-
CO2是主要的温室气体之一, 它的排放和累积导致温室效应加强, 进而引起全球气候变化, 因此获取大气环境中CO2的浓度变化对研究气候变化意义重大. 针对低成本、快速和在线精确测量大气环境CO2的技术需求, 本文构建了基于法布里-珀罗干涉仪的CO2大气浓度在线测量系统, 并研究了精确获取其浓度反演方法. 采用基于微机电系统(MEMS)技术的热辐射源作为法布里-珀罗干涉仪系统光源, 设计透射式光路代替常见的折射式光路. 通过静电控制两镜片的间距, 改变干涉谱, 实现10 nm步长的中心波长的干涉峰调节, 扫描获得CO2实时在线吸收光谱, 基于差分吸收光谱原理获取了CO2气体的浓度. 利用样气标定系统, 并用商用光声光谱多气体分析仪校验系统, 结果表明, 该系统检测限达1.09 ×10–6, 检测精度为±1.13×10–6, 测量误差小于1%. 在煤城淮北开展了大气环境CO2实时在线检测, 并与商用光声光谱分析仪开展比对观测实验, 二者相关系数R = 0.92. 实验结果表明, 研发的法布里-珀罗干涉仪系统能够满足大气环境CO2浓度的快速、在线高精度测量技术需求.
-
关键词:
- 二氧化碳 /
- 法布里-珀罗干涉仪 /
- 热辐射源 /
- 光声光谱多气体分析仪
CO2 is one of the main greenhouse gases. Its emission and accumulation lead to the strengthening of the greenhouse effect, which in turn causes global climate change. Therefore, it is of great significance to obtain the change of CO2 concentration in the atmospheric environment for the study of climate change. In order to meet the requirements of low cost, fast, on-line and accurate measurement of CO2 in atmospheric environment, a CO2 gas concentration measurement system based on Fabry-Perot interferometer is built in this work. The thermal radiation source based on micro-electro-mechanical system (MEMS) technology is used as a light source of the Fabry-Perot interferometer system, and the transmission optical path is designed to replace the common refractive optical path. By electrostatically controlling the distance between the two lenses and changing the interference spectrum, the interference peak adjustment of the center wavelength of the 10 nm step is realized, and the absorption spectrum is obtained by scanning. Based on the principle of differential optical absorption spectroscopy, the concentration of CO2 gas is obtained, and the real-time on-line monitoring of CO2 concentration is realized. Using the sample gas calibration system and the commercial photoacoustic spectroscopy multi-gas analyzer to verify the system, the results show that the detection limit of the system is 1.09×10–6, the detection accuracy is ±1.13×10–6, and the measurement error is less than 1%. Real-time online monitoring of atmospheric CO2 has been conducted in Huaibei, a coal city. A comparative observational experiment is performed between this system and a commercial photoacoustic spectroscopy multi-gas analyzer. The two systems show consistent trends in measuring CO2 variations, with a correlation coefficient of R=0.92. It shows that the Fabry-Perot interferometer system can meet the requirement of rapid, convenient and high precision measurement of CO2 concentration in the environment.-
Keywords:
- carbon dioxide /
- Fabry-Perot interferometer /
- thermal radiation source /
- photoacoustic spectrum multi-gas analyzer
[1] Liu C, Sun Y W, Shan C G, Wang W, Notholt J, Palm M, Yin H, Tian Y, Gao J X, Mao H Q 2023 Engineering 22 201Google Scholar
[2] Maksyutov S, Oda T, Saito M, et al. 2021 Atmos. Chem. Phys. 21 1245Google Scholar
[3] Guerlet S, Basu S, Butz A, Krol M, Hahne P, Houweling S, Hasekamp O P, Aben I 2013 Geophys. Res. Lett. 40 2378Google Scholar
[4] Safavi A, Maleki N, Doroodmand M M 2010 Anal. Chim. Acta 675 207Google Scholar
