搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于法布里-珀罗干涉仪测量大气环境CO2的方法

王松 周闯 李素文 牟福生

引用本文:
Citation:

基于法布里-珀罗干涉仪测量大气环境CO2的方法

王松, 周闯, 李素文, 牟福生

Method of measuring atmospheric CO2 based on Fabry-Perot interferometer

Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng
PDF
HTML
导出引用
  • CO2是主要的温室气体之一, 它的排放和累积导致温室效应加强, 进而引起全球气候变化, 因此获取大气环境中CO2的浓度变化对研究气候变化意义重大. 针对低成本、快速和在线精确测量大气环境CO2的技术需求, 本文构建了基于法布里-珀罗干涉仪的CO2大气浓度在线测量系统, 并研究了精确获取其浓度反演方法. 采用基于微机电系统(MEMS)技术的热辐射源作为法布里-珀罗干涉仪系统光源, 设计透射式光路代替常见的折射式光路. 通过静电控制两镜片的间距, 改变干涉谱, 实现10 nm步长的中心波长的干涉峰调节, 扫描获得CO2实时在线吸收光谱, 基于差分吸收光谱原理获取了CO2气体的浓度. 利用样气标定系统, 并用商用光声光谱多气体分析仪校验系统, 结果表明, 该系统检测限达1.09 ×10–6, 检测精度为±1.13×10–6, 测量误差小于1%. 在煤城淮北开展了大气环境CO2实时在线检测, 并与商用光声光谱分析仪开展比对观测实验, 二者相关系数R = 0.92. 实验结果表明, 研发的法布里-珀罗干涉仪系统能够满足大气环境CO2浓度的快速、在线高精度测量技术需求.
    CO2 is one of the main greenhouse gases. Its emission and accumulation lead to the strengthening of the greenhouse effect, which in turn causes global climate change. Therefore, it is of great significance to obtain the change of CO2 concentration in the atmospheric environment for the study of climate change. In order to meet the requirements of low cost, fast, on-line and accurate measurement of CO2 in atmospheric environment, a CO2 gas concentration measurement system based on Fabry-Perot interferometer is built in this work. The thermal radiation source based on micro-electro-mechanical system (MEMS) technology is used as a light source of the Fabry-Perot interferometer system, and the transmission optical path is designed to replace the common refractive optical path. By electrostatically controlling the distance between the two lenses and changing the interference spectrum, the interference peak adjustment of the center wavelength of the 10 nm step is realized, and the absorption spectrum is obtained by scanning. Based on the principle of differential optical absorption spectroscopy, the concentration of CO2 gas is obtained, and the real-time on-line monitoring of CO2 concentration is realized. Using the sample gas calibration system and the commercial photoacoustic spectroscopy multi-gas analyzer to verify the system, the results show that the detection limit of the system is 1.09×10–6, the detection accuracy is ±1.13×10–6, and the measurement error is less than 1%. Real-time online monitoring of atmospheric CO2 has been conducted in Huaibei, a coal city. A comparative observational experiment is performed between this system and a commercial photoacoustic spectroscopy multi-gas analyzer. The two systems show consistent trends in measuring CO2 variations, with a correlation coefficient of R=0.92. It shows that the Fabry-Perot interferometer system can meet the requirement of rapid, convenient and high precision measurement of CO2 concentration in the environment.
      通信作者: 李素文, swli@chnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41875040, 41705012)、安徽省高等学校创新团队项目(批准号: 2023AH010043)、安徽省自然科学研究基金 (批准号: 2208085QF215)和安徽省高校自然科学研究项目(批准号: 2023AH050338)资助的课题.
      Corresponding author: Li Su-Wen, swli@chnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41875040, 41705012), the Innovation Team Project of Anhui Educational Committee, China (Grant No. 2023AH010043), the Natural Science Foundation of Anhui Province, China (Grant No. 2208085QF215), and the Natural Science Research Project of Anhui Educational Committee, China (Grant No. 2023AH050338).
    [1]

    Liu C, Sun Y W, Shan C G, Wang W, Notholt J, Palm M, Yin H, Tian Y, Gao J X, Mao H Q 2023 Engineering 22 201Google Scholar

    [2]

    Maksyutov S, Oda T, Saito M, et al. 2021 Atmos. Chem. Phys. 21 1245Google Scholar

    [3]

    Guerlet S, Basu S, Butz A, Krol M, Hahne P, Houweling S, Hasekamp O P, Aben I 2013 Geophys. Res. Lett. 40 2378Google Scholar

    [4]

    Safavi A, Maleki N, Doroodmand M M 2010 Anal. Chim. Acta 675 207Google Scholar

    [5]

