36], 负磁阻在临界应变处最强, 表明无带隙的狄拉克半金属相; (f) TaSe3中强拓扑绝缘相、平庸半金属相和平庸绝缘相在角分辨光电子能谱中的费米面[80]; (g) TaSe3在不同应变下费米能级的光谱强度演变[80]
Fig. 5. Strain-modulated topological properties in vdW materials: Valley magnetization and Berry curvature dipole of MoS2 under zero strain (a), 0.55% strain along the zigzag direction (b) and 0.55% strain along the armchair direction (c), respectively[92]; negative longitudinal magnetoresistance of ZrTe5 for negative strains (d) and positive strains (e) measured relative to a critical strain, corresponding to the phases of the strong topological insulator and weak topological insulator, respectively[36]. The negative magnetoresistance is strongest at the critical strain, where ZrTe5 is a gapless Dirac semimetal; (f) measured Fermi surfaces of TaSe3 in the phases of strong topological insulator, trivial semimetal and trivial insulator, respectively[80]; (g) evolution of the spectral intensity at the Fermi level with different strain values in TaSe3 [80].
图 6 应变工程的器件应用 (a) 用于监测不同频率声音的SnS2应变传感器[106]; (b) 用于探测不同CH4气体浓度的黑磷LED传感器[39]; (c) 用于探测不同CO2气体浓度的黑磷LED传感器[39]; (d) CrSBr磁性隧道结中磁序的应变调控示意图[41]; (e) 磁序随静态压电电压的响应函数[41], 0表示稳定的反铁磁态, 1表示稳定的铁磁态; (f) 响应函数接近0.5时, 隧穿电流(上)和转换后的二进制序列(下)随时间的变化, 表明磁性层的磁序处于反铁磁态或铁磁态的概率相等[41]
Fig. 6. Device applications of strain engineering: (a) SnS2 based strain sensor for detecting sound with different frequencies[106]; sensor response characteristics of a black phosphorus LED (0.3%; tensile) at varying concentrations of CH4 pulses (b) and a black phosphorus LED (0.2%; compressive) at varying concentrations of CO2 pulses (c)[39]; (d) schematic of strain tuning between magnetic domains in CrSBr magnetic tunnel junction[41]; (e) response function of a magnetic domain as a function of static piezo voltage[41], a value of either 0 or 1 indicates a stable domain; (f) tunneling current (top) and converted binary sequence (bottom) over time when the response function is near 0.5, indicating the equal probability between antiferromagnetic and ferromagnetic phases.
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451
Google Scholar
[3] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[4] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703
Google Scholar
[5] Geim A K 2009 Science 324 1530
Google Scholar
[6] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[7] Ma H X, Xing Y H, Cui B Y, Han J, Wang B H, Zeng Z M 2022 Chin. Phys. B 31 108502
Google Scholar
[8] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193
Google Scholar
[9] Geim A K, Grigorieva I V 2013 Nature 499 419
Google Scholar
[10] Qian X, Liu J, Fu L, Li J 2014 Science 346 1344
Google Scholar
[11] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274
Google Scholar
[12] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270
Google Scholar
[13] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
Google Scholar
[14] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X, Cobden D H 2018 Nature 560 336
Google Scholar
[15] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895
Google Scholar
[16] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国 2022 71 048502
Google Scholar
Wu Y F, Zhu M Y, Zhao R J, Liu X J, Zhao Y C, Wei H X, Zhang J Y, Zheng X Q, Shen J X, Huang H, Wang S G 2022 Acta Phys. Sin. 71 048502
Google Scholar
[17] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[18] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
Google Scholar
[19] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, Duan X 2016 Nat. Rev. Mater. 1 16042
Google Scholar
[20] Burch K S, Mandrus D, Park J G 2018 Nature 56 3 47
[21] Deng S, Sumant A V, Berry V 2018 Nano Today 22 14
Google Scholar
[22] Miao F, Liang S J, Cheng B 2021 npj Quantum Mater. 6 59
