搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字型太赫兹带通滤波器的逆向设计及优化

居学尉 张林烽 黄峰 朱国锋 李淑锦 陈燕青 王嘉勋 钟舜聪 陈盈 王向峰

引用本文:
Citation:

数字型太赫兹带通滤波器的逆向设计及优化

居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰

Reverse design and optimization of digital terahertz bandpass filters

Ju Xue-Wei, Zhang Lin-Feng, Huang Feng, Zhu Guo-Feng, Li Shu-Jin, Chen Yan-Qing, Wang Jia-Xun, Zhong Shun-Cong, Chen Ying, Wang Xiang-Feng
PDF
HTML
导出引用
  • 针对高性能太赫兹功能器件的规范化设计需求, 本文将智能逆向设计方法应用于太赫兹带通滤波器的设计与优化中. 建立与数字空间映射的亚波长超表面等效模型, 从设定器件的目标功能和约束条件出发, 利用智能算法探索整个解空间中的全部可能结构, 迭代寻优至最优结构图案. 本文利用搭建的逆向设计框架设计了中心频率为0.51 THz、带宽为41.5 GHz、插入损耗为–0.1071 dB的太赫兹带通滤波器. 与传统的人工正向设计相比, 逆向设计方法可解构出窄带、低插入损耗、带外抑制强、极化稳定性强的带通滤波器.
    In this paper, an ingenious reverse design method is applied to the design and optimization of terahertz bandpass filters in order to achieve standardized design of high-performance terahertz functional devices. An equivalent model of subwavelength metasurface mapped to digital space is established. Based on ideal objective functions and constraints, intelligent algorithms begin a bold journey to explore the vast potential structure in the solution space. Through iterative refinement, the algorithm reveals optimal structural patterns, unlocking areas of unparalleled performance. The direct binary search (DBS) algorithm and the binary particle swarm optimization (BPSO) algorithm are compared in optimization process. When using the DBS algorithm to optimize the design area, it takes a long time to poll the logic states of all pixel units point by point, and it is easy to get stuck in the local optimal value. However, BPSO algorithm has stronger global search capabilities, faster convergence speed, and higher accuracy. Through a comprehensive comparison of the device performance optimized by the two algorithms, the solution optimized by BPSO algorithm has better out-of-band suppression performance and a narrower full width at half peak, but slightly lower transmittance at the center frequency. The bandpass filter has a center frequency of 0.51 THz, a bandwidth of 41.5 GHz, and an insertion loss of -0.1071 dB. When considering computational efficiency, DBS algorithm lags behind, the simulation time is 11550 s, while BPSO algorithm only needs 9750 s. Compared with the traditional forward design, the reverse design method can achieve the narrower band, lower insertion loss, better out-of-band suppression and polarization stability. The fine structural changes of the optimal results have a significant influence on spectral performance, demonstrating the superiority and uniqueness of reverse design. This technology contributes to the design and optimization of high-performance and novel functional devices.
      通信作者: 黄峰, huangf@fzu.edu.cn ; 陈盈, chenying26@fzu.edu.cn ; 王向峰, xfwang@fzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52275096)、福建省自然科学基金(批准号: 2023J05096, 2023J01055)、福建省太赫兹功能器件与智能传感重点实验室(福州大学)开放基金(批准号: FPKLTFDIS202304)、CAD/CAM福建省高校工程研究中心开放基金(批准号: K202203)、智能配电网装备福建省高校工程研究中心开放基金(批准号: KFRC202203)、福建省教育厅中青年教师教育科研项目(批准号: JAT220032)、福州大学科研启动项目(批准号: XRC-22073)和教育部产学合作协同育人项目(批准号: 220804090295412)资助的课题.
      Corresponding author: Huang Feng, huangf@fzu.edu.cn ; Chen Ying, chenying26@fzu.edu.cn ; Wang Xiang-Feng, xfwang@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52275096), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2023J05096, 2023J01055), the Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing (Fuzhou University), China (Grant No. FPKLTFDIS202304), the Engineering Research Center for CAD/CAM of Fujian Universities, China (Grant No. K202203), the Engineering Research Center of Smart Distribution Grid Equipment, Fujian Province University, China (Grant No. KFRC202203), the Education and Scientific Research Foundation for Young Teachers in Fujian Province, China (Grant No. JAT220032), the Research Initiation Project for Fuzhou University, China (Grant No. XRC-22073), and the Collaborative Education Project for Industry and University Cooperation of the Ministry of Education, China (Grant No. 220804090295412).
    [1]

    Yang X, Zhao X, Yang K, Liu Y, Fu W, Luo Y. Biomedical applications of terahertz spectroscopy and imaging 2016 Trends Biotechnol. 34 810Google Scholar

    [2]

    Pengnoo M, Barros M T, Wuttisittikulkij L, Butler B, Davy A, Balasubramaniam S 2020 IEEE Access 8 114580Google Scholar

    [3]

