搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

片上光互连器件的智能化设计研究进展

杜特 马汉斯 姜鑫鹏 赵芬 张兆健 王志成 彭政 张伊祎 张煜青 罗鸣宇 邹宏新 吴加贵 闫培光 朱刚毅 于洋 何新 陈欢 张振福 杨俊波

引用本文:
Citation:

片上光互连器件的智能化设计研究进展

杜特, 马汉斯, 姜鑫鹏, 赵芬, 张兆健, 王志成, 彭政, 张伊祎, 张煜青, 罗鸣宇, 邹宏新, 吴加贵, 闫培光, 朱刚毅, 于洋, 何新, 陈欢, 张振福, 杨俊波

Research progress of intelligent design of on-chip optical interconnection devices

Du Te, Ma Han-Si, Jiang Xin-Peng, Zhao Fen, Zhang Zhao-Jian, Wang Zhi-Cheng, Peng Zheng, Zhang Yi-Yi, Zhang Yu-Qing, Luo Ming-Yu, Zou Hong-Xin, Wu Jia-Gui, Yan Pei-Guang, Zhu Gang-Yi, Yu Yang, He Xin, Chen Huan, Zhang Zhen-Fu, Yang Jun-Bo
PDF
HTML
导出引用
  • 光互连技术相比于电互连等传统通信技术具有带宽大、能耗低、抗干扰等系列优势, 正在逐渐成为短距离、甚短距离数据终端间通信的重要手段和发展趋势. 基于绝缘体上硅的片上光互连技术作为光互连在芯片尺度上的实现, 在一系列复用技术的支持下得到了非常广泛的应用. 智能设计方法具有原理直观、设计自由度高、材料兼容性好等优点. 随着智能设计方法在片上光互连器件设计活动中的广泛应用, 目前片上光互连器件逐渐呈现出超紧凑化、可调控化、系统集成化等重要发展趋势. 本文首先归纳了几种目前最常用的片上光互连器件的智能设计方法, 然后详细分析了智能化设计的片上光互连器件的几个重大研究进展与趋势, 最后对未来智能化设计的片上光互连器件的发展进行了展望.
    Compared with traditional communication technologies such as electrical interconnection, optical interconnection technology has the advantages of large bandwidth, low energy consumption, anti-interference, etc. Therefore, optical interconnection is becoming an important approach and development trend of short distance and very short distance data terminal communication. As the chip level optical interconnection is implemented, silicon on insulator (SOI) based on-chip optical interconnection has been widely utilized with the support of a series of multiplexing technologies. In recent decades, many on-chip optical interconnection devices have been developed by using conventional design methods such as coupled-mode, multimode interference, and transmission line theories. However, when used in device design, these conventional methods often face the problems such as complex theoretical calculations and high labor costs. Many of the designed devices also encounter the problems of insufficient compactness and integration, and single function.Intelligent design method has the advantages such as pellucid principle, high freedom of optimization, and good material compatibility, which can solve the problems of conventional design methods to a large extent. With the widespread use of intelligent design methods in the design of on-chip optical interconnection devices, three main trends have emerged. Firstly, the size of on-chip optical interconnect device is gradually developing towards ultra compact size. Secondly, the number of intelligently designed controllable on-chip optical interconnect devices is increasing. Thirdly, on-chip optical interconnect devices are gradually developing towards integration and systematization. This paper summarizes the most commonly used intelligent design methods of photonic devices, including intelligent algorithms based intelligent design methods and neural networks based intelligent design methods. Then, the above three important research advances and trends of intelligently designed on-chip optical interconnection devices are analyzed in detail. At the same time, the applications of phase change materials in the design of controllable photonic devices are also reviewed. Finally, the future development of intelligently designed on-chip optical interconnection devices is discussed.
      通信作者: 杨俊波, yangjunbo@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 60907003, 61805278, 12272407, 62275269, 62275271)、国家重点研发计划(批准号: 2022YFF0706005)、中国博士后科学基金(批准号: 2018M633704)、国防科技大学科研计划(批准号: JC13-02-13, ZK17-03-01)、湖南省自然科学基金(批准号: 13JJ3001)和新世纪高校优秀人才计划(批准号: NCET-12-0142)资助的课题.
      Corresponding author: Yang Jun-Bo, yangjunbo@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60907003, 61805278, 12272407, 62275269, 62275271), the National Key R&D Program of China (Grant No. 2022YFF0706005), the China Postdoctoral Science Foundation (Grant No. 2018M633704), the Scientific Research Program of National University of Defense Technology, China (Grant Nos. JC13-02-13, ZK17-03-01), the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ3001), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0142).
    [1]