Google Scholar
[23] Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678
Google Scholar
[24] Dai Z, Liu L, Zhang Z 2019 Adv. Mater. 31 1805417
Google Scholar
[25] Pandey M, Pandey C, Ahuja R, Kumar R 2023 Nano Energy 109 108278
Google Scholar
[26] Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S 2022 Chin. Phys. Lett. 39 127301
Google Scholar
[27] Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B 2013 Phys. Rev. B 88 121301
Google Scholar
[28] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平 2023 72 076301
Google Scholar
Sun T Y, Wu L, He X J, Jiang N, Zhou W Z, Ouyang F P 2023 Acta Phys. Sin. 72 076301
Google Scholar
[29] Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470
Google Scholar
[30] Yang S, Chen Y, Jiang C 2021 InfoMat 3 397
Google Scholar
[31] Chen C, Das P, Aytan E, Zhou W, Horowitz J, Satpati B, Balandin A A, Lake R K, Wei P 2020 ACS Appl. Mater. Interfaces 12 38744
Google Scholar
[32] Kim J M, Haque M F, Hsieh E Y, Nahid S M, Zarin I, Jeong K Y, So J P, Park H G, Nam S 2023 Adv. Mater. 35 2107362
Google Scholar
[33] Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y, Chen Y P 2023 Adv. Mater. 35 2205714
[34] Ren H, Xiang G 2023 Nanomaterials 13 2378
Google Scholar
[35] Wang G, Yang K, Ma Y, Liu L, Lu D, Zhou Y, Wu H 2023 Chin. Phys. Lett. 40 077301
Google Scholar
[36] Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C, Chu J H 2019 Sci. Adv. 5 eaav9771
Google Scholar
[37] Wang Y, Wang C, Liang S-J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S-W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533
Google Scholar
[38] Ghini M, Bristow M, Prentice J C A, Sutherland S, Sanna S, Haghighirad A A, Coldea A I 2021 Phys. Rev. B 103 205139
Google Scholar
[39] Kim H, Uddin S Z, Lien D H, Yeh M, Azar N S, Balendhran S, Kim T, Gupta N, Rho Y, Grigoropoulos C P, Crozier K B, Javey A 2021 Nature 596 232
Google Scholar
[40] Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J H, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256
Google Scholar
[41] Cenker J, Ovchinnikov D, Yang H, Chica D G, Zhu C, Cai J, Diederich G M, Liu Z, Zhu X, Roy X, Cao T, Daniels M W, Chu J H, Xiao D, Xu X 2023 arXiv: 2301.03759v1 [cond-mat. mes-hall]
[42] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544
Google Scholar
[43] Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G 2011 ACS Nano 5 3645
Google Scholar
[44] Wang L, Zihlmann S, Baumgartner A, Overbeck J, Watanabe K, Taniguchi T, Makk P, Schönenberger C 2019 Nano Lett. 19 4097
Google Scholar
[45] Wang L, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147
Google Scholar
[46] Goldsche M, Sonntag J, Khodkov T, Verbiest G J, Reichardt S, Neumann C, Ouaj T, Von den Driesch N, Buca D, Stampfer C 2018 Nano Lett. 18 1707
Google Scholar
[47] Cao K, Feng S, Han Y, Gao L, Ly T H, Xu Z, Lu Y 2020 Nat. Commun. 11 284
Google Scholar
[48] Nicholl R J T, Lavrik N V, Vlassiouk I, Srijanto B R, Bolotin K I 2017 Phys. Rev. Lett. 118 266101
Google Scholar
[49] Cui X, Dong W, Feng S, Wang G, Wang C, Wang S, Zhou Y, Qiu X, Liu L, Xu Z, Zhang Z 2023 Small 19 2301959
Google Scholar
[50] Roldán R, Castellanos-Gomez A, Cappelluti E, Guinea F 2015 J. Phys. Condens. Matter 27 313201
Google Scholar
[51] Hwangbo K, Rosenberg E, Cenker J, Jiang Q, Wen H, Xiao D, Chu J H, Xu X 2024 arXiv: 2308.08734v2 [cond-mat. str-el]
[52] Pérez Garza H H, Kievit E W, Schneider G F, Staufer U 2014 Nano Lett. 14 4107
Google Scholar
[53] Pasquier V, Scarfato A, Martinez-Castro J, Guipet A, Renner C 2023 Rev. Sci. Instrum. 94 013905
Google Scholar
[54] Hou W, Azizimanesh A, Sewaket A, Peña T, Watson C, Liu M, Askari H, Wu S M 2019 Nat. Nanotechnol. 14 668
Google Scholar