    Kumar A, Gupta M, Pitchappa P, Wang N, Szriftgiser P, Ducournau G, Singh R 2022 Nat. Commun. 13 5404Google Scholar

    [4]

    Lee E S, Jeon T I. 2012 Opt. Express 20 29605Google Scholar

    [5]

    Savel’ev S, Rakhmanov A L, Nori F 2005 Phys. Rev. Lett. 94 157004Google Scholar

    [6]

    Lin Y, Yao H, Ju X, Chen Y, Zhong S, Wang X 2017 Opt. Express 25 25125Google Scholar

    [7]

    Gao T, Huang F, Chen Y, Zhu W, Ju X 2020 Appl. Sci. 10 5030Google Scholar

    [8]

    Hu F, Fan Y, Zhang X, Jiang W, Chen Y, Li P, Yin X, Zhang W 2018 Opt. Lett. 43 17Google Scholar

    [9]

    洪鹏, 胡珑夏雨, 周子昕, 秦浩然, 陈佳乐, 范烨, 殷同宇, 寇君龙, 陆延青 2023 光子学报 52 0623001Google Scholar

    Hong P, Hu L X Y, Zhou Z X, Qin H R, Chen J L, Fan Y, Yin T Y, Kou J L, Lu Y Q 2023 Acta Photonnica Sin. 52 0623001Google Scholar

    [10]

    常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波 2014 63 087804Google Scholar

    Chang H W, Ma H, Zhang J Q, Zhang Z Y, Xu Z, Wang J F, Qu S B 2014 Acta Phys. Sin. 63 087804Google Scholar

    [11]

    Sui S, Ma H, Wang J, Pang Y, Feng M, Xu Z, Qu S 2018 J. Phys. D 51 065603Google Scholar

    [12]

    Zhu R, Wang J, Sui S, Meng Y, Qiu T, Jia Y, Wang X, Han Y, Feng M, Zheng L, Qu S 2020 Front. Phys. 8 231Google Scholar

    [13]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar

    [14]

    Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326Google Scholar

    [15]

    Ma H, Kim J S, Choe J H, Park Q H 2023 Nanophotonics 12 2415Google Scholar

    [16]

    Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar

    [17]

    Wang Y Z, Zeng Q L, Wang J Z, Li Y, Fang D N 2022 Comput. Methods Appl. Mech. Eng. 401 115571Google Scholar

    [18]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar

    [19]

    Chang W J, Ren X S, Ao Y Q, Lu L H, Cheng M F, Deng L, Liu D M, Zhang M M 2018 Opt. Express 26 24135Google Scholar

    [20]

    Fallahi A, Mishrikey M, Hafner C, Vahldieck R 2008 IEEE Trans. Antennas Propag. 56 1340Google Scholar

    [21]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099Google Scholar

    [22]

    Zhu G Y, Ju X W, Zhang W B 2018 Int. J. Prod. Res. 56 4017Google Scholar

    [23]

    Hajian M, Ranjbar A M, Amraee T, Mozafari B 2011 Int. J. Electr. Power Energy Syst. 33 28Google Scholar

    [24]

    Ju X W, Hu Z Q, Huang F, Wu H B, Belyanin A, Kono J, Wang X F 2021 Opt. Express 29 9261Google Scholar

  • 图 1  (a)传统的十字型FSS; (b)数字型THz BPFs中像素点分布和1/8对称结构示意图(红三角形虚线框所示)

    Fig. 1.  (a) A traditional cross-type FSS; (b) schematic diagram of the pixel distribution and 1/8 symmetrical unit structure surrounded by red triangle in a digital THz BPFs.

    图 2  (a)理想性能的目标函数; (b)逆向设计方法流程图

    Fig. 2.  (a) Ideal performance indicators; (b) the flow chart of reverse design method.

    图 3  DBS和BPSO两种算法优化后的单元结构和相应透射率曲线

    Fig. 3.  Unit structure and corresponding transmittance curve optimized by DBS and BPSO algorithms, respectively.

    图 4  (a) DBS和(b) BPSO两种算法在优化过程中FOM值随迭代次数的变化

    Fig. 4.  Variation curve of FOM value versus iteration number in the optimization process of (a) DBS and (b) BPSO algorithms, respectively.

    图 5  (a) BPSO算法在迭代寻优过程中不同FOM值对应的透射率曲线; (b) BPSO算法设计不同中心频率处THz BPFs的透射率曲线

    Fig. 5.  (a) Transmittance curves corresponding to different FOM values in optimization process of BPSO algorithm; (b) transmittance curves of THz BPFs at different center frequencies designed by BPSO algorithm.

    图 6  逆向设计和传统设计优化后的单元结构及其透射率曲线

    Fig. 6.  Unit structure and its transmittance curve optimized by reverse design and traditional design.

    图 7  (a)—(d)结构简化过程; (e)—(h)相应的透射率光谱

    Fig. 7.  (a)–(d) Process of structural simplification; (e)–(h) corresponding transmittance spectra.

