搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从头算分子动力学研究硫脲嘧啶及其互变异构体在低能电子作用下的解离过程

张颖 王兴 徐忠锋 任洁茹 张艳宁 周贤明 梁昌慧 张小安

引用本文:
Citation:

从头算分子动力学研究硫脲嘧啶及其互变异构体在低能电子作用下的解离过程

张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安

Ab initio molecular dynamics study on dissociation process of 2-thiouracil and its tautomers under low-energy electron interactions

Zhang Ying, Wang Xing, Xu Zhong-Feng, Ren Jie-Ru, Zhang Yan-Ning, Zhou Xian-Ming, Liang Chang-Hui, Zhang Xiao-An
PDF
HTML
导出引用
  • 运用玻恩-奥本海默分子动力学模型结合密度泛函理论研究了气相下硫脲嘧啶与低能电子吸附解离动力学过程, 发现硫脲嘧啶及其互变异构体在吸附解离过程中一个重要的脱氢现象, 即特定位置的化学键N—H键, C—H键断裂, 使其在N位点和C位点失去氢原子, 形成解离过程中最主要的负离子碎片——闭壳层脱氢负离子(TU-H). 为了更深刻地认识脱氢现象, 分别对断裂的化学键进行势能曲线扫描, 对键解离能、电子亲和能、负离子(TU-H)出现势进行计算对比发现, 在所有断裂的化学键中N—H键最容易发生断裂, 而负离子(TU-H)的形成主要源于N—H键的断裂.
    When biomolecules interact with high-energy particles and rays, they are directly ionized or dissociated, then a large number of low-energy electrons are formed as secondary particles. These low-energy electrons will attach to biomolecules, and trigger off the secondary dissociation, forming free radicals and ions with high reactivity, which can damage the structure and function of the biomolecule and cause irreversible radiation damage to the biomolecule. It is important to study the low-energy dissociative electron attachment (DEA) process of biomolecules for understanding radiation damage to biological organisms. Currently, the theoretical studies of DEA have mainly focused on the bound states of negative ions and the types of resonances in the dissociation process. The dissociation process is well described by quantum computational method, but the diversity and complexity of dissociation channels present in the dissociation process of 2-thiouracil molecule also pose a great computational challenge to these methods. In addition, the quantum computational methods are not ideal for dealing with the discrete states of chemical bonds and the problem of continuity coupling of electrons. The dissociation dynamics of biomolecules mainly results from ionization and electron attachment. Ab initio molecular dynamics simulation can reasonably describe these processes. In light of these considerations, ab initio molecular dynamics simulation is used in this work to study dynamic variation process in DEA. The low-energy electron dissociative attachment to 2-thiouracil in the gas phase is studied by using the Born-Oppenheimer molecular dynamics model combined with density functional theory. It is found that an important dehydrogenation phenomenon of 2-thiouracil and its tautomers occurs in the DEA process, and that the N—H and C—H bond are broken at specific locations. Due to the loss of hydrogen atoms at the N and C sites, the closed-shell dehydrogenated negative ion (TU-H) forms, which is the most important negative ion fragments in the dissociation process. The potential energy curves, the bond dissociation energy and the electron affinity energy of the broken bond show that the N—H bond is the most likely to break, indicating the formation of the negative ion (TU-H) mainly comes from the breaking of N—H bond. The theoretical calculations in this work are in good agreement with the available experimental results, indicating that the chosen calculation method is fully reliable. ​The BOMD simulations can not only dynamically recover the process of dissociative attachment of low-energy electrons to 2-thiouracil, but also more importantly provide an insight into the mechanisms of dehydrogenation and dissociation channels of 2-thiouracil molecules in DEA process.
      通信作者: 徐忠锋, zhfxu@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12205247, 12175174)和陕西省教育厅科学研究计划(批准号: 22JK0604) 资助的课题.
      Corresponding author: Xu Zhong-Feng, zhfxu@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12205247, 12175174) and the Scientific Research Program of the Education Department of Shaanxi Province, China (Grant No. 22JK0604).
    [1]

    Gu B, Zhang F S, Wang Z P, Zhou H Y 2008 Phys. Rev. Lett. 100 088104Google Scholar

    [2]

    Zheng Y, Darel J. H, Ayotte P, Sanche L 2008 Phys. Rev. Lett. 100 168101Google Scholar

    [3]

    Zheng Y, Sanche L 2013 Rev. Nanosci. Nanotechnol. 2 1Google Scholar

    [4]

    Hou Q, Wang Y G 2001 Phys. Rev. Lett. 87 168101Google Scholar

    [5]

    Cimino R, Collins I R, Furman M A, Pivi M, Ruggiero F, Rumolo G, Zimmermann F 2004 Phys. Rev. Lett. 93 014801Google Scholar

    [6]

