搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用

张问博 刘少承 廖亮 魏文崟 李乐天 王亮 颜宁 钱金平 臧庆

引用本文:
Citation:

基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用

张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆

Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST

Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing
PDF
HTML
导出引用
  • EAST限制器探针安装在低场侧限制器, 在环向上共有两个阵列, 可以同时工作在悬浮电位测量、离子饱和流测量和扫描单探针模式. 当朗缪尔静电探针运行在离子饱和流测量模式时, 需要为其提供稳定的偏压. 本文采用大容量电容器为探针提供偏压, 相比于其他磁约束聚变装置上使用的9 V干电池组, 大容量电容器具有电压设置灵活、易于维护和环保等优点. 为此, 研发和测试了整套超级电容器的充放电控制电路. 本文还基于Python语言开发了超级电容器充放电控制电路的控制软件, 通过该软件可以实现对电路的远程控制和自动控制. 经实验测试, 电容器充放电控制电路可以在长脉冲放电条件下为探针输出稳定的偏压, 适用于磁约束聚变的复杂电磁环境. 通过将超级电容器充放电控制电路应用于EAST限制器探针诊断, 测量了2.45 GHz和4.6 GHz两种低杂波加热条件下刮削层等离子体离子饱和流、悬浮电位、电子温度和密度等特征参数的三维分布, 发现2.45 GHz低杂波加热时刮削层电子密度较高, 而双波协同加热时刮削层电子密度最高. 这一系列测试与物理实验充分验证了超级电容器充放电控制电路的可靠性和稳定性.
    The EAST limiter probe is installed on the front surface of guard limiter, which consists of two columns and can operate in floating potential mode, ion saturation current mode, and swept single-probe mode simultaneously. When Langmuir probe operates in the ion saturation current mode, it requires a stable biasing voltage. To meet this requirement, a large capacitor is used to provide a biasing voltage for the probe. Comparing with the 9 V dry batteries that are commonly used in magnetic confinement fusion devices, employing a large capacitor offers advantages such as flexible voltage adjustment, easy maintenance, and environmental friendliness. Therefore, we have designed and tested a complete set of supercapacitor charge-discharge control circuitry. In this work, a control software is developed for the supercapacitor charge-discharge control circuitry based on the Python language to enable the remote and automatic controlling of the circuitry operation. As demonstrated in experiments, the capacitor charge-discharge control circuitry can supply stable biasing voltage output for the probe under long-pulse discharge, and it is workable in complex electromagnetic environment of magnetic confinement fusion device. By implementing the supercapacitor charge-discharge control circuitry in EAST limiter probe diagnostics, the three-dimensional distributions of plasma parameters are measured, such as ion saturation current, floating potential, electron temperature, and plasma density. In a lower hybrid wave (LHW) heating experiment, the 2.45 GHz LHW is found to generate larger electron density than the 4.6 GHz LHW, and the largest electron density appears when both the 2.45 GHz and 4.6 GHz LHWs are turned on simultaneously. These experimental results confirm that supercapacitor charge-discharge control circuitry can be operated reliably and stably.
      通信作者: 刘少承, lshch@ipp.ac.cn ; 王亮, lwang@ipp.ac.cn
    • 基金项目: 国家磁约束聚变能重点研发专项(批准号: 2019YFE03040000)、国家自然科学基金(批准号: 12275310, 12275312)、中国科学院等离子体物理研究所基金(批准号: DSJJ-2021-01)、中国科学院合肥大科学中心协同创新基金(批准号: 2021HSC-CIP019)和中国科学院合肥大科学中心高端用户基金(批准号: 2021HSC-UE014, 2021HSC-UE012)资助的课题.
      Corresponding author: Liu Shao-Cheng, lshch@ipp.ac.cn ; Wang Liang, lwang@ipp.ac.cn
    • Funds: Project supported by the National MCF Energy R&D Program of China (Grant No. 2019YFE03040000), the National Natural Science Foundation of China (Grant Nos. 12275310, 12275312), the Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (Grant No. DSJJ-2021-01), the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2021HSC-CIP019), and the Users with Excellence Program of Hefei Science Center, CAS (Grant Nos. 2021HSC-UE014, 2021HSC-UE012).
    [1]

    Johnson E O, Malter L 1950 Phys. Rev. 80 58Google Scholar

    [2]

    Perkins R J, Hosea J C, Taylor G, Bertelli N, Kramer G J, Luo Z P, Qin C M, Wang L, Xu J C, Zhang X J 2019 Plasma. Phys. Contr. F 61 045011Google Scholar

    [3]

    Wang F M, Gan K F, Gong X Z, Team E 2013 Plasma Sci. Technol. 15 225Google Scholar