    Diederichsen K M, Sharifian R, Kang J S, Liu Y Y, Kim S, Gallant B M, Vermaas D, Hatton T A 2022 Nat. Rev. Methods Primers 2 68Google Scholar

    [6]

    王薇, 刘文清, 张天舒 2013 光谱学与光谱分析 33 2017

    Wang W, Liu W Q, Zhang T S 2013 Spectrosc. Spect. Anal. 33 2017

    [7]

    Gomez-Pelaez A J, Ramos R, Cuevas E, Gomez-Trueba V, Reyes E 2019 Atmos. Meas. Tech. 12 2043Google Scholar

    [8]

    Peng W Y, Cassady S J, Strand C L, et al. 2019 Proc. Combust. Inst. 37 1435Google Scholar

    [9]

    孙友文, 刘文清, 谢品华, 方武, 曾议, 司福祺, 李先欣, 詹锴 2013 62 010701Google Scholar

    Sun Y W, Liu W Q, Xie P H, Fang W, Zeng Y, Si F Q, Li X X, Zhan K 2013 Acta Phys. Sin. 62 010701Google Scholar

    [10]

    Sun Y W, Liu C, Chan K L, Xie P H, Liu W Q, Zeng Y, Wang S M, Huang S H, Chen J, Wang Y P, Si F Q 2013 Atmos. Meas. Tech. 6 1993Google Scholar

    [11]

    Barritault P, Brun M, Lartigue O, Willemin J, Ouvrier-Buffet J-L, Pocas S, Nicoletti S 2013 Sens. Actuators B Chem. 182 565Google Scholar

    [12]

    Nies A, Fuchs C, Kuhn J, Heimann J, Bobrowski N, Platt U 2022 EGU General Assembly Conference Vienna, Austria, May 23-27, 2022 p5486

    [13]

    Gasser C, Genner A, Moser H, Ofner J, Lendl B 2017 Sens. Actuators B Chem. 242 9Google Scholar

    [14]

    Chan K L, Ning Z, Westerdahl D, Wong K C, Sun Y W, Hartl A, Wenig M O 2014 Sci. Total. Environ. 472 27Google Scholar

    [15]

    Shan C G, Wang W, Liu C, Guo Y, Xie Y, Sun Y W, Hu Q H, Zhang H F, Yin H, Jones N 2021 Opt. Express 29 4958Google Scholar

    [16]

    Zhang Q J, Mou F S, Li S W, Li A, Wang X D, Sun Y W 2023 Spectrochim. Acta A 286 121959Google Scholar

    [17]

    Guo Y Y, Li S W, Mou F S, Qi H X, Zhang Q J 2022 Chin. Phys. B 31 014212Google Scholar

    [18]

    Li S Z, Dong L, Wu H P, Yin X K, Ma W G, Zhang L, Yin W B, Sampaolo A, Patimisco P, Spagnolo V, Jia S T, Tittel F K 2019 Spectrochim. Acta A 216 154Google Scholar

    [19]

    季红程, 谢品华, 徐晋, 李昂, 胡肇焜, 黄业园, 田鑫, 李晓梅, 任博, 任红梅 2021 光学学报 41 1812004Google Scholar

    Ji H C, Xie P H, Xu J, Li A, Hu Z K, Huang Y Y, Tian X, Li X M, Ren B, Ren H M 2021 Acta Opt. Sin. 41 1812004Google Scholar

    [20]

    Zhang Q J, Mou F S, Shan W, Luo J, Wang X D, Li S W 2023 Atmos. Pollut. Res. 14 101732Google Scholar

    [21]

    段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清 2021 70 010702Google Scholar

    Duan J, Tang K, Qin M, Wang D, Wang M D, Fang W, Meng F H, Xie P H, Liu J G, Liu W Q 2021 Acta Phys. Sin. 70 010702Google Scholar

    [22]

    李素文, 谢品华, 刘文清, 司福祺, 李昂, 彭夫敏 2008 57 1963Google Scholar

    Li S W, Xie P H, Liu W Q, Si F Q, Li A, Peng F M 2008 Acta Phys. Sin. 57 1963Google Scholar

    [23]

    Chen Z X, Zeng J F, He M H, Zhu X S, Shi Y W 2022 Sens. Actuators B Chem. 359 131553Google Scholar

    [24]

    Mou F S, Luo J, Zhang Q J, Zhou C, Wang S, Ye F, Li S W, Sun Y W 2023 Atmosphere 14 739Google Scholar

    [25]

    单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 66 220204Google Scholar

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar

  • 图 1  (a)法布里-珀罗干涉示意图; (b)法布里-珀罗干涉仪滤光示意图

    Fig. 1.  (a) Schematic diagram of Fabry-Perot interference; (b) schematic diagram of filtering light by Fabry-Perot interference.