[5] Diederichsen K M, Sharifian R, Kang J S, Liu Y Y, Kim S, Gallant B M, Vermaas D, Hatton T A 2022 Nat. Rev. Methods Primers 2 68Google Scholar
[6] 王薇, 刘文清, 张天舒 2013 光谱学与光谱分析 33 2017
Wang W, Liu W Q, Zhang T S 2013 Spectrosc. Spect. Anal. 33 2017
[7] Gomez-Pelaez A J, Ramos R, Cuevas E, Gomez-Trueba V, Reyes E 2019 Atmos. Meas. Tech. 12 2043Google Scholar
[8] Peng W Y, Cassady S J, Strand C L, et al. 2019 Proc. Combust. Inst. 37 1435Google Scholar
[9] 孙友文, 刘文清, 谢品华, 方武, 曾议, 司福祺, 李先欣, 詹锴 2013 62 010701Google Scholar
Sun Y W, Liu W Q, Xie P H, Fang W, Zeng Y, Si F Q, Li X X, Zhan K 2013 Acta Phys. Sin. 62 010701Google Scholar
[10] Sun Y W, Liu C, Chan K L, Xie P H, Liu W Q, Zeng Y, Wang S M, Huang S H, Chen J, Wang Y P, Si F Q 2013 Atmos. Meas. Tech. 6 1993Google Scholar
[11] Barritault P, Brun M, Lartigue O, Willemin J, Ouvrier-Buffet J-L, Pocas S, Nicoletti S 2013 Sens. Actuators B Chem. 182 565Google Scholar
[12] Nies A, Fuchs C, Kuhn J, Heimann J, Bobrowski N, Platt U 2022 EGU General Assembly Conference Vienna, Austria, May 23-27, 2022 p5486
[13] Gasser C, Genner A, Moser H, Ofner J, Lendl B 2017 Sens. Actuators B Chem. 242 9Google Scholar
[14] Chan K L, Ning Z, Westerdahl D, Wong K C, Sun Y W, Hartl A, Wenig M O 2014 Sci. Total. Environ. 472 27Google Scholar
[15] Shan C G, Wang W, Liu C, Guo Y, Xie Y, Sun Y W, Hu Q H, Zhang H F, Yin H, Jones N 2021 Opt. Express 29 4958Google Scholar
[16] Zhang Q J, Mou F S, Li S W, Li A, Wang X D, Sun Y W 2023 Spectrochim. Acta A 286 121959Google Scholar
[17] Guo Y Y, Li S W, Mou F S, Qi H X, Zhang Q J 2022 Chin. Phys. B 31 014212Google Scholar
[18] Li S Z, Dong L, Wu H P, Yin X K, Ma W G, Zhang L, Yin W B, Sampaolo A, Patimisco P, Spagnolo V, Jia S T, Tittel F K 2019 Spectrochim. Acta A 216 154Google Scholar
[19] 季红程, 谢品华, 徐晋, 李昂, 胡肇焜, 黄业园, 田鑫, 李晓梅, 任博, 任红梅 2021 光学学报 41 1812004Google Scholar
Ji H C, Xie P H, Xu J, Li A, Hu Z K, Huang Y Y, Tian X, Li X M, Ren B, Ren H M 2021 Acta Opt. Sin. 41 1812004Google Scholar
[20] Zhang Q J, Mou F S, Shan W, Luo J, Wang X D, Li S W 2023 Atmos. Pollut. Res. 14 101732Google Scholar
[21] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清 2021 70 010702Google Scholar
Duan J, Tang K, Qin M, Wang D, Wang M D, Fang W, Meng F H, Xie P H, Liu J G, Liu W Q 2021 Acta Phys. Sin. 70 010702Google Scholar
[22] 李素文, 谢品华, 刘文清, 司福祺, 李昂, 彭夫敏 2008 57 1963Google Scholar
Li S W, Xie P H, Liu W Q, Si F Q, Li A, Peng F M 2008 Acta Phys. Sin. 57 1963Google Scholar
[23] Chen Z X, Zeng J F, He M H, Zhu X S, Shi Y W 2022 Sens. Actuators B Chem. 359 131553Google Scholar
[24] Mou F S, Luo J, Zhang Q J, Zhou C, Wang S, Ye F, Li S W, Sun Y W 2023 Atmosphere 14 739Google Scholar
[25] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 66 220204Google Scholar
Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar
-
-
[1] Liu C, Sun Y W, Shan C G, Wang W, Notholt J, Palm M, Yin H, Tian Y, Gao J X, Mao H Q 2023 Engineering 22 201Google Scholar
[2] Maksyutov S, Oda T, Saito M, et al. 2021 Atmos. Chem. Phys. 21 1245Google Scholar