    [4]

    Yan L W, Hong W Y, Qian J, Luo C W, Pan L 2005 Rev. Sci. Instrum. 76 093506Google Scholar

    [5]

    Ming T F, Zhang W, Chang J F, Wang J, Xu G S, Ding S, Yan N, Gao X, Guo H Y 2009 Fusion. Eng. Des. 84 57Google Scholar

    [6]

    Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W, Guo H Y 2016 Rev. Sci. Instrum. 87 083504Google Scholar

    [7]

    Yang J, Chen Z P, Liu H, Wang T, Zhu M C, Song Z, Wang Z, Zhuang G, Ding Y, Team J T 2019 Plasma Sci. Technol. 21 105105Google Scholar

    [8]

    Labombard B, Lipschultz B 1986 Rev. Sci. Instrum. 57 2415Google Scholar

    [9]

    Asakura N, Shimizu K, Hosogane N, Itami K, Tsuji S, Shimada M 1995 Nucl. Fusion 35 381Google Scholar

    [10]

    Buchenauer D, Hsu W L, Smith J P, Hill D N 1990 Rev. Sci. Instrum. 61 2873Google Scholar

    [11]

    Liu S C, Liao L, Wei W Y, Liang Y, Xu J C, Cao L, Li S, Li L, Meng L Y, Qian J P, Zang Q, Wang L, Xu S, Cai J, Yan N, Ma Q, Zhao N, Chen R, Hu G H, Liu J B, Liu X J, Ming T F, Li L T, Sun Y, Zeng L, Li G Q, Yao D M, Xu G S, Gong X Z, Gao X, EAST Team 2022 Fusion. Eng. Des. 180 113162Google Scholar

    [12]

    Demidov V I, Ratynskaia S V, Rypdal K 2002 Rev. Sci. Instrum. 73 3409Google Scholar

    [13]

    李永春, 丁伯江, 李妙辉, 王茂, 刘亮, 吴陈斌, 阎广厚 2022 核电子学与探测技术 42 116Google Scholar

    Li Y C, Ding B J, Li M H, Wang M, Liu L, Wu C B, Yan G H 2022 Nucl. Electron. Detect. Technol. 42 116Google Scholar

    [14]

    Back R, Bengtson R D 1997 Rev. Sci. Instrum. 68 377Google Scholar

    [15]

    Yan N, Naulin V, Xu G S, Rasmussen J J, Wang H Q, Liu S C, Wang L, Liang Y, Nielsen A H, Madsen J, Guo H Y, Wan B N 2014 Plasma Phys. Contr. F 56 095023Google Scholar

    [16]

    Myra J R, Lau C, Van Compernolle B, Vincena S, Wright J C 2020 Phys. Plasmas 27 072506Google Scholar

    [17]

    Xu G S, Wan B N, Zhang W 2006 Rev. Sci. Instrum. 77 063505Google Scholar

    [18]

    Myra J R 2021 J. Plasm. Phys. 87 1Google Scholar

    [19]

    Liu P, Xu G S, Wang H Q, Jiang M, Wang L, Zhang W, Liu S C, Yan N, Ding S Y 2013 Plasma Sci. Technol. 15 619Google Scholar

    [20]

    Colas L, Urbanczyk G, Goniche M, Hillairet J, Bernard J M, Bourdelle C, Fedorczak N, Guillemaut C, Helou W, Bobkov V, Ochoukov R, Jacquet P, Lerche E, Zhang X, Qin C, Klepper C C, Lau C, Van Compernolle B, Wukitch S J, Lin Y, Ono M, Contributors J, Team A U, Team E, Team W, Ios I 2022 Nucl. Fusion 62 016014Google Scholar

    [21]

    Ochoukov R, Whyte D G, Brunner D, D'Ippolito D A, LaBombard B, Lipschultz B, Myra J R, Terry J L, Wukitch S J 2014 Aip. Conf. Proc. 1580 267Google Scholar

  • 图 1  超级电容器充放电控制电路设计图

    Fig. 1.  Supercapacitor charge-discharge control circuitry.

    图 2  电容充放电控制电路的自动控制流程图

    Fig. 2.  Flow diagram of the automatic control mode.

    图 3  电容充放电控制软件的设置界面

    Fig. 3.  Setting interface of the capacitor charge-discharge control software.

    图 4  电容充放电控制软件的运行界面

    Fig. 4.  Operating interface of capacitor charge-discharge control software.

    图 5  电容充放电控制软件的电源设置界面

    Fig. 5.  Power supply setting interface of capacitor charge-discharge control software.