[55] Huang S, Zhang G, Fan F, Song C, Wang F, Xing Q, Wang C, Wu H, Yan H 2019 Nat. Commun. 10 2447
Google Scholar
[56] Ci W, Yang H, Xue W, Yang R, L B, Wang P, Li R-W, Xu X-H 2022 Nano Res. 15 7597
Google Scholar
[57] Lin Z, Peng Y, Wu B, Wang C, Luo Z, Yang J 2022 Chin. Phys. B 31 087506
Google Scholar
[58] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94
Google Scholar
[59] Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z 2018 Nat. Nanotechnol. 13 554
Google Scholar
[60] Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549
Google Scholar
[61] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544
Google Scholar
[62] Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406
Google Scholar
[63] Song T, Fei Z, Yankowitz M, Lin Z, Jiang Q, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J-H, Cobden D H, Dean C R, Xiao D, Xu X 2019 Nat. Mater. 18 1298
Google Scholar
[64] Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303
Google Scholar
[65] Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646
Google Scholar
[66] Sheng P, Wang B, Li R 2018 J. Semicond. 39 011006
Google Scholar
[67] Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K-M C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187
Google Scholar
[68] Šiškins M, Lee M, Mañas-Valero S, Coronado E, Blanter Y M, Van der Zant H S J, Steeneken P G 2020 Nat. Commun. 11 2698
Google Scholar
[69] Bukharaev A A, Zvezdin A K, Pyatakov A P, Fetisov Y K 2018 Phys. Usp. 61 1175
Google Scholar
[70] Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407
Google Scholar
[71] Webster L, Yan J A 2018 Phys. Rev. B 98 144411
Google Scholar
[72] Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587
Google Scholar
[73] Wadley P, Reimers S, Grzybowski M J, Andrews C, Wang M, Chauhan J S, Gallagher B L, Campion R P, Edmonds K W, Dhesi S S, Maccherozzi F, Novak V, Wunderlich J, Jungwirth T 2018 Nat. Nanotechnol. 13 362
Google Scholar
[74] Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229
Google Scholar
[75] Ni Z, Haglund A V, Wang H, Xu B, Bernhard C, Mandrus D G, Qian X, Mele E J, Kane C L, Wu L 2021 Nat. Nanotechnol. 16 782
Google Scholar
[76] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214
Google Scholar
[77] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218
Google Scholar
[78] Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y, Mackenzie A P 2014 Science 344 283
Google Scholar
[79] Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710
Google Scholar
[80] Lin C, Ochi M, Noguchi R, Kuroda K, Sakoda M, Nomura A, Tsubota M, Zhang P, Bareille C, Kurokawa K, Arai Y, Kawaguchi K, Tanaka H, Yaji K, Harasawa A, Hashimoto M, Lu D, Shin S, Arita R, Tanda S, Kondo T 2021 Nat. Mater. 20 1093
Google Scholar
[81] Zhu C S, Lei B, Sun Z L, Cui J H, Shi M Z, Zhuo W Z, Luo X G, Chen X H 2021 Phys. Rev. B 104 024509
Google Scholar
[82] Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001
Google Scholar
[83] Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, Davis J C S 2017 Science 357 75
Google Scholar
[84] Li J, Lei B, Zhao D, Nie L P, Song D W, Zheng L X, Li S J, Kang B L, Luo X G, Wu T, Chen X H 2020 Phys. Rev. X 10 011034
Google Scholar
[85] Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, Takahashi T 2017 Phys. Rev. B 95 224507
Google Scholar
[86] Nabeshima F, Kawai M, Ishikawa T, Shikama N, Maeda A 2018 Jpn. J. Appl. Phys. 57 120314
Google Scholar
[87] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P, Hicks C W 2021 Phys. Rev. X 11 021038
Google Scholar
[88] Cheng Z, Lei B, Luo X, Ying J, Wang Z, Wu T, Chen X 2021 Chin. Phys. B 30 097403
Google Scholar
[89] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
Google Scholar
[90] Xiao D, Chang MC, Niu Q 2010 Rev. Mod. Phys. 82 1959
Google Scholar