    周治平 2021 硅基光电子学 (北京: 科学出版社) 第361页

    Zhou Z P 2021 Silicon-based Optoelectronics (Beijing: Science Press) p361

    [2]

    周培基, 李智勇, 俞育德, 余金中 2014 63 104211Google Scholar

    Zhou P J, Li Z Y, Yu Y D, Yu J Z 2014 Acta Phys. Sin. 63 104211Google Scholar

    [3]

    Arumugam M 2001 Pramana J. Phys. 57 849Google Scholar

    [4]

    Han L S, Kuo B P P, Alic N, Radic S 2018 Opt. Express 26 14800Google Scholar

    [5]

    Wang Y, Gao S T, Wang K, Skafidas E 2016 Opt. Lett. 41 2053Google Scholar

    [6]

    Sia J X B, Wang W J, Guo X, Zhou J, Zhang Z C, Rouifed M S, Li X, Qiao Z L, Liu C Y, Littlejohns C, Reed G T, Wang H 2019 IEEE Photonics J. 11 1Google Scholar

    [7]

    Nguyen V H, Kim I K, Seok T J 2020 Appl. Sci. 10 4507Google Scholar

    [8]

    Xu H N, Shi Y C 2016 Opt. Lett. 41 5047Google Scholar

    [9]

    Chung K K, Chan H P, Chu P L 2006 Opt. Commun. 267 367Google Scholar

    [10]

    Tao S H, Fang Q, Song J F, Yu M B, Lo G Q, Kwong D L 2008 Opt. Express 16 21456Google Scholar

    [11]

    Zhang Y, Qin X J, Wang J D, Yu Y F, Wei Z J, Zhang Z M 2022 Chin. Opt. Lett. 20 122701Google Scholar

    [12]

    Wu Q, Zhu Y X, Zhuge Q B, Hu W S 2022 J. Lightwave Technol. 40 7297Google Scholar

    [13]

    Wang X W, Chen Z W, Yin M Z, Wang W, Li Z B, Ni W H, Li F 2022 J. Lightwave Technol. 41 2323Google Scholar

    [14]

    Zhai W L, Wen A J, Gao Y S, Shan D J, Fan Y Y 2022 IEEE T. Microw. Theory 70 1821Google Scholar

    [15]

    Zhu S Y, Liu B, Ren J X, Wu X Y, Mao Y Y, Bai Y, Zhang H J, Yuan L Z, Zhang M T, Zhu X 2022 J. Lightwave Technol. 40 4599Google Scholar

    [16]

    Liu Y, Ding R, Li Q, Xuan Z, Li Y C, Yang Y S, Lim A E J, Lo P G Q, Bergman K, Baehr-Jones T, Hochberg M 2014 Optical Fiber Communications Conference and Exhibition San Francisco, USA, March 09–13, 2014 pTh4G.6

    [17]

    Yu Y, Chen G Y, Sima C T, Zhang X L 2017 Opt. Express 25 28330Google Scholar

    [18]

    Sun C L, Wu W H, Yu Y, Chen G Y, Zhang X L, Chen X, Thomson D J, Reed G T 2018 Nanophotonics 7 1571Google Scholar

    [19]

    Zhou D, Sun C L, Lai Y X, Yu Y, Zhang X L 2019 Opt. Express 27 10798Google Scholar

    [20]

    Xu L, Leijtens X J M, Docter B, de Vries T, Smalbrugge E, Karouta F, Smit M K 2009 35th European Conference on Optical Communication Vienna, Austria, September 20–24, 2009 p24

    [21]

    Ou K, Yu F L, Li G H, Wang W J, Miroshnichenko A E, Huang L J, Wang P, Li T X, Li Z F, Chen X S, Lu W 2020 Sci. Adv. 6 eabc0711Google Scholar

    [22]

    Tian Sh N, Guo H M, Hu J B, Zhuang S L 2019 Opt. Express 27 680Google Scholar

    [23]

    Sakamoto J, Goh T, Katayose S, Kasahara R, Hashimoto T 2019 Opt. Commun. 433 221Google Scholar

    [24]

    Dong F X, Liu A J, Ma P J, Zheng W H 2018 J. Phys. D: Appl. Phys. 51 495101Google Scholar

    [25]

    Michinel H, Costa M F, Frazao O, Pant B, Zhang W W, Tran D, Banakar M, Du H, Yan X Z, Littlejohns C G, Reed G T, Thomson D J 2020 EPJ Web of Conferences 238 1007Google Scholar

    [26]

    Chen H B, He Z J, Wang W 2018 Prog. Electromagn. Res. Lett. 75 47Google Scholar

    [27]