    图 6  组装完成的超级电容器控制电路实物图

    Fig. 6.  Photo of the assembled supercapacitor control circuit.

    图 7  电容器的初始电压

    Fig. 7.  Initial voltage of the capacitors.

    图 8  电容器充电曲线, 其中通道1—32, 使用1台直流电源同时为4台电容器充电; 通道33—35, 使用1台直流电源为3台电容器充电

    Fig. 8.  Charge curve of capacitor. Note that one power supply is used to charge four capacitors for channel 1–32, and one power supply is used to charge three capacitors for channel 33–35.

    图 9  电阻放电的界面

    Fig. 9.  Interface of resistance discharge.

    图 10  电容自然漏电曲线图

    Fig. 10.  Natural leakage curve of capacitor.

    图 11  EAST长脉冲放电过程中(a)等离子体电流、探针 (b)偏压和 (c)离子饱和流随时间演化

    Fig. 11.  Temporal evolution of (a) plasma current, (b) biasing voltage and (c) ion saturation current of limiter probe during a long-pulse discharge on EAST.

    图 12  限制器探针的离子饱和流测量电路

    Fig. 12.  Electrical circuit for ion saturation current measurement of limiter probe.

    图 13  #106532次放电的限制器探针工作状态分布图

    Fig. 13.  Circuit setup of limiter probe array for discharge #106532.

    图 14  #106532次放电低杂波注入功率与限制器探针测量参数随时间演化 (a) 2.45 GHz (黑色)与4.6 GHz (红色)低杂波注入功率, 超声分子束注入信号(橘黄色); (b)限制器探针左侧离子饱和流分布; (c)右侧离子饱和流分布; (d)左侧悬浮电位分布; (e)右侧悬浮电位分布

    Fig. 14.  Temporal evolutions of LHW power and SOL parameters measured by limiter probe are presented as follows: (a) LHW heating power of 2.45 GHz antenna (black) and 4.6 GHz antenna (red), along with the SMBI signal (orange); (b) distribution of ion saturation current of the limiter probe on the left side; (c) distribution of ion saturation current on the right side; (d) distribution of floating potential on the left side; (e) distribution of floating potential on the right side.

    图 15  #106532次放电低杂波注入功率与限制器探针测量参数随时间演化 (a) 2.45 GHz (黑色)与4.6 GHz (红色)低杂波注入功率, 超声分子束注入信号(橘黄色); 限制器探针测量的(b)电子温度、(c)电子密度、(d)粒子通量和(e)热通量, 其中蓝色线条代表第14号探针(位于限制器左侧阵列中部), 红色线条代表第40号探针(位于限制器右侧阵列中部)

    Fig. 15.  Temporal evolution of LHW power and SOL parameters measured by limiter probe are presented as follows: (a) LHW power of 2.45 GHz antenna (black) and 4.6 GHz antenna (red), along with the SMBI signal (orange); (b) electron temperature; (c) electron density; (d) particle flow; (e) heat flow. The blue lines represent channel 14 (in the left array of the limiter, near the midplane), and the red lines represent channel 40 (in the right array of the limiter, near the midplane).

    表 1  超级电容器充放电电路4种模式下继电器开关的状态组合

    Table 1.  State combinations of relay switches in four modes of supercapacitor charging and discharging circuits.

    电路模式S1S2S3S4S5S6
    充电闭合闭合闭合断开断开断开
    工作输出断开断开断开断开闭合闭合
    电容放电断开断开闭合闭合断开断开
    关断断开断开断开断开断开断开
    下载: 导出CSV
    Baidu
  • [1]

    Johnson E O, Malter L 1950 Phys. Rev. 80 58Google Scholar

    [2]

    Perkins R J, Hosea J C, Taylor G, Bertelli N, Kramer G J, Luo Z P, Qin C M, Wang L, Xu J C, Zhang X J 2019 Plasma. Phys. Contr. F 61 045011Google Scholar

    [3]

    Wang F M, Gan K F, Gong X Z, Team E 2013 Plasma Sci. Technol. 15 225Google Scholar

    [4]

    Yan L W, Hong W Y, Qian J, Luo C W, Pan L 2005 Rev. Sci. Instrum. 76 093506Google Scholar

    [5]

    Ming T F, Zhang W, Chang J F, Wang J, Xu G S, Ding S, Yan N, Gao X, Guo H Y 2009 Fusion. Eng. Des. 84 57Google Scholar

    [6]

    Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W, Guo H Y 2016 Rev. Sci. Instrum. 87 083504Google Scholar

    [7]

    Yang J, Chen Z P, Liu H, Wang T, Zhu M C, Song Z, Wang Z, Zhuang G, Ding Y, Team J T 2019 Plasma Sci. Technol. 21 105105Google Scholar