[91] You J S, Fang S, Xu S Y, Kaxiras E, Low T 2018 Phys. Rev. B 98 121109
Google Scholar
[92] Son J, Kim K H, Ahn Y H, Lee H W, Lee J 2019 Phys. Rev. Lett. 123 036806
Google Scholar
[93] Fu L, Kane C L 2007 Phys. Rev. B 76 045302
Google Scholar
[94] Murakami S, Kuga S I 2008 Phys. Rev. B 78 165313
Google Scholar
[95] Zhao C, Hu M, Qin J, Xia B, Liu C, Wang S, Guan D, Li Y, Zheng H, Liu J, Jia J 2020 Phys. Rev. Lett. 125 046801
Google Scholar
[96] Zhang P, Noguchi R, Kuroda K, Lin C, Kawaguchi K, Yaji K, Harasawa A, Lippmaa M, Nie S, Weng H, Kandyba V, Giampietri A, Barinov A, Li Q, Gu G D, Shin S, Kondo T 2021 Nat. Commun. 12 406
Google Scholar
[97] Flötotto D, Bai Y, Chan Y H, Chen P, Wang X, Rossi P, Xu C Z, Zhang C, Hlevyack J A, Denlinger J D, Hong H, Chou M Y, Mittemeijer E J, Eckstein J N, Chiang T C 2018 Nano Lett. 18 5628
Google Scholar
[98] Liu J, Zhou Y, Yepez Rodriguez S, Delmont M A, Welser R A, Ho T, Sirica N, McClure K, Vilmercati P, Ziller J W, Mannella N, Sanchez-Yamagishi J D, Pettes M T, Wu R, Jauregui L A 2024 Nat. Commun. 15 332
Google Scholar
[99] Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z 2013 Adv. Mater. 25 5997
Google Scholar
[100] Chortos A, Liu J, Bao Z 2016 Nat. Mater. 15 937
Google Scholar
[101] Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X 2020 Adv. Mater. 32 1902062
Google Scholar
[102] Qi J, Lan Y W, Stieg A Z, Chen J H, Zhong Y L, Li L J, Chen C D, Zhang Y, Wang K L 2015 Nat. Commun. 6 7430
Google Scholar
[103] Zhao J, Wang G, Yang R, Lu X, Cheng M, He C, Xie G, Meng J, Shi D, Zhang G 2015 ACS Nano 9 1622
Google Scholar
[104] Feng W, Zheng W, Gao F, Chen X, Liu G, Hasan T, Cao W, Hu P 2016 Chem. Mater. 28 4278
Google Scholar
[105] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097
Google Scholar
[106] Yan W, Fuh H R, Lü Y, Chen K Q, Tsai T Y, Wu Y R, Shieh T H, Hung K M, Li J, Zhang D, Ó Coileáin C, Arora S K, Wang Z, Jiang Z, Chang C R, Wu H C 2021 Nat. Commun. 12 2018
Google Scholar
[107] Grabovskij G J, Peichl T, Lisenfeld J, Weiss G, Ustinov A V 2012 Science 338 232
Google Scholar
[108] Sun Y, Lin T, Lei N, Chen X, Kang W, Zhao Z, Wei D, Chen C, Pang S, Hu L, Yang L, Dong E, Zhao L, Liu L, Yuan Z, Ullrich A, Back C H, Zhang J, Pan D, Zhao J, Feng M, Fert A, Zhao W 2023 Nat. Commun. 14 3434
Google Scholar
[109] Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378
Google Scholar
[110] D’Souza N, Biswas A, Ahmad H, Fashami M S, Al-Rashid M M, Sampath V, Bhattacharya D, Abeed M A, Atulasimha J, Bandyopadhyay S 2018 Nanotechnology 29 442001
Google Scholar
[111] Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z 2019 Nat. Nanotechnol. 14 131
Google Scholar
[112] Gusev N S, Sadovnikov A V, Nikitov S A, Sapozhnikov M V, Udalov O G 2020 Phys. Rev. Lett. 124 157202
Google Scholar
[113] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
Google Scholar
[114] Borders W A, Pervaiz A Z, Fukami S, Camsari K Y, Ohno H, Datta S 2019 Nature 573 390
Google Scholar
[115] Safranski C, Kaiser J, Trouilloud P, Hashemi P, Hu G, Sun J Z 2021 Nano Lett. 21 2040
Google Scholar
[116] Camsari K Y, Faria R, Sutton B M, Datta S 2017 Phys. Rev. X 7 031014
Google Scholar
[117] Camsari K Y, Sutton B M, Datta S 2019 Appl. Phys. Rev. 6 011305
Google Scholar
[118] Kaiser J, Datta S 2021 Appl. Phys. Lett. 119 150503
Google Scholar
[119] Liu Z, Amani M, Najmaei S, Xu Q, Zou X, Zhou W, Yu T, Qiu C, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z, Dubey M, Ajayan P M, Lou J 2014 Nat. Commun. 5 5246
Google Scholar
[120] Li Z, Lü Y, Ren L, Li J, Kong L, Zeng Y, Tao Q, Wu R, Ma H, Zhao B, Wang D, Dang W, Chen K, Liao L, Duan X, Duan X, Liu Y 2020 Nat. Commun. 11 1151
Google Scholar
计量
- 文章访问数: 2639
- PDF下载量: 130
- 被引次数: 0