    Dai D X, Wang J 2014 IEEE Photonics Soc. Newslett. 28 8

    [28]

    Dai D X, Bowers J E 2011 Opt. Express 19 10940Google Scholar

    [29]

    Dai D X, Wang J, Shi Y C 2013 Opt. Lett. 38 1422Google Scholar

    [30]

    Chesca B, John D, Cantor R 2021 Appl. Phys. Lett. 118 42601Google Scholar

    [31]

    Nath J P, Dhingra N, Saxena G J, Sharma E K 2020 IEEE Photonics Technol. Lett. 32 595Google Scholar

    [32]

    Jiang X P, Yuan H, He X, Du T, Ma H S, Li X, Luo M Y, Zhang Z J, Huan C, Yu Y, Zhu G Y, Yan P G, Wu J G, Zhang Z F, Yang J B 2023 Nanophotonics 12 1891Google Scholar

    [33]

    Maidment P, Sorel M 2022 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, May 15–20, 2022 p1

    [34]

    Jiang X P, Yuan H, Chen D B, Zhang Z J, Du T, Ma H S, Yang J B 2021 Adv. Opt. Mater. 9 2100575Google Scholar

    [35]

    Jiang X P, Zhang Z J, Ma H S, Du T, Luo M Y, Liu D Q, Yang J B 2022 Opt. Express 30 18250Google Scholar

    [36]

    Chang W J, Xu S Y, Cheng M F, Liu D M, Zhang M M 2020 Opt. Express 28 28343Google Scholar

    [37]

    Shastri B J, Tait A N, Ferreira D L T, Pernice W H P, Bhaskaran H, Wright C D, Prucnal P R 2021 Nat. Photonics 15 102Google Scholar

    [38]

    Li G H Y, Sekine R, Nehra R, Gray R M, Ledezma L, Guo Q S, Marandi A 2023 Nanophotonics 12 847Google Scholar

    [39]

    Yeung C, Pham B, Tsai R, Fountaine K T, Raman A P 2022 ACS Photonics 10 884Google Scholar

    [40]

    Jiang L, Li X Z, Wu Q X, Wang L H, Gao L 2021 Opt. Express 29 2521Google Scholar

    [41]

    Meng C, Qiu J F, Tian Y, Ye Z, Wu J 2016 15th International Conference on Optical Communications and Networks (ICOCN) Hangzhou, China, September 24–27, 2016 p1

    [42]

    An S S, Fowler C, Zheng B W, Shalaginov M Y, Tang H, Li H, Zhou L, Ding J, Agarwal A M, Rivero-Baleine C, Richardson K A, Gu T, Hu J J, Zhang H L 2019 ACS Photonics 6 3196Google Scholar

    [43]

    Aoad A, Simsek M, Aydin Z 2017 Int. J. Numer. Model. 30 2129Google Scholar

    [44]

    Ma L F, Li J, Liu Z H, Zhang Y X, Zhang N E, Zheng S Q, Lu C C 2021 Chin. Opt. Lett. 19 11301Google Scholar

    [45]

    Liu Y J, Sun W Z, Xie H C, Zhang N, Xu K, Yao Y, Xiao S M, Song Q H 2018 Opt. Lett. 43 2482Google Scholar

    [46]

    An X P, Cao Y, Wei Y X, Zhou Z H, Hu T, Feng X, He G Q, Zhao M, Yang Z Y 2021 Opt. Lett. 46 3881Google Scholar

    [47]

    Wiecha P R, Arbouet A, Girard C, Muskens O L 2021 Photonics Res. 9 182Google Scholar

    [48]

    Zeng Z S, Lu L H, He P X, Liu D M, Zhang M M 2021 IEEE Photonics Technol. Lett. 33 1289Google Scholar

    [49]

    Yeung C, Ho D, Zhang Z, Raman A P, Pham B, Fountaine K T, Levy K 2022 ACS Photonics 9 1577Google Scholar

    [50]

    Yu Z J, Cui H R, Sun X K 2017 Photonics Res. 5 15Google Scholar

    [51]

    Ma T G, Tobah M, Wang H Z, Guo L J 2022 Opto-Electronic Science 1 210011Google Scholar

    [52]

    Schubert M F, Cheung A, Williamson I, Spyra A, Alexander D H 2022 ACS Photonics 9 2327Google Scholar

    [53]

    Hodge J A, Mishra K V, Zaghloul A I 2021 arXiv: 2101.09131 [physics. app-ph

    [54]

    Campbell S D, Werner D H, Werner P L 2021 Proc. SPIE 11769 117690NGoogle Scholar

    [55]

    Deotare P B 2012 Ph. D. Dissertation (Boston: Harvard University

    [56]

