搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维钒掺杂Cr2S3纳米片的生长与磁性研究

杨瑞龙 张钰樱 杨柯 姜琦涛 杨晓婷 郭金中 许小红

引用本文:
Citation:

二维钒掺杂Cr2S3纳米片的生长与磁性研究

杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红

Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets

Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong
PDF
HTML
导出引用
  • 二维磁性材料是近年来发展起来的新兴材料, 在单层或者少层的原子厚度中以其独特的磁性特性和结构特征而备受关注. 其中铁磁性材料在信息存储和处理等方面有着广泛的应用, 所以当前研究主要集中在丰富二维铁磁数据库以及开发磁调制的修饰策略上. 本文通过常压化学气相沉积法在云母片衬底上成功生长出了二维钒掺杂Cr2S3纳米片, 获得了钒源温度765 ℃和质量0.010 g为纳米片生长情况最适中条件, 并通过光学显微镜、原子力显微镜、拉曼光谱仪、扫描电子显微镜、X射线能谱、X射线光电子能谱对纳米片进行表征. 同时掺杂样品的磁性表征表明钒掺杂后样品居里转变温度变为105 K, 由亚铁磁性变为铁磁性, 矫顽力也显著增大, 证明钒掺杂可以有效地调控Cr2S3纳米片的磁性. 这些研究结果将有望推动钒掺杂Cr2S3材料向着实际应用的的可能性, 成为下一代自旋电子应用的理想候选材料之一.
    Two-dimensional magnetic materials are emerging materials developed in recent years and have attracted much attention for their unique magnetic properties and structural features in single-layer or few layers of atomic thickness. Among them, ferromagnetic materials have a wide range of applications such as in information memory and processing. Therefore the current research mainly focuses on enriching the two-dimensional ferromagnetic database and developing modification strategies for magnetic modulation. In this work, two-dimensional vanadium-doped Cr2S3 nanosheets successfully grow on mica substrates by atmospheric pressure chemical vapour deposition. The thickness and size of the nanosheet can be effectively regulated by changing the temperature and mass of vanadium source VCl3 powder, with the temperature of 765 ℃ and the mass of 0.010 g as the most appropriate conditions for the growth of nanosheets. The nanosheets are also characterised by optical microscopy, atomic force microscopy, Raman spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, and X-ray photoelectron spectroscopy, and the nanosheet is regular in shape, with flat surface and controllable thickness, and the high-quality vanadium-doped Cr2S3 nanosheet is prepared. Meanwhile, the magnetic characterisations of the doped samples show that the Curie transition temperatures of the vanadium doped samples change to 105 K, and the maximum magnetic moment point of 75 K in the M-T curve disappears after V doping, and from subferromagnetic material to ferromagnetic material, and the coercivity in the M-H curve also increases significantly, which proves that the vanadium doping can effectively regulate the magnetic properties of Cr2S3 nanosheets. These results are expected to advance the vanadium-doped Cr2S3 materials toward practical applications and become one of the ideal candidate materials for the next-generation spintronic applications.
      通信作者: 杨瑞龙, yangruilong@sxnu.edu.cn ; 许小红, xuxh@sxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52002232, 12174237)、国家重点研发计划(批准号: 2022YFB3505301)、山西省高等学校科技创新项目(批准号: 2021L267)、山西省研究生教育创新项目(批准号: 2021Y484)和山西师范大学研究生科技创新项目(批准号: 2022XSY019)资助的课题.
      Corresponding author: Yang Rui-Long, yangruilong@sxnu.edu.cn ; Xu Xiao-Hong, xuxh@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52002232, 12174237), the National Key Research and Development Program of China (Grant No. 2022YFB3505301), the Scientific and Technologial Innovation Programs of Higher Education Institutions of Shanxi Province, China (Grant No. 2021L267), the Graduate Education Innovation Project of Shanxi Province, China (Grant No. 2021Y484), and the Graduate Students of Science and Technology Innovation Project of Shanxi Normal University, China (Grant No. 2022XSY019).
    [1]

    Burch K S, Mandrus D, Park J G 2018 Nature 563 47Google Scholar

    [2]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [3]

    Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar

    [4]

    Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159Google Scholar

    [5]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [6]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [7]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [8]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [9]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [10]

    Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789Google Scholar

    [11]

    Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388Google Scholar

    [12]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar

    [13]

    Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 InfoMat 2 639Google Scholar

    [14]

    Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501Google Scholar

    [15]

    Zhang Y L, Zhang Y Y, Ni J Y, Yang J H, Xiang H J, Gong X G 2021 Chin. Phys. Lett. 38 027501Google Scholar

    [16]

    Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521Google Scholar

    [17]

    Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar

    [18]

    Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397Google Scholar

    [19]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.Google Scholar

    [20]

    Duan H L, Guo P, Wang C, et al. 2019 Nat. Commum. 10 1584Google Scholar

    [21]

    Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2019 Adv. Funct. Mater. 29 1805880Google Scholar

    [22]

    Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154Google Scholar

    [23]

    Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar

    [24]

    Zhou X Y, Liu C, Song L T, et al. 2022 Sci. China-Phys. Mech. Astron. 65 276811Google Scholar

    [25]

    杨瑞龙, 张钰樱 2023 材料工程 51 162Google Scholar

    Yang R L, Zhang Y Y 2023 J. Mater. Engineer. 51 162Google Scholar

    [26]

    Guo Y Q, Deng H T, Sun X, et al. 2017 Adv. Mater. 29 1700715Google Scholar

  • 图 1  生长示意图 (a)化学气相沉积生长示意图; (b)生长过程温度设置曲线

    Fig. 1.  Schematic diagram of growth setup: (a) Schematic diagram of chemical vapour deposition growth setup; (b) temperature setting curve of growth process.