    Boudaı̈ffa B, Cloutier P, Hunting D, Huels M A, Sanche L 2000 Science 287 1658Google Scholar

    [7]

    Martin F, Burrow P D, Cai Z L, Cloutier P, Hunting D, Sanche L 2004 Phys. Rev. Lett. 93 068101Google Scholar

    [8]

    Christophorou L G 1978 Adv. Electron. Electron Phys. 46 55

    [9]

    Elion G B 1989 Science 244 41.Google Scholar

    [10]

    吕杰, 程静, 侯晓蓓 2016 生物医用材料导论 (上海: 同济大学出版社) 第86页

    Lyu J, Cheng J, Hou X L 2016 An Introduction to Biomedical Materials (Shanghai: Tongji University Press) p86

    [11]

    Kopyra J, Kopyra K K, Abdoul-Carime H, Branowska D 2018 J. Chem. Phys. 148 234301Google Scholar

    [12]

    Maio N, Lafont B A P, Sil D, Li Y, Martin Bollinger Jr J, Krebs C, Pierson C, Linehan W, Rouault T A 2021 Science 373 6651

    [13]

    Ruckenbauer M, Mai S, Marquetand P, Gonzálezb L 2016 J. Chem. Phys. 144 074303Google Scholar

    [14]

    Uleanya K O, Dessent C E H 2021 Phys. Chem. Chem. Phys. 23 1021Google Scholar

    [15]

    Fennimorea M A, Matsika S 2016 Phys. Chem. Chem. Phys. 44 30536

    [16]

    Puzzarini C, Biczysko M, Barone V, Peña I, Cabezas C, Alonso J L 2013 Phys. Chem. Chem. Phys. 39 16965

    [17]

    Plekan O, Feyer V, Cassidy A, Lyamayev V, Tsud N, Ptasińska S, Reiff S, Acres R G, Princeag K C 2015 Phys. Chem. Chem. Phys. 17 15181Google Scholar

    [18]

    Kopyra J, Abdoul-Carime H, Kossoskic F, Varella M T 2014 Phys. Chem. Chem. Phys. 14 25054

    [19]

    Kopyra J, Kopyra K K, Abdoul-Carime H, Branowska D 2016 J. Chem. Phys. 144 034306Google Scholar

    [20]

    Dolgounitcheva O, Zakrzewski V G, Ortiz J V 2011 J. Chem. Phys. 134 074305Google Scholar

    [21]

    Da Costa R F, Varella M T, Lima M A P, Bettega M H F 2013 J. Chem. Phys. 138 194306Google Scholar

    [22]

    Kossoski F, Bettega M H F, Varella M T 2014 J. Chem. Phys. 140 024317Google Scholar

    [23]

    Yang H J, Wang E L, Dong W X, Gong M M, Shen Z J, Tang Y G, Shan X, Chen X J 2018 Phys. Rev. A 97 052703Google Scholar

    [24]

    Feng W L, Tian S X 2015 J. Phys. Chem. A 119 1838Google Scholar

    [25]

    Wang Y F, Tian S X, Yang J 2011 Phys. Chem. Chem. Phys. 13 15597Google Scholar

    [26]

    冯文玲 2015 博士学位论文 (合肥: 中国科学技术大学)

    Feng W L 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [27]

    López-Tarifa P, Hervé du Penhoat M A, Vuilleumier R, Gaigeot M P, Tavernelli I, Padellec A L, Champeaux J P, Alcamí M, Moretto-Capelle P, Martín F, Politis M F 2011 Phys. Rev. Lett. 107 023202Google Scholar

    [28]

    Boys S F, Bernardi F 1970 Mol. Phys. 19 553Google Scholar

  • 图 1  采用B3LYP/6-311++G(2d, 2p)方法优化后基态硫脲嘧啶分子及其互变异构体的几何构型 (图中红色为氧原子, 白色为氢原子, 灰色为碳原子, 蓝色为氮原子, 黄色为硫原子)

    Fig. 1.  Optimized geometries of the ground state 2-thiouracil and its tautomers. The geometries have been optimized using the B3LYP method and the 6-311++G(2d, 2p) basis set (Colors in graphical representations correspond to atom types as follows, red: oxygen; white: hydrogen; gray: carbon; blue: nitrogen; yellow: sulfur).

    图 2  硫脲嘧啶及其互变异构体1在解离过程中分子结构随时间演化图

    Fig. 2.  The evolution of the geometrical structures of 2-thiouracil and tautomer 1 during dissociation.

    图 3  硫脲嘧啶互变异构体2和其互变异构体3在解离过程中分子结构随时间演化图

    Fig. 3.  The evolution of the geometrical structures of tautomer 2 and tautomer 3 during dissociation.