    Urban P J, Pluk E G C, KleIn E J, Koonen A M J, Khoe G D, de Waardt H 2006 2nd Institution of Engineering and Technology International Conference Osaka, Japan, June 21–22, 2006 p93

    [57]

    Shen Y C, Harris N C, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S, Larochelle H, Englund D, Soljačić M 2017 Nat. Photonics 11 441Google Scholar

    [58]

    Yu T, Ma X, Pastor E, George J K, Wall S, Miscuglio M, Simpson R E, Sorger V J 2021 arXiv: 2102.10398 [physics. optics

    [59]

    Wu C M, Yu H S, Lee S, Peng R M, Takeuchi I, Li M 2021 Nat. Commun. 12 96Google Scholar

    [60]

    Chen H, Li J T, Shang Z Y, Wang G Q, Zhang Z M, Zhao Z X, Zhang M Y, Yin J D, Wang J Z, Guo K, Yang J B, Yan P G 2022 Laser Photonics Rev. 16 2200254Google Scholar

    [61]

    Yang K Y, Skarda J, Cotrufo M, Dutt A, Ahn G H, Sawaby M, Vercruysse D, Arbabian A, Fan S H, Alù A, Vučković J 2020 Nat. Photonics 14 369Google Scholar

    [62]

    Wu Y T, Shi Y C, Zhao Y, Li L Y, Wu P H, Dai P, Fang T, Chen X F 2019 Opt. Express 27 38541Google Scholar

    [63]

    Huang L C, Whitehead J, Colburn S, Majumdar A 2020 Photonics Res. 8 1613Google Scholar

    [64]

    Guo L H, Hu Z L, Wan R Q, Long L Y, Li T, Yan J C, Lin Y, Zhang L, Zhu W H, Wang L C 2018 Nanophotonics 8 171Google Scholar

    [65]

    Ossiander M, Meretska M L, Hampel H K, Lim S W D, K N, Jauk T, Capasso F, Schultze M 2023 Science 380 59Google Scholar

    [66]

    Li T Y, Xu X H, Fu B Y, Wang S M, Li B J, Wang Z L, Zhu S N 2021 Photonics Res. 9 1062Google Scholar

    [67]

    Guo W P, Liang W Y, Cheng C W, Wu W L, Wang Y T, Sun Q, Zu S, Misawa H, Cheng P J, Chang S W, Ahn H, Lin M, Gwo S 2020 Nano Lett. 20 2857Google Scholar

    [68]

    Ollanik A J, Smith J A, Belue M J, Escarra M D 2018 ACS Photonics 5 1351Google Scholar

    [69]

    Huang J, Ma H S, Chen D B, Yuan H, Zhang J P, Li Z K, Han J M, Wu J G, Yang J B 2021 Nanophotonics 10 1011Google Scholar

    [70]

    Sanchis P, Villalba P, Cuesta F, Hakansson A, Griol A, Galan J V, Brimont A, Marti J 2009 Opt. Lett. 34 2760Google Scholar

    [71]

    Yu Z J, Cui H R, Sun X K 2017 Opt. Lett. 42 3093Google Scholar

    [72]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar

    [73]

    Kennedy J, Eberhart R 1995 ICNN95-International Conference on Neural Networks Perth, WA, Australia, November 27–December 1, 1995 p1942

    [74]

    Chen W W, Zhang B H, Wang P J, Dai S X, Liang W, Li H X, Fu Q, Li J, Li Y, Dai T G, Yu H, Yang J Y 2020 Opt. Express 28 30701Google Scholar

    [75]

    Qin F, Liu B Q, Zhu L W, Lei J, Fang W, Hu D J, Zhu Y, Ma W D, Wang B W, Shi T, Cao Y Y, Guan B O, Qiu C W, Lu Y R, Li X P 2021 Nat. Commun. 12 32Google Scholar

    [76]

    Chen W W, Lin J, Li H X, Wang P J, Dai S X, Liu Y X, Yao R K, Li J, Fu Q, Dai T G, Yang J Y 2022 Opt. Express 30 46236Google Scholar

    [77]

    Seldowitz M A, Allebach J P, Sweeney D W 1987 Appl. Optics 26 2788Google Scholar

    [78]

    Shen B, Wang P, Polson R, Menon R 2014 Opt. Express 22 27175Google Scholar

    [79]

    Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378Google Scholar

    [80]

    Wen X, Xu K, Song Q H 2016 Photonics Res. 4 209Google Scholar

    [81]

    Zhou F Y, Lu L L Z, Zhang M M, Chang W J, Li D Y, Deng L, Liu D M 2017 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, May 14–19, 2017 p1

