搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针对微尺寸X射线源的非相干全息层析成像

陈纪辉 王峰 理玉龙 张兴 姚科 关赞洋 刘祥明

引用本文:
Citation:

针对微尺寸X射线源的非相干全息层析成像

陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明

Tomographic incoherent holography for microscale X-ray source

Chen Ji-Hui, Wang Feng, Li Yu-Long, Zhang Xing, Yao Ke, Guan Zan-Yang, Liu Xiang-Ming
PDF
HTML
导出引用
  • 现阶段在惯性约束聚变实验中, 无论是对黑腔等离子体或是内爆靶丸区域的单次成像诊断都无法分辨深度方向上的辐射强度信息, 即探测器获取的图像均是沿探测方向上的强度积分. 本文介绍了一种利用非相干全息技术对微尺寸X射线源的层析成像方式. 所述的非相干全息成像技术具有将光源的三维空间信息编码并压缩至二维全息图的成像机制, 再结合基于压缩感知的全息图重建算法, 能够从二维全息图中恢复出沿探测方向不同物距上光强的二维分布情况. 为了验证该成像方案的可行性, 本文模拟了轴向长度为16 mm的光源非相干全息成像过程, 并通过压缩感知算法重建模拟生成的非相干全息图, 得到间距为4 mm的层析光强分布结果.
    At present, in the experiment on inertial confinement fusion (ICF), no single imaging diagnosis of the black cavity plasma or the implosion target region can distinguish the emission intensity information in the depth direction, that is, the images acquired by the detector are intensity integral along the detection direction. In this paper, a tomographic imaging method using incoherent holography for microscale X-ray source is introduced. The incoherent holographic imaging technology has an imaging mechanism that encodes and compresses the three-dimensional space information of the light source into a two-dimensional hologram. In the theoretical part, we examine the imaging mechanism of incoherent holographic tomography. Then the compress sensing model which is appropriate for this incoherent tomography is investigated. Combined with the hologram reconstruction algorithm based on compress sensing, the two-dimensional distributions of light intensity at different object distances along the detection direction can be recovered from the two-dimensional hologram. In order to verify the feasibility of this imaging scheme, we simulate the incoherent holographic imaging process of a light source with an axial length of 16 mm, and obtain the tomography light intensity distribution result with a spacing of 4 mm by reconstructing the corresponding incoherent hologram through using the backpropagation algorithms, Wiener filtering algorithm, and compress sensing algorithm. All reconstruction methods mentioned above can recover the corresponding letter light source at a certain object distance, indicating the potential of incoherent holographic technology for three-dimensional imaging. For the backpropagation reconstruction image, there is a large amount of series noise at the edge of the light source signal, which affects signal recognition in practical applications. Although the Wiener filtering algorithm can recognize the image signal to some extent, the low contrast of the reconstructed image results in the distribution of target source strength mixed with background noise. Compared with the algorithm based on the Wiener filtering and backpropagation, compress sensing theory provides a more professional technique for the ill-condition problem. Results from compress sensing reconstruction show that the crosstalk noise is significantly reduced, and the intensity distribution on the objective plane of the light source is basically concentrated in the signal area. The peak-signal-to-noise ratio of reconstructed image is continuously optimized as the number of iterations increases. Besides, the axial and horizontal resolution caused by the innermost ring radius of Fresnel zone plate are also analyzed, indicating that a shorter innermost ring radius can improve the horizontal resolution, bur reduce the axial resolution.
      通信作者: 王峰, lfrc_wangfeng@163.com ; 姚科, keyao@fudan.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 12127810)资助的课题.
      Corresponding author: Wang Feng, lfrc_wangfeng@163.com ; Yao Ke, keyao@fudan.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 12127810).
    [1]

    Abu-Shawareb H, Acree R, Adams P, et al. (Indirect Drive ICF Collaboration) 2022 Phys. Rev. Lett. 129 075001Google Scholar

    [2]

    温树槐, 丁永坤 2012 激光惯性约束聚变诊断学 (北京: 国防工业出版社) 第270页

    Wen S H, Ding Y K 2012 Laser Inertial Confinement Fusion Diagnostics (Beijing: Arms Industry Press) p270

    [3]

    Wang F, Jiang S E, Ding Y K, et al. 2020 Matter Radiat. Extremes 5 035201Google Scholar

    [4]

    Bachmann B, Hilsabeck T, Field J, et al. 2016 Rev. Sci. Instrum. 87 11e201Google Scholar

    [5]

    Matsuyama S, Mimura H, Yumoto H, Hara H, Yamamura K, Sano Y, Endo K, Mori Y, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K 2006 Rev. Sci. Instrum. 77 093107Google Scholar

    [6]

    Pickworth L A, Ayers J, Bell P, et al. 2016 Rev. Sci. Instrum. 87 11e316Google Scholar