    [8]

    Labombard B, Lipschultz B 1986 Rev. Sci. Instrum. 57 2415Google Scholar

    [9]

    Asakura N, Shimizu K, Hosogane N, Itami K, Tsuji S, Shimada M 1995 Nucl. Fusion 35 381Google Scholar

    [10]

    Buchenauer D, Hsu W L, Smith J P, Hill D N 1990 Rev. Sci. Instrum. 61 2873Google Scholar

    [11]

    Liu S C, Liao L, Wei W Y, Liang Y, Xu J C, Cao L, Li S, Li L, Meng L Y, Qian J P, Zang Q, Wang L, Xu S, Cai J, Yan N, Ma Q, Zhao N, Chen R, Hu G H, Liu J B, Liu X J, Ming T F, Li L T, Sun Y, Zeng L, Li G Q, Yao D M, Xu G S, Gong X Z, Gao X, EAST Team 2022 Fusion. Eng. Des. 180 113162Google Scholar

    [12]

    Demidov V I, Ratynskaia S V, Rypdal K 2002 Rev. Sci. Instrum. 73 3409Google Scholar

    [13]

    李永春, 丁伯江, 李妙辉, 王茂, 刘亮, 吴陈斌, 阎广厚 2022 核电子学与探测技术 42 116Google Scholar

    Li Y C, Ding B J, Li M H, Wang M, Liu L, Wu C B, Yan G H 2022 Nucl. Electron. Detect. Technol. 42 116Google Scholar

    [14]

    Back R, Bengtson R D 1997 Rev. Sci. Instrum. 68 377Google Scholar

    [15]

    Yan N, Naulin V, Xu G S, Rasmussen J J, Wang H Q, Liu S C, Wang L, Liang Y, Nielsen A H, Madsen J, Guo H Y, Wan B N 2014 Plasma Phys. Contr. F 56 095023Google Scholar

    [16]

    Myra J R, Lau C, Van Compernolle B, Vincena S, Wright J C 2020 Phys. Plasmas 27 072506Google Scholar

    [17]

    Xu G S, Wan B N, Zhang W 2006 Rev. Sci. Instrum. 77 063505Google Scholar

    [18]

    Myra J R 2021 J. Plasm. Phys. 87 1Google Scholar

    [19]

    Liu P, Xu G S, Wang H Q, Jiang M, Wang L, Zhang W, Liu S C, Yan N, Ding S Y 2013 Plasma Sci. Technol. 15 619Google Scholar

    [20]

    Colas L, Urbanczyk G, Goniche M, Hillairet J, Bernard J M, Bourdelle C, Fedorczak N, Guillemaut C, Helou W, Bobkov V, Ochoukov R, Jacquet P, Lerche E, Zhang X, Qin C, Klepper C C, Lau C, Van Compernolle B, Wukitch S J, Lin Y, Ono M, Contributors J, Team A U, Team E, Team W, Ios I 2022 Nucl. Fusion 62 016014Google Scholar

    [21]

    Ochoukov R, Whyte D G, Brunner D, D'Ippolito D A, LaBombard B, Lipschultz B, Myra J R, Terry J L, Wukitch S J 2014 Aip. Conf. Proc. 1580 267Google Scholar

  • [1] 孙有文, 仇志勇, 万宝年. 磁约束燃烧等离子体物理的现状与展望.  , 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响.  , 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [5] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断.  , 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [6] 叶安娜, 张晓华, 杨朝晖. 基于对苯二酚/碳纳米管阵列氧化还原增强固态超级电容器的研究.  , 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [7] 张鑫, 陈星, 白天, 游兴艳, 赵鑫, 刘向阳, 叶美丹. 柔性纤维状超级电容器的研究进展.  , 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [8] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件.  , 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [9] 巫梦丹, 周胜林, 叶安娜, 王敏, 张晓华, 杨朝晖. 基于中性水凝胶/取向碳纳米管阵列高电压柔性固态超级电容器.  , 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [10] 朱畦, 袁协涛, 诸翊豪, 张晓华, 杨朝晖. 基于收缩高密度碳纳米管阵列的柔性固态超级电容器.  , 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [11] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究.  , 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [12] 张诚, 邓明森, 蔡绍洪. 基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极.  , 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [13] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术.  , 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [14] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [15] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响.  , 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [16] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [17] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究.  , 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [20] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究.  , 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
计量
  • 文章访问数:  1830
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-25
  • 修回日期:  2023-12-06
  • 上网日期:  2023-12-22
  • 刊出日期:  2024-03-20

/

返回文章
返回
Baidu
map