    [82]

    Cao Y, Li S T, Petzold L, Serban R 2003 SIAM J. Sci. Comput. 24 1076Google Scholar

    [83]

    Jameson A 2003 Aerodynamic Shape Optimization Using the Adjoint Method (Brussels: Von Karman Institute

    [84]

    McNamara A, Treuille A, Popović Z 2004 ACM Transactions On Graphics (TOG) 3 449Google Scholar

    [85]

    Pedersen C B W, Allinger P 2006 IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Copenhagen, Denmark, 2006 p229

    [86]

    Lalau-Keraly C M, Bhargava S, Miller O D, Yablonovitch E 2013 Opt. Express 21 21693Google Scholar

    [87]

    Hughes T W, Minkov M, Williamson I A D, Fan S H 2018 ACS Photonics 5 4781Google Scholar

    [88]

    Michaels A, Yablonovitch E 2018 Opt. Express 26 4766Google Scholar

    [89]

    Dai Y H 2002 SIAM J. Optimiz. 13 693Google Scholar

    [90]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [91]

    Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y 2013 arXiv: 1312.6229 [cs.CV

    [92]

    Girshick R, Donahue J, Darrell T, Malik J 2016 IEEE T. Pattern Anal. 38 142Google Scholar

    [93]

    Ren S Q, He K M, Girshick R, Sun J 2017 IEEE T. Pattern Anal. 39 1137Google Scholar

    [94]

    Redmon J, Divvala S, Girshick R, Farhadi A 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, USA, June 27–30, 2016 p779

    [95]

    汪宋, 费树岷 2019 工业控制计算机 32 103

    Wang S, Fei S 2019 Industrial Control Computer 32 103

    [96]

    Lin T Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S 2016 arXiv: 1612.03144 [cs.CV

    [97]

    Joseph R A F 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Honolulu, USA, July 21–26, 2017 p6517

    [98]

    Lin T Y, Goyal P, Girshick R, He K M, Dollar P 2020 IEEE Trans. Pattern Anal. 42 318Google Scholar

    [99]

    Redmon J, Farhadi A 2018 arXiv: 1804.02767v1 [cs.CV

    [100]

    Tan M X, Pang R M, Le Q V 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Seattle, USA, June 13–19, 2020 p10778

    [101]

    Bahdanau D, Cho K, Bengio Y 2014 Statistics 3 1467Google Scholar

    [102]

    Nguyen H Q, Nguyen T M, Vu H H, Nguyen V V, Nguyen P T, Dao T N M, Tran K H, Dinh K Q 2019 6th NAFOSTED Conference on Information and Computer Science (NICS) Hanoi, Vietnam, December 12–13, 2019 p240

    [103]

    Wu Y H, Schuster M, Chen Z F, Le Q V, Norouzi M 2016 arXiv: 1609.08144 [cs.CL

    [104]

    Cho K, van Merrienboer B, Bahdanau D, Bengio Y 2014 Statistics 2 1467Google Scholar

    [105]

    Sennrich R, Haddow B, Birch A 2015 arXiv: 1511.06709 [cs.CL

    [106]

    Johnson M, Schuster M, Le Q V, Krikun M, Wu Y H, Chen Z F, Thorat N, Viégas F, Wattenberg M, Corrado G, Dean M H 2017 T. Assoc. Comput. Ling. 5 339Google Scholar

    [107]

    Jean S, Cho K, Memisevic R, Bengio Y 2014 arXiv: 1412.2007 [cs.CL

    [108]

    Tu Z P, Lu Z D, Liu Y, Liu X H, Li H 2016 arXiv: 1601.04811 [cs.CL

    [109]

    Gao L, Mi H B, Zhu B Q, Feng D W, Li Y C, Peng Y X 2019 IEEE Access 7 105319Google Scholar

    [110]

    Li Y C, Feng D W, Lu M L, Li D S 2019 In Knowledge Science, Engineering and Management: 12th International Conference, KSEM Athens, Greece, August 28–30, 2019 p37

    [111]

    Li Y C, Chen H X, Sun X G, Sun Z C, Li L, Cui L Z, Yu P S, Xu G D 2021 CIKM '21: Proceedings of the 30th ACM International Conference on Information & Knowledge Management Queensland Australia, November 1–5, 2021 p988

    [112]

    Li Y C, Chen H X, Li Y L, Li L, Yu P S, Xu G D 2023 IEEE T. Knowl. Data En. (early access) DOI: 10.1109/TKDE.2023.3237741

    [113]

    Chen H X, Li Y C, Sun X G, Xu G D, Yin H Z 2021 WSDM '21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining Virtual Event Israel, March 8–12, 2021 p1056