    Baidu
  • [1]

    Yang X, Zhao X, Yang K, Liu Y, Fu W, Luo Y. Biomedical applications of terahertz spectroscopy and imaging 2016 Trends Biotechnol. 34 810Google Scholar

    [2]

    Pengnoo M, Barros M T, Wuttisittikulkij L, Butler B, Davy A, Balasubramaniam S 2020 IEEE Access 8 114580Google Scholar

    [3]

    Kumar A, Gupta M, Pitchappa P, Wang N, Szriftgiser P, Ducournau G, Singh R 2022 Nat. Commun. 13 5404Google Scholar

    [4]

    Lee E S, Jeon T I. 2012 Opt. Express 20 29605Google Scholar

    [5]

    Savel’ev S, Rakhmanov A L, Nori F 2005 Phys. Rev. Lett. 94 157004Google Scholar

    [6]

    Lin Y, Yao H, Ju X, Chen Y, Zhong S, Wang X 2017 Opt. Express 25 25125Google Scholar

    [7]

    Gao T, Huang F, Chen Y, Zhu W, Ju X 2020 Appl. Sci. 10 5030Google Scholar

    [8]

    Hu F, Fan Y, Zhang X, Jiang W, Chen Y, Li P, Yin X, Zhang W 2018 Opt. Lett. 43 17Google Scholar

    [9]

    洪鹏, 胡珑夏雨, 周子昕, 秦浩然, 陈佳乐, 范烨, 殷同宇, 寇君龙, 陆延青 2023 光子学报 52 0623001Google Scholar

    Hong P, Hu L X Y, Zhou Z X, Qin H R, Chen J L, Fan Y, Yin T Y, Kou J L, Lu Y Q 2023 Acta Photonnica Sin. 52 0623001Google Scholar

    [10]

    常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波 2014 63 087804Google Scholar

    Chang H W, Ma H, Zhang J Q, Zhang Z Y, Xu Z, Wang J F, Qu S B 2014 Acta Phys. Sin. 63 087804Google Scholar

    [11]

    Sui S, Ma H, Wang J, Pang Y, Feng M, Xu Z, Qu S 2018 J. Phys. D 51 065603Google Scholar

    [12]

    Zhu R, Wang J, Sui S, Meng Y, Qiu T, Jia Y, Wang X, Han Y, Feng M, Zheng L, Qu S 2020 Front. Phys. 8 231Google Scholar

    [13]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar

    [14]

    Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326Google Scholar

    [15]

    Ma H, Kim J S, Choe J H, Park Q H 2023 Nanophotonics 12 2415Google Scholar

    [16]

    Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar

    [17]

    Wang Y Z, Zeng Q L, Wang J Z, Li Y, Fang D N 2022 Comput. Methods Appl. Mech. Eng. 401 115571Google Scholar

    [18]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar

    [19]

    Chang W J, Ren X S, Ao Y Q, Lu L H, Cheng M F, Deng L, Liu D M, Zhang M M 2018 Opt. Express 26 24135Google Scholar

    [20]

    Fallahi A, Mishrikey M, Hafner C, Vahldieck R 2008 IEEE Trans. Antennas Propag. 56 1340Google Scholar

    [21]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099Google Scholar

    [22]

    Zhu G Y, Ju X W, Zhang W B 2018 Int. J. Prod. Res. 56 4017Google Scholar

    [23]

    Hajian M, Ranjbar A M, Amraee T, Mozafari B 2011 Int. J. Electr. Power Energy Syst. 33 28Google Scholar

    [24]

    Ju X W, Hu Z Q, Huang F, Wu H B, Belyanin A, Kono J, Wang X F 2021 Opt. Express 29 9261Google Scholar

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面.  , 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] 李家祥, 王慧琴, 徐和庆, 张华, 冯艳, 董美彤. 基于序列二次规划算法的超小尺寸微纳波长分束器的逆向设计.  , 2023, 72(19): 194101. doi: 10.7498/aps.72.20230892
    [3] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试.  , 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [4] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面.  , 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [5] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面.  , 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [6] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [7] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器.  , 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [8] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器.  , 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [9] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅.  , 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [10] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制.  , 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [11] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法.  , 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [12] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [13] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面.  , 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [14] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2020, (): . doi: 10.7498/aps.69.20200825
    [15] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展.  , 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [16] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [17] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计.  , 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [18] 刘啸天, 周国华, 李振华, 陈兴. 基于双缘调制的数字电压型控制Buck变换器离散迭代映射建模与动力学分析.  , 2015, 64(22): 228401. doi: 10.7498/aps.64.228401
    [19] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究.  , 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [20] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计.  , 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
计量
  • 文章访问数:  2077
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-12-15
  • 上网日期:  2023-12-29
  • 刊出日期:  2024-03-20

/

返回文章
返回
Baidu
map