[3] Guerlet S, Basu S, Butz A, Krol M, Hahne P, Houweling S, Hasekamp O P, Aben I 2013 Geophys. Res. Lett. 40 2378Google Scholar
[4] Safavi A, Maleki N, Doroodmand M M 2010 Anal. Chim. Acta 675 207Google Scholar
[5] Diederichsen K M, Sharifian R, Kang J S, Liu Y Y, Kim S, Gallant B M, Vermaas D, Hatton T A 2022 Nat. Rev. Methods Primers 2 68Google Scholar
[6] 王薇, 刘文清, 张天舒 2013 光谱学与光谱分析 33 2017
Wang W, Liu W Q, Zhang T S 2013 Spectrosc. Spect. Anal. 33 2017
[7] Gomez-Pelaez A J, Ramos R, Cuevas E, Gomez-Trueba V, Reyes E 2019 Atmos. Meas. Tech. 12 2043Google Scholar
[8] Peng W Y, Cassady S J, Strand C L, et al. 2019 Proc. Combust. Inst. 37 1435Google Scholar
[9] 孙友文, 刘文清, 谢品华, 方武, 曾议, 司福祺, 李先欣, 詹锴 2013 62 010701Google Scholar
Sun Y W, Liu W Q, Xie P H, Fang W, Zeng Y, Si F Q, Li X X, Zhan K 2013 Acta Phys. Sin. 62 010701Google Scholar
[10] Sun Y W, Liu C, Chan K L, Xie P H, Liu W Q, Zeng Y, Wang S M, Huang S H, Chen J, Wang Y P, Si F Q 2013 Atmos. Meas. Tech. 6 1993Google Scholar
[11] Barritault P, Brun M, Lartigue O, Willemin J, Ouvrier-Buffet J-L, Pocas S, Nicoletti S 2013 Sens. Actuators B Chem. 182 565Google Scholar
[12] Nies A, Fuchs C, Kuhn J, Heimann J, Bobrowski N, Platt U 2022 EGU General Assembly Conference Vienna, Austria, May 23-27, 2022 p5486
[13] Gasser C, Genner A, Moser H, Ofner J, Lendl B 2017 Sens. Actuators B Chem. 242 9Google Scholar
[14] Chan K L, Ning Z, Westerdahl D, Wong K C, Sun Y W, Hartl A, Wenig M O 2014 Sci. Total. Environ. 472 27Google Scholar
[15] Shan C G, Wang W, Liu C, Guo Y, Xie Y, Sun Y W, Hu Q H, Zhang H F, Yin H, Jones N 2021 Opt. Express 29 4958Google Scholar
[16] Zhang Q J, Mou F S, Li S W, Li A, Wang X D, Sun Y W 2023 Spectrochim. Acta A 286 121959Google Scholar
[17] Guo Y Y, Li S W, Mou F S, Qi H X, Zhang Q J 2022 Chin. Phys. B 31 014212Google Scholar
[18] Li S Z, Dong L, Wu H P, Yin X K, Ma W G, Zhang L, Yin W B, Sampaolo A, Patimisco P, Spagnolo V, Jia S T, Tittel F K 2019 Spectrochim. Acta A 216 154Google Scholar
[19] 季红程, 谢品华, 徐晋, 李昂, 胡肇焜, 黄业园, 田鑫, 李晓梅, 任博, 任红梅 2021 光学学报 41 1812004Google Scholar
Ji H C, Xie P H, Xu J, Li A, Hu Z K, Huang Y Y, Tian X, Li X M, Ren B, Ren H M 2021 Acta Opt. Sin. 41 1812004Google Scholar
[20] Zhang Q J, Mou F S, Shan W, Luo J, Wang X D, Li S W 2023 Atmos. Pollut. Res. 14 101732Google Scholar
[21] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清 2021 70 010702Google Scholar
Duan J, Tang K, Qin M, Wang D, Wang M D, Fang W, Meng F H, Xie P H, Liu J G, Liu W Q 2021 Acta Phys. Sin. 70 010702Google Scholar
[22] 李素文, 谢品华, 刘文清, 司福祺, 李昂, 彭夫敏 2008 57 1963Google Scholar
Li S W, Xie P H, Liu W Q, Si F Q, Li A, Peng F M 2008 Acta Phys. Sin. 57 1963Google Scholar
[23] Chen Z X, Zeng J F, He M H, Zhu X S, Shi Y W 2022 Sens. Actuators B Chem. 359 131553Google Scholar
[24] Mou F S, Luo J, Zhang Q J, Zhou C, Wang S, Ye F, Li S W, Sun Y W 2023 Atmosphere 14 739Google Scholar
[25] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 66 220204Google Scholar
Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar
计量
- 文章访问数: 2662
- PDF下载量: 60
- 被引次数: 0