    [114]

    Hammond A M, Camacho R M 2019 Opt. Express 27 29620Google Scholar

    [115]

    Tu X, Xie W S, Chen Z M, Ge M F, Huang T Y, Song C L, Fu H Y 2021 J. Lightwave Technol. 39 2790Google Scholar

    [116]

    An S S, Zheng B W, Shalaginov M Y, Tang H, Li H, Zhou L, Dong Y X, Haerinia M, Agarwal A M, Rivero B C, Kang M, Richardson K A, Gu T, Hu J J, Fowler C, Zhang H L 2022 Adv. Opt. Mater. 10 2102113Google Scholar

    [117]

    Liu D J, Tan Y X, Khoram E F, Yu Z F 2018 ACS Photonics 5 1365Google Scholar

    [118]

    Ren Y M, Zhang L X, Wang W Q, Wang X Y, Lei Y F, Xue Y L, Sun X C, Zhang W F 2021 Photonics Res. 9 B247Google Scholar

    [119]

    Zhao Z Y, You J, Zhang J, Du S Y, Tao Z L, Tang Y H, Jiang T 2022 Nanophotonics 11 4465Google Scholar

    [120]

    Yeung C, Tsai R, Pham B, King B, Kawagoe Y, Ho D, Liang J, Knight M W, Raman A P 2021 Adv. Opt. Mater 9 2100548Google Scholar

    [121]

    Meindl J D 2003 Comput. Sci. Eng. 5 20Google Scholar

    [122]

    Mack C A. 2011 IEEE T. Semiconduct. M. 24 202Google Scholar

    [123]

    Schaller R R 1997 IEEE Spectrum 34 52Google Scholar

    [124]

    Zhang Y, Yang S Y, Lim A E J, Lo G Q, Galland C, Baehr-Jones T, Hochberg M 2013 Opt. Express 21 1310Google Scholar

    [125]

    Kumari S, Prince S 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET) Chennai, India, March 24–26, 2022 p231

    [126]

    Chang W J, Ren X S, Ao Y Q, Lu L H, Cheng M F, Deng L, Liu D M, Zhang M M 2018 Opt. Express 26 24135Google Scholar

    [127]

    Xu J F, Liu Y J, Guo X Y, Song Q H, Xu K 2022 Opt. Express 30 26266Google Scholar

    [128]

    Zhu J B, Chao Q, Huang H Y, Zhao Y X, Li Y, Tao L, She X J, Liao H, Huang R, Zhu Z J, Liu X, Sheng Z, Gan F W 2021 Appl. Opt. 60 413Google Scholar

    [129]

    Sheng J C, Liu Y J, Xu K 2019 The International Photonics and Optoelectronics Meeting Wuhan China, November 11–14, 2019 paper OW3D.6

    [130]

    Chang W J, Lu L L Z, Ren X S, Li D Y, Pan Z P, Cheng M F, Liu D M, Zhang M M 2018 Opt. Express 26 8162Google Scholar

    [131]

    Ding Y H, Xu J, Da R F, Huang B, Ou H Y, Peucheret C 2013 Opt. Express 21 10376Google Scholar

    [132]

    Xie H C, Liu Y J, Wang S, Wang Y J, Yao Y, Song Q H, Du J B, He Z Y, Xu K 2020 IEEE Photonics Technol. Lett. 32 166Google Scholar

    [133]

    Zhou H L, Wang Y L, Gao X Y, Gao D S, Dong J J, Huang D M, Li F, Alexander W P K, Zhang X L 2022 Laser Photonics Rev. 16 2100521Google Scholar

    [134]

    Wang J, He S L, Dai D X 2014 Laser Photonics Rev. 8 L18Google Scholar

    [135]

    Li C L, Liu D J, Dai D X 2019 Nanophotonics 8 227Google Scholar

    [136]

    Jiang X H, Wu H, Dai D X 2018 Opt. Express 26 17680Google Scholar

    [137]

    Chang W J, Lu L L Z, Liu D M, Zhang M M 2018 Optical Fiber Communication (OFC) Conference San Diego, USA, March 11–15, 2018 p1

    [138]

    Gabrielli L H, Liu D, Johnson S G, Lipson M 2012 Nat. Commun. 3 1217Google Scholar

    [139]

    Liu Y J, Xu K, Wang S, Shen W H, Xie H C, Wang Y J, Xiao S M, Yao Y, Du J B, He Z Y, Song Q H 2019 Nat. Commun. 10 3263Google Scholar

    [140]

    Wu H, Tan Y, Dai D X 2017 Opt. Express 25 6069Google Scholar

    [141]