    图 2  测量系统的结构示意图

    Fig. 2.  Structure diagram of the measurement system.

    图 3  吹扫气路通入氮气前后测量灯谱

    Fig. 3.  Measure the spectra before and after blowing and clearing the airway with nitrogen gas.

    图 4  3.1—4.4 μm波段的气体吸收特征谱

    Fig. 4.  Gas absorption spectra in the 3.1–4.4 μm band.

    图 5  浓度为150.8 ×10–6的CO2光谱的反演实例 (a)吸收谱和拟合谱; (b)拟合后的残差谱

    Fig. 5.  Inversion example of spectra for CO2 with concentration of 150.8×10–6: (a) Absorption spectrum and fitted spectrum; (b) residual spectrum after fitting.

    图 6  直接测量值与标称值3阶曲线拟合曲线图

    Fig. 6.  The direct measured value is fitted to the nominal value by a three-order curve.

    图 7  温度梯度测试

    Fig. 7.  Temperature step test.

    图 8  (a) CO2浓度时间序列; (b) CO2浓度频数分布

    Fig. 8.  (a) Time series of concentrations of CO2; (b) frequency distribution of concentrations of CO2.

    图 9  观测期间大气CO2时间序列

    Fig. 9.  Time series of atmospheric CO2 during observation.

    图 10  FPI和光声光谱多气体分析仪测量结果 (a) CO2时间序列; (b) CO2浓度线性拟合

    Fig. 10.  Results measured by FPI and photoacoustic spectrum multi-gas analyzer: (a) CO2 time series; (b) linear fitting of CO2 concentration.

    Baidu
  • [1]

    Liu C, Sun Y W, Shan C G, Wang W, Notholt J, Palm M, Yin H, Tian Y, Gao J X, Mao H Q 2023 Engineering 22 201Google Scholar

    [2]

    Maksyutov S, Oda T, Saito M, et al. 2021 Atmos. Chem. Phys. 21 1245Google Scholar

    [3]

    Guerlet S, Basu S, Butz A, Krol M, Hahne P, Houweling S, Hasekamp O P, Aben I 2013 Geophys. Res. Lett. 40 2378Google Scholar

    [4]

    Safavi A, Maleki N, Doroodmand M M 2010 Anal. Chim. Acta 675 207Google Scholar

    [5]

    Diederichsen K M, Sharifian R, Kang J S, Liu Y Y, Kim S, Gallant B M, Vermaas D, Hatton T A 2022 Nat. Rev. Methods Primers 2 68Google Scholar

    [6]

    王薇, 刘文清, 张天舒 2013 光谱学与光谱分析 33 2017

    Wang W, Liu W Q, Zhang T S 2013 Spectrosc. Spect. Anal. 33 2017

    [7]

    Gomez-Pelaez A J, Ramos R, Cuevas E, Gomez-Trueba V, Reyes E 2019 Atmos. Meas. Tech. 12 2043Google Scholar

    [8]

    Peng W Y, Cassady S J, Strand C L, et al. 2019 Proc. Combust. Inst. 37 1435Google Scholar

    [9]

    孙友文, 刘文清, 谢品华, 方武, 曾议, 司福祺, 李先欣, 詹锴 2013 62 010701Google Scholar

    Sun Y W, Liu W Q, Xie P H, Fang W, Zeng Y, Si F Q, Li X X, Zhan K 2013 Acta Phys. Sin. 62 010701Google Scholar

    [10]

    Sun Y W, Liu C, Chan K L, Xie P H, Liu W Q, Zeng Y, Wang S M, Huang S H, Chen J, Wang Y P, Si F Q 2013 Atmos. Meas. Tech. 6 1993Google Scholar

    [11]

    Barritault P, Brun M, Lartigue O, Willemin J, Ouvrier-Buffet J-L, Pocas S, Nicoletti S 2013 Sens. Actuators B Chem. 182 565Google Scholar

    [12]

    Nies A, Fuchs C, Kuhn J, Heimann J, Bobrowski N, Platt U 2022 EGU General Assembly Conference Vienna, Austria, May 23-27, 2022 p5486

    [13]

    Gasser C, Genner A, Moser H, Ofner J, Lendl B 2017 Sens. Actuators B Chem. 242 9Google Scholar

    [14]

    Chan K L, Ning Z, Westerdahl D, Wong K C, Sun Y W, Hartl A, Wenig M O 2014 Sci. Total. Environ. 472 27Google Scholar