    [7]

    Yamada J, Matsuyama S, Sano Y, Kohmura Y, Yabashi M, Ishikawa T, Yamauchi K 2019 Opt. Express 27 3429Google Scholar

    [8]

    Schollmeier M S, Geissel M, Shores J E, Smith I C, Porter J L 2015 Appl. Opt. 54 5147Google Scholar

    [9]

    Gabor D 1948 Nature 161 777Google Scholar

    [10]

    Mertz L, Young N O 1961 Proceeding of the International Conference on Optical Instruments and Techniques Chapman Hall, London pp305–310

    [11]

    Barrett H H 1972 J. Nucl. Med. 13 382

    [12]

    Rogers W L, Jones L W, Beierwaltes W H 1973 Opt. Eng. 12 13Google Scholar

    [13]

    Ceglio N M, Coleman L W 1977 Phys. Rev. Lett. 39 20Google Scholar

    [14]

    Ceglio N M, Larsen J T 1980 Phys. Rev. Lett. 44 579Google Scholar

    [15]

    Caroli E, Stephen J B, Dicocco G, Natalucci L, Spizzichino A 1987 Space Sci. Rev. 45 349Google Scholar

    [16]

    Nakamura T, Watanabe T, Igarashi S, Chen X, Tajima K, Yamaguchi K, Shimano T, Yamaguchi M 2020 Opt. Express 28 39137Google Scholar

    [17]

    Shimano T, Nakamura Y, Tajima K, Sao M, Hoshizawa T 2018 Appl. Opt. 57 2841Google Scholar

    [18]

    Wu J C, Zhang H, Zhang W H, Jin G F, Cao L C, Barbastathis G 2020 Light: Sci. Appl. 9 53Google Scholar

    [19]

    Soltau J, Meyer P, Hartmann R, Strüder L, Soltau H, Salditt T 2023 Optica 10 127Google Scholar

    [20]

    郑志坚, 曹磊峰, 张保汉, 丁永坤, 江少恩, 李朝光 2003 强激光与粒子束 15 1001

    Zheng Z J, Cao L F, Zhang B H, Ding Y K, Jiang S E, Li C G 2003 High Power Laser and Particle Beams 15 1001

    [21]

    曹磊峰 2002 博士学位论文 (绵阳: 中国工程物理研究院)

    Cao L F 2002 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics

    [22]

    Brady D J, Pitsianis N, Sun X, Potuluri P 2008 US Patent US7427932 B2 [2007-07-31

    [23]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14Google Scholar

    [24]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992Google Scholar

  • 图 1  非相干全息成像示意图

    Fig. 1.  Procedure of incoherent holography.

    图 2  针对微尺寸X射线源的成像示意图与二维全息图

    Fig. 2.  Imaging system for microscale X-ray source and the corresponding 2D hologram.

    图 3  模拟成像系统二维侧视图

    Fig. 3.  2D lateral view of the simulative imaging system.

    图 4  (a)非相干全息层析重建模型; (b)基于背传输算法的重建结果; (c)基于维纳滤波算法的重建结果; (d)基于压缩感知算法的重建结果(100次迭代); (e)基于压缩感知算法的重建结果(500次迭代); (f)基于压缩感知算法的重建结果(2000次迭代)

    Fig. 4.  (a) Tomographic reconstruction model of incoherent holography; (b) reconstruction result with backpropagate algorithms; (c) reconstruction result with Wiener filtering algorithms; (d) reconstruction result with compress sensing algorithms (100 iterations); (e) reconstruction result with compress sensing algorithms (500 iterations); (f) reconstruction result with compress sensing algorithms (2000 iterations).

    图 5  PSNR与重建迭代次数间的关系

    Fig. 5.  Relationship between PSNR and reconstruction iterations.

    图 6  使用不同最内环半径波带片进行模拟成像的分辨水平对比. 在距离波带片54, 58和62 mm平面上的二维重建结果, 以及在58 mm平面内虚线标识区域的一维光强分布情况 (a) 0.08 mm; (b) 0.06 mm

    Fig. 6.  Comparisons of resolution level in simulative imaging when applied FZP with different innermost radius. The 2D reconstruction result at the following objective depth: 54, 58 and 62 mm, and the 1D intensity distribution of the dotted line area in 58 mm plane: (a) 0.08 mm; (b) 0.06 mm.