    Huang J, Yang J B, Chen D B, He X, Han Y X, Zhang J J, Zhang Z J 2018 Photonics Res. 6 574Google Scholar

    [142]

    Piggott A Y, Petykiewicz J, Su L, Vučković J 2017 Sci. Rep. 7 1786Google Scholar

    [143]

    Yu L H, Yin Y L, Shi Y C, Dai D X, He S L 2016 J. Operat. Theo. 3 159Google Scholar

    [144]

    Gentry C M, Zeng X, Popović M A 2014 Opt. Lett. 39 5689Google Scholar

    [145]

    Wuttig M, Bhaskaran H, Taubner T 2017 Nat. Photonics 11 465Google Scholar

    [146]

    Sherwood-Droz N, Wang H, Chen L, Lee B G, Lipson M 2008 Opt. Express 16 15915Google Scholar

    [147]

    Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M 2020 Nat. Photonics 14 37Google Scholar

    [148]

    Gong Z L, Yang F Y, Wang L T, Chen R, Wu J Q, Grigoropoulos C P, Yao J 2021 J. Appl. Phys. 129 30902Google Scholar

    [149]

    Fang Z R, Chen R, Tara V, Majumdar A 2023 Sci. Bull. 68 783Google Scholar

    [150]

    Xu P P, Zheng J J, Doylend J K. , Majumdar A 2019 ACS Photonics 6 553Google Scholar

    [151]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G H, Teng J H, Zheludev N I 2016 Nat. Photonics 10 60Google Scholar

    [152]

    Zhang Y F, Fowler C, Liang J H, Azhar B, Shalaginov M Y, Deckoff-Jones S, An S S, Chou J B, Roberts C M, Liberman V, Kang M, Ríos C, Richardson K A, Rivero-Baleine C, Gu T, Zhang H L, Hu J J 2021 Nat. Nanotechnol. 16 661Google Scholar

    [153]

    Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M 2008 Nat. Mater. 7 653Google Scholar

    [154]

    Kim S, Burr G W, Nam W K Sung W 2019 MRS Bull. 44 710Google Scholar

    [155]

    Loke D, Lee T H, Wang W J, Zhao R, Shi L P, Yeo Y C, Chong T C, Elliott S R 2012 Science 336 1566Google Scholar

    [156]

    Orava J, Greer A L, Gholipour B, Hewak D W, Smith C E 2012 Nat. Mater. 11 279Google Scholar

    [157]

    Li W F, Cao X Y, Song S N, Wu L S, Wang R B, Jin Y, Song Z T, Wu A M 2022 Laser Photonics Rev. 16 2100717Google Scholar

    [158]

    Stegmaier M, Iacute C R, Bhaskaran H, Wright C D, Pernice W H P 2016 Adv. Opt. Mater. 5 1600346Google Scholar

    [159]

    Feldmann J, Youngblood N, Wright C D, Bhaskaran H, Pernice W H P 2019 Nature 569 208Google Scholar

    [160]

    Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, Le Gallo M, Fu X, Lukashchuk A, Raja A. S, Liu J, Wright C D, Sebastian A, Kippenberg T J, Pernice W H P, Bhaskaran H 2021 Nature 589 52Google Scholar

    [161]

    Pernice W H P, Bhaskaran H 2012 Appl. Phys. Lett. 101 171101Google Scholar

    [162]

    Raoux S, Xiong F, Wuttig M, Pop E 2014 MRS Bull. 39 703Google Scholar

    [163]

    Zhang Y F, Chou J B, Li J Y, Li H S, Du Q Y, Yadav A, Zhou Si, Shalaginov M Y, Fang Z R, Zhong H K, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H T, Kang M, Gu T, Warner J, Liberman V, Richardson K, Hu J J 2019 Nat. Commun. 10 4279Google Scholar

    [164]

    Fang Z R, Zheng J J, Saxena A, Whitehead J, Chen Y Y, Majumdar A 2021 Adv. Opt. Mater. 9 2002049Google Scholar

    [165]

    Delaney M, Zeimpekis I, Lawson D, Hewak D W, Muskens O L 2020 Adv. Funct. Mater. 30 2002447Google Scholar

    [166]

    Yang S, Shamim A, Vaseem M 2019 Adv. Mater. Technol. 4 11Google Scholar

    [167]

    Wang N N, Li T T, Sun B S, Wang Z, Zhou L J, Gu T Y 2021 Opt. Lett. 46 4088Google Scholar

    [168]

    Chen H X, Jia H, Wang T, Tian Y H, Yang J H 2020 J. Lightwave Technol. 38 1874Google Scholar

    [169]