    [15]

    Shan C G, Wang W, Liu C, Guo Y, Xie Y, Sun Y W, Hu Q H, Zhang H F, Yin H, Jones N 2021 Opt. Express 29 4958Google Scholar

    [16]

    Zhang Q J, Mou F S, Li S W, Li A, Wang X D, Sun Y W 2023 Spectrochim. Acta A 286 121959Google Scholar

    [17]

    Guo Y Y, Li S W, Mou F S, Qi H X, Zhang Q J 2022 Chin. Phys. B 31 014212Google Scholar

    [18]

    Li S Z, Dong L, Wu H P, Yin X K, Ma W G, Zhang L, Yin W B, Sampaolo A, Patimisco P, Spagnolo V, Jia S T, Tittel F K 2019 Spectrochim. Acta A 216 154Google Scholar

    [19]

    季红程, 谢品华, 徐晋, 李昂, 胡肇焜, 黄业园, 田鑫, 李晓梅, 任博, 任红梅 2021 光学学报 41 1812004Google Scholar

    Ji H C, Xie P H, Xu J, Li A, Hu Z K, Huang Y Y, Tian X, Li X M, Ren B, Ren H M 2021 Acta Opt. Sin. 41 1812004Google Scholar

    [20]

    Zhang Q J, Mou F S, Shan W, Luo J, Wang X D, Li S W 2023 Atmos. Pollut. Res. 14 101732Google Scholar

    [21]

    段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清 2021 70 010702Google Scholar

    Duan J, Tang K, Qin M, Wang D, Wang M D, Fang W, Meng F H, Xie P H, Liu J G, Liu W Q 2021 Acta Phys. Sin. 70 010702Google Scholar

    [22]

    李素文, 谢品华, 刘文清, 司福祺, 李昂, 彭夫敏 2008 57 1963Google Scholar

    Li S W, Xie P H, Liu W Q, Si F Q, Li A, Peng F M 2008 Acta Phys. Sin. 57 1963Google Scholar

    [23]

    Chen Z X, Zeng J F, He M H, Zhu X S, Shi Y W 2022 Sens. Actuators B Chem. 359 131553Google Scholar

    [24]

    Mou F S, Luo J, Zhang Q J, Zhou C, Wang S, Ye F, Li S W, Sun Y W 2023 Atmosphere 14 739Google Scholar

    [25]

    单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 66 220204Google Scholar

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar

  • [1] 程亮元, 徐进良. 流动方向对超临界二氧化碳流动传热特性的影响.  , 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [2] 曾平, 宋盼, 王小伟, 赵晶, 张栋文, 袁建民, 赵增秀. 强飞秒激光场下二氧化碳二聚体四价离子的多体解离动力学.  , 2023, 72(18): 187901. doi: 10.7498/aps.72.20230699
    [3] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界二氧化碳类液-类气区边界线数值分析.  , 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [4] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度.  , 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [5] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究.  , 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [6] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析.  , 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [7] 王骏, 崔萌, 陆红, 汪丽, 闫庆, 刘晶晶, 华灯鑫. 基于固体腔扫描法布里-珀罗干涉仪的大气温度绝对探测方法研究.  , 2017, 66(8): 089202. doi: 10.7498/aps.66.089202
    [8] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值.  , 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [9] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展.  , 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [10] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器.  , 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [11] 梁捷宁, 张镭, 张武, 史晋森. 黄土高原半干旱区地表能量不闭合及其对二氧化碳通量的影响.  , 2013, 62(9): 099203. doi: 10.7498/aps.62.099203
    [12] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究.  , 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [13] 李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春. CO2及其碳同位素比值高精度检测研究.  , 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [14] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究.  , 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [15] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度.  , 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [16] 付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文. 瑞利散射法研究超声喷流二氧化碳团簇尺度轴向分布.  , 2011, 60(5): 053602. doi: 10.7498/aps.60.053602
    [17] 屈年瑞, 高发明. 固态二氧化碳电子结构及性能的理论研究.  , 2011, 60(6): 067102. doi: 10.7498/aps.60.067102
    [18] 付东, 王学敏, 刘建岷. 超临界二氧化碳和模型共聚物的相平衡和成核性质研究.  , 2009, 58(5): 3022-3027. doi: 10.7498/aps.58.3022
    [19] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性.  , 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [20] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速.  , 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
计量
  • 文章访问数:  2662
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-09-26
  • 上网日期:  2023-10-20
  • 刊出日期:  2024-01-20

/

返回文章
返回
Baidu
map