    图 4  硫脲嘧啶解离过程势能剖面示意图

    Fig. 4.  The potential energy profile of the 2-thiouracil dissociation.

    图 5  B3LYP/6-311++G(2d, 2p)方法计算获得硫脲嘧啶解离过程中化学键N—H键和C—H键的势能曲线

    Fig. 5.  The potential energy curves for the N—H and the C—H bond in 2-thiouracil dissociation obtained from B3LYP/6-311++G(2d, 2p) calculations.

    图 6  硫脲嘧啶互变异构体2解离过程势能剖面示意图

    Fig. 6.  The potential energy profile of the tautomer 2 dissociation.

    图 7  B3LYP/6-311++G(2d, 2p)方法计算获得硫脲嘧啶互变异构体2解离过程中化学键C—H键、O—H键和S—H键的势能曲线

    Fig. 7.  The potential energy curves for the C—H , the O—H and the S—H bond in tautomer 2 dissociation obtained from B3LYP/6-311++G(2d, 2p) calculations.

    图 8  B3LYP/6-311++ G(2d, 2p)方法计算获得硫脲嘧啶互变异构体3解离过程化学键N1—H键的势能曲线

    Fig. 8.  The potential energy curves for the N1—H bond in tautomer 3 dissociation obtained from B3LYP/6-311++G(2d, 2p) calculations.

    表 1  硫脲嘧啶分子及其互变异构体稳定构型的相对能量, 基组重叠误差BSSE, CP校正后的结合能$ \Delta {E}_{{\mathrm{C}}{\mathrm{P}}} $ 和偶极矩μ

    Table 1.  Relative energies, BSSE, CP-corrected binding energies $ \Delta {E}_{{\mathrm{C}}{\mathrm{P}}} $ and dipole moment of 2-thiouracil and its tautomers.

    Method 2-thiouracil Tautomer 1 Tautomer 2 Tautomer 3
    CCSD/6-311++G(2d, 2p) 0 46.31 93.59 70.43
    MP2/6-311++G(2d, 2p) 0 30.88 61.75 50.17
    B3LYP/6-31G(d) [18] 0 221.92 238.32 222.88
    CCSD(T)/Aug-cc-pVDZ[18] 0 48.24 94.56 76.22
    BSSE 0.54 0.43 0.61 0.49
    $ \Delta {E}_{{\mathrm{C}}{\mathrm{P}}} $/(kJ·mol–1) –18.37 –18.44 –22.33 –33.63
    μ/Debye 5.13 5.12 4.66 4.92
    下载: 导出CSV

    表 2  由CCSD计算方法获得硫脲嘧啶及其互变异构体分子不同位置脱氢所需的键解离能, 绝热电子亲和能和(TU-H)负离子出现势(能量单位为kJ/mol)

    Table 2.  The bond dissociation energy, the adiabatic electron affinity and the appearance potential of the (TU-H) obtained from CCSD calculation method of dehydrogenation of 2-thiouracil and its tautomer at different positions (all values in kJ/mol)

    Bond BE EA AE
    2-thiouracil N1—H 58.86 3630.73 2047.41
    N3—H 108.06 5957.95 46.31
    C—H 378.22 213.23 164.99
    Tautomer 1 N1—H 59.82 40.52 19.3
    N3—H 109.03 56.93 52.1
    C—H 382.08 218.05 164.02
    Tautomer 2 O—H 198.76 116.75 178.5
    S—H 418.74 187.18 231.56
    C—H 343.48 222.88 165.95
    Tautomer 3 N1—H 165.95 60.79 105.17
    C—H 384.98 224.81 160.17
    S—H 420.67 190.08 230.6
    下载: 导出CSV

    表 3  由CCSD计算方法获得硫脲嘧啶及其互变异构体解离通道(6)式和(7)式所需的最小解离能(能量单位为kJ/mol).

    Table 3.  The minimum dissociation energy required to obtain 2-thiouracil and its tautomer dissociation channels (6) and (7) by CCSD calculation method (all values in kJ/mol).

    Bond $ E_{({\rm TU}-2{\rm H})^- + {\rm H} + {\rm H}} $ $ E_{\rm(TU-H_2)^- + H_2}$
    2-thiouracil N1—HN3—H 591.45 88.77
    N1—HC—H 526.81 147.62
    N3—HC—H 584.7 156.3
    Tautomer 1 N1—HN3—H 597.24 91.66
    N1—HC—H 528.74 160.17
    N3—HC—H 591.45 162.09
    Tautomer 2 O—HS—H 551.89 237.35
    O—HC—H 446.73 189.11
    S—HC—H 630.05 344.45
    Tautomer 3 N1—HC—H 604.96 166.92
    N1—HS—H 640.66 329.01
    C—HS—H 651.27 362.78
    下载: 导出CSV
    Baidu
  • [1]