    Baidu
  • [1]

    Abu-Shawareb H, Acree R, Adams P, et al. (Indirect Drive ICF Collaboration) 2022 Phys. Rev. Lett. 129 075001Google Scholar

    [2]

    温树槐, 丁永坤 2012 激光惯性约束聚变诊断学 (北京: 国防工业出版社) 第270页

    Wen S H, Ding Y K 2012 Laser Inertial Confinement Fusion Diagnostics (Beijing: Arms Industry Press) p270

    [3]

    Wang F, Jiang S E, Ding Y K, et al. 2020 Matter Radiat. Extremes 5 035201Google Scholar

    [4]

    Bachmann B, Hilsabeck T, Field J, et al. 2016 Rev. Sci. Instrum. 87 11e201Google Scholar

    [5]

    Matsuyama S, Mimura H, Yumoto H, Hara H, Yamamura K, Sano Y, Endo K, Mori Y, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K 2006 Rev. Sci. Instrum. 77 093107Google Scholar

    [6]

    Pickworth L A, Ayers J, Bell P, et al. 2016 Rev. Sci. Instrum. 87 11e316Google Scholar

    [7]

    Yamada J, Matsuyama S, Sano Y, Kohmura Y, Yabashi M, Ishikawa T, Yamauchi K 2019 Opt. Express 27 3429Google Scholar

    [8]

    Schollmeier M S, Geissel M, Shores J E, Smith I C, Porter J L 2015 Appl. Opt. 54 5147Google Scholar

    [9]

    Gabor D 1948 Nature 161 777Google Scholar

    [10]

    Mertz L, Young N O 1961 Proceeding of the International Conference on Optical Instruments and Techniques Chapman Hall, London pp305–310

    [11]

    Barrett H H 1972 J. Nucl. Med. 13 382

    [12]

    Rogers W L, Jones L W, Beierwaltes W H 1973 Opt. Eng. 12 13Google Scholar

    [13]

    Ceglio N M, Coleman L W 1977 Phys. Rev. Lett. 39 20Google Scholar

    [14]

    Ceglio N M, Larsen J T 1980 Phys. Rev. Lett. 44 579Google Scholar

    [15]

    Caroli E, Stephen J B, Dicocco G, Natalucci L, Spizzichino A 1987 Space Sci. Rev. 45 349Google Scholar

    [16]

    Nakamura T, Watanabe T, Igarashi S, Chen X, Tajima K, Yamaguchi K, Shimano T, Yamaguchi M 2020 Opt. Express 28 39137Google Scholar

    [17]

    Shimano T, Nakamura Y, Tajima K, Sao M, Hoshizawa T 2018 Appl. Opt. 57 2841Google Scholar

    [18]

    Wu J C, Zhang H, Zhang W H, Jin G F, Cao L C, Barbastathis G 2020 Light: Sci. Appl. 9 53Google Scholar

    [19]

    Soltau J, Meyer P, Hartmann R, Strüder L, Soltau H, Salditt T 2023 Optica 10 127Google Scholar

    [20]

    郑志坚, 曹磊峰, 张保汉, 丁永坤, 江少恩, 李朝光 2003 强激光与粒子束 15 1001

    Zheng Z J, Cao L F, Zhang B H, Ding Y K, Jiang S E, Li C G 2003 High Power Laser and Particle Beams 15 1001

    [21]

    曹磊峰 2002 博士学位论文 (绵阳: 中国工程物理研究院)

    Cao L F 2002 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics

    [22]

    Brady D J, Pitsianis N, Sun X, Potuluri P 2008 US Patent US7427932 B2 [2007-07-31

    [23]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14Google Scholar

    [24]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992Google Scholar

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 赵子博, 庄革, 谢锦林, 渠承明, 强子薇. 用于等离子体相干模式自动识别的谱聚类算法实现.  , 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [3] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法.  , 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [4] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法.  , 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [5] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [6] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [7] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法.  , 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [8] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [9] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法.  , 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [10] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [11] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [12] 王琛, 安红海, 王伟, 方智恒, 贾果, 孟祥富, 孙今人, 刘正坤, 付绍军, 乔秀梅, 郑无敌, 王世绩. 利用软X射线双频光栅剪切干涉技术诊断金等离子体.  , 2014, 63(12): 125210. doi: 10.7498/aps.63.125210
    [13] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体.  , 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [14] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [15] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [16] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [17] 冉林松, 王红斌, 李向东, 张继彦, 程新路. Ti类氦Kα线在高温稠密等离子体中的漂移.  , 2009, 58(9): 6096-6100. doi: 10.7498/aps.58.6096
    [18] 王 琛, 方智恒, 孙今人, 王 伟, 熊 俊, 叶君建, 傅思祖, 顾 援, 王世绩, 郑无敌, 叶文华, 乔秀梅, 张国平. 利用X射线激光进行激光等离子体射流的诊断.  , 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [19] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用.  , 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [20] 余建华, 黄建军. 射频放电阻抗测量用于等离子体诊断研究.  , 2001, 50(12): 2403-2407. doi: 10.7498/aps.50.2403
计量
  • 文章访问数:  2685
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 修回日期:  2023-07-17
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-10-05

/

返回文章
返回
Baidu
map