    图 2  不同钒源温度与质量条件下生长的纳米片光学形貌图 (a)—(c) 735, 750, 765 ℃钒源温度条件下生长的纳米片光学照片; (d)—(f) 0.005, 0.010, 0.015 g钒源质量条件下生长的纳米片光学照片

    Fig. 2.  Optical morphology of nanosheets grown under different vanadium source temperature and mass conditions: Optical image of nanosheets grown under the vanadium source temperature conditions of (a) 735, (b) 750, and (c) 765 ℃; optical image of nanosheets grown under the vanadium source mass conditions of (d) 0.005, (e) 0.010, and (f) 0.015 g.

    图 3  纳米片的AFM表征 (a)薄纳米片AFM表征; (b)厚纳米片AFM表征

    Fig. 3.  AFM characterization of nanosheets: (a) AFM characterisation of thin nanosheet; (b) AFM characterization of thick nanosheet.

    图 4  纳米片的拉曼光谱表征

    Fig. 4.  Raman characterization of nanosheets.

    图 5  纳米片SEM, EDS和XPS表征 (a) SEM照片; (b) EDS表征, 插图为元素百分比; (c)—(e)纳米片XPS图谱

    Fig. 5.  SEM, EDS and XPS characterisation of nanosheets: (a) SEM image; (b) EDS characterisation, inset shows elemental percentages; (c)–(e) XPS spectrum of nanosheets.

    图 6  纳米片的磁性测量 (a)—(c)纳米片面内磁场方向的M-TM-H曲线; (d)—(f)纳米片面外磁场方向的M-TM-H曲线

    Fig. 6.  Magnetic measurements of nanosheets: (a)–(c) M-T and M-H curves in the direction of the in-plane magnetic field of nanosheets; (d)–(f) M-T and M-H curves in the direction of the out-of-plane magnetic field of nanosheets

    Baidu
  • [1]

    Burch K S, Mandrus D, Park J G 2018 Nature 563 47Google Scholar

    [2]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [3]

    Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar

    [4]

    Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159Google Scholar

    [5]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [6]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [7]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [8]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [9]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [10]

    Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789Google Scholar

    [11]

    Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388Google Scholar

    [12]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar

    [13]

    Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 InfoMat 2 639Google Scholar

    [14]

    Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501Google Scholar

    [15]

    Zhang Y L, Zhang Y Y, Ni J Y, Yang J H, Xiang H J, Gong X G 2021 Chin. Phys. Lett. 38 027501Google Scholar

    [16]

    Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521Google Scholar

    [17]

    Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar

    [18]

    Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397Google Scholar

    [19]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.Google Scholar

    [20]

    Duan H L, Guo P, Wang C, et al. 2019 Nat. Commum. 10 1584Google Scholar

    [21]

    Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2019 Adv. Funct. Mater. 29 1805880Google Scholar

    [22]

    Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154Google Scholar

    [23]

    Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar

    [24]

    Zhou X Y, Liu C, Song L T, et al. 2022 Sci. China-Phys. Mech. Astron. 65 276811Google Scholar

    [25]

    杨瑞龙, 张钰樱 2023 材料工程 51 162Google Scholar

    Yang R L, Zhang Y Y 2023 J. Mater. Engineer. 51 162Google Scholar

    [26]

    Guo Y Q, Deng H T, Sun X, et al. 2017 Adv. Mater. 29 1700715Google Scholar

  • [1] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展.  , 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [2] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能.  , 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [3] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [4] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展.  , 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [5] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控.  , 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [6] 肖寒, 弭孟娟, 王以林. 二维磁性材料及多场调控研究进展.  , 2021, 70(12): 127503. doi: 10.7498/aps.70.20202204
    [7] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [8] 张颂歌, 陈雨彤, 王宁, 柴扬, 龙根, 张广宇. 二维CrI3晶体的磁性测量与调控.  , 2021, 70(12): 127504. doi: 10.7498/aps.70.20202197
    [9] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究.  , 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [10] 王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦, W. Cao. Cu掺杂ZnO磁性能的实验与理论研究.  , 2014, 63(15): 157502. doi: 10.7498/aps.63.157502
    [11] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响.  , 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [12] 谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高. Zn0.97Cr0.03O的PLD制备及其铁磁性.  , 2014, 63(7): 077102. doi: 10.7498/aps.63.077102
    [13] 吴孔平, 顾书林, 朱顺明, 黄友锐, 周孟然. 非故意掺杂碳对ZnMnO:N磁性影响的实验与理论研究.  , 2012, 61(5): 057503. doi: 10.7498/aps.61.057503
    [14] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响.  , 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [15] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源.  , 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [16] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [17] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [18] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究.  , 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [19] 匡安龙, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为. 稀释磁性半导体Sn1-xMnxO2的室温铁磁性.  , 2005, 54(6): 2934-2937. doi: 10.7498/aps.54.2934
    [20] 荣传兵, 赵玉华, 徐民, 赵恒和, 程力智, 何开元. 具有宽过冷液相区的Fe62Co8-x(Cr,Mo)xNb4Zr6B20非晶态合金的热稳定性与磁性.  , 2001, 50(11): 2235-2240. doi: 10.7498/aps.50.2235
计量
  • 文章访问数:  2598
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-09-12
  • 上网日期:  2023-11-29
  • 刊出日期:  2023-12-20

/

返回文章
返回
Baidu
map