    Gu B, Zhang F S, Wang Z P, Zhou H Y 2008 Phys. Rev. Lett. 100 088104Google Scholar

    [2]

    Zheng Y, Darel J. H, Ayotte P, Sanche L 2008 Phys. Rev. Lett. 100 168101Google Scholar

    [3]

    Zheng Y, Sanche L 2013 Rev. Nanosci. Nanotechnol. 2 1Google Scholar

    [4]

    Hou Q, Wang Y G 2001 Phys. Rev. Lett. 87 168101Google Scholar

    [5]

    Cimino R, Collins I R, Furman M A, Pivi M, Ruggiero F, Rumolo G, Zimmermann F 2004 Phys. Rev. Lett. 93 014801Google Scholar

    [6]

    Boudaı̈ffa B, Cloutier P, Hunting D, Huels M A, Sanche L 2000 Science 287 1658Google Scholar

    [7]

    Martin F, Burrow P D, Cai Z L, Cloutier P, Hunting D, Sanche L 2004 Phys. Rev. Lett. 93 068101Google Scholar

    [8]

    Christophorou L G 1978 Adv. Electron. Electron Phys. 46 55

    [9]

    Elion G B 1989 Science 244 41.Google Scholar

    [10]

    吕杰, 程静, 侯晓蓓 2016 生物医用材料导论 (上海: 同济大学出版社) 第86页

    Lyu J, Cheng J, Hou X L 2016 An Introduction to Biomedical Materials (Shanghai: Tongji University Press) p86

    [11]

    Kopyra J, Kopyra K K, Abdoul-Carime H, Branowska D 2018 J. Chem. Phys. 148 234301Google Scholar

    [12]

    Maio N, Lafont B A P, Sil D, Li Y, Martin Bollinger Jr J, Krebs C, Pierson C, Linehan W, Rouault T A 2021 Science 373 6651

    [13]

    Ruckenbauer M, Mai S, Marquetand P, Gonzálezb L 2016 J. Chem. Phys. 144 074303Google Scholar

    [14]

    Uleanya K O, Dessent C E H 2021 Phys. Chem. Chem. Phys. 23 1021Google Scholar

    [15]

    Fennimorea M A, Matsika S 2016 Phys. Chem. Chem. Phys. 44 30536

    [16]

    Puzzarini C, Biczysko M, Barone V, Peña I, Cabezas C, Alonso J L 2013 Phys. Chem. Chem. Phys. 39 16965

    [17]

    Plekan O, Feyer V, Cassidy A, Lyamayev V, Tsud N, Ptasińska S, Reiff S, Acres R G, Princeag K C 2015 Phys. Chem. Chem. Phys. 17 15181Google Scholar

    [18]

    Kopyra J, Abdoul-Carime H, Kossoskic F, Varella M T 2014 Phys. Chem. Chem. Phys. 14 25054

    [19]

    Kopyra J, Kopyra K K, Abdoul-Carime H, Branowska D 2016 J. Chem. Phys. 144 034306Google Scholar

    [20]

    Dolgounitcheva O, Zakrzewski V G, Ortiz J V 2011 J. Chem. Phys. 134 074305Google Scholar

    [21]

    Da Costa R F, Varella M T, Lima M A P, Bettega M H F 2013 J. Chem. Phys. 138 194306Google Scholar

    [22]

    Kossoski F, Bettega M H F, Varella M T 2014 J. Chem. Phys. 140 024317Google Scholar

    [23]

    Yang H J, Wang E L, Dong W X, Gong M M, Shen Z J, Tang Y G, Shan X, Chen X J 2018 Phys. Rev. A 97 052703Google Scholar

    [24]

    Feng W L, Tian S X 2015 J. Phys. Chem. A 119 1838Google Scholar

    [25]

    Wang Y F, Tian S X, Yang J 2011 Phys. Chem. Chem. Phys. 13 15597Google Scholar

    [26]

    冯文玲 2015 博士学位论文 (合肥: 中国科学技术大学)

    Feng W L 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [27]

    López-Tarifa P, Hervé du Penhoat M A, Vuilleumier R, Gaigeot M P, Tavernelli I, Padellec A L, Champeaux J P, Alcamí M, Moretto-Capelle P, Martín F, Politis M F 2011 Phys. Rev. Lett. 107 023202Google Scholar

    [28]

    Boys S F, Bernardi F 1970 Mol. Phys. 19 553Google Scholar

  • [1] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究.  , 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [5] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [6] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [7] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究.  , 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [8] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [9] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究.  , 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [11] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究.  , 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [12] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [13] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [15] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究.  , 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [16] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [17] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [19] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  2067
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 修回日期:  2023-09-17
  • 上网日期:  2023-10-20
  • 刊出日期:  2024-01-20

/

返回文章
返回
Baidu
map