    Ma H S, Yang J B, Huang J, Zhang Z J, Zhang K W 2021 Results Phys. 26 104384Google Scholar

    [170]

    Delaney M, Zeimpekis I, Du H, Yan X Z, Banakar M, Thomson D J, Hewak D W, Muskens O L 2021 Sci. Adv. 7

    [171]

    Yuan H, Wu J G, Zhang J P, Pu X, Zhang Z F, Yu Y, Yang J B 2022 Nanomaterials 12 669Google Scholar

    [172]

    Piggott A Y, Lu J, Babinec T M, Lagoudakis K G, Petykiewicz J, Vučković J 2014 Sci. Rep. 4 7210Google Scholar

    [173]

    Ma H S, Luo M Y, He J, Du T, Zhang Z J, Jiang X P, He X, Fang L, Yang J B 2022 J. Lightwave Technol. 40 7869Google Scholar

    [174]

    Ma H S, Du T, Zhang Z J, Jiang X P, Fang L, Yang J B 2023 Opt. Commun. 526 128912Google Scholar

    [175]

    Dai D X, Wu H 2016 Opt. Lett. 41 2346Google Scholar

    [176]

    Huang J, Yang J B, Chen D B, Bai W, Han J M, Zhang Z J, Zhang J J, He X, Han Y X, Liang L M 2020 Nanophotonics 9 159Google Scholar

    [177]

    Ruan X K, Li H, Chu T 2022 J. Lightwave Technol. 40 7142Google Scholar

    [178]

    Li C L, Zhang M, Xu H N, Tan Y, Shi Y C, Dai D X 2021 PhotoniX 2 1991Google Scholar

    [179]

    Dai D X, Li C L, Wang S P, Wu H, Shi Y C, Wu Z H, Gao S M, Dai T G, Yu H, Tsang H K 2018 Laser Photonics Rev. 12 1700109Google Scholar

    [180]

    Shen W W, Chen K N 2017 Nanoscale Res. Lett. 12 56Google Scholar

    [181]

    Moreira R, Barton J, Belt M, Huffman T, Blumenthal D 2013 Advanced Photonics CongressIntegrated Photonics Research, Silicon and Nanophotonics Rio Grande, USA, July 14–17, 2013 paper IT2A.4

    [182]

    Sodagar M, Pourabolghasem R, Eftekhar A A, Adibi A 2014 Opt. Express 22 16767Google Scholar

    [183]

    Zheng X, Cunningham J E, Shubin I, Simons J, Asghari M, Feng D, Lei H, Zheng D, Liang H, Kung C C, Luff J, Sze T, Cohen D, Krishnamoorthy A V 2008 Opt. Express 16 15052Google Scholar

    [184]

    Yu Z X, Qiu J F, Dong Z L, Zheng L, Guo H X, Wu J 2018 Asia Communications and Photonics Conference (ACP) Hangzhou, China, October 26–29, 2018 p1

  • 图 1  典型的GA流程图及GA在片上光子器件设计领域的应用 (a) 一个典型的GA流程图; (b) 利用GA设计的模式可扩展的交叉波导[70]; (c) 利用GA设计的超紧凑偏振旋转器[71]; (d) 利用GA设计的波长路由器[72]

    Fig. 1.  Typical flowchart of GA and its application in on-chip photonic devices design: (a) A typical GA flowchart; (b) mode-extensible crossing waveguide designed by GA[70]; (c) ultra-compact polarization rotator designed by GA[71]; (d) wavelength router designed by GA[72].

    图 2  PSO算法的流程图及PSO算法在光子器件设计领域的应用 (a) PSO算法的流程图; (b) 利用PSO算法设计的片上偏振分束器[74]; (c) 利用PSO算法优化设计的单层超临界透镜的SEM图[75]; (d) 利用PSO算法设计的片上多模式功率分束器[76]

    Fig. 2.  Flowchart of PSO algorithm and its application in photonic devices design: (a) Flowchart of PSO algorithm; (b) on-chip polarization beam splitter designed by PSO algorithm[74]; (c) SEM image of single-layer supercritical lens optimized by PSO algorithm[75]; (d) on-chip multi-mode power beam splitter designed by PSO algorithm[76].

    图 3  DBS算法的流程图及DBS算法在光子器件设计领域的应用 (a) DBS算法具体优化流程图; (b) 基于DBS算法设计的偏振分束器的结构图, 以及波长为1550 nm的TE和TM通过该器件时的光场图[79]; (c) 利用改良的DBS算法设计的离散化纳米结构的侧视图[80]; (d) 利用DBS算法设计的双通道波长解复用器及不同波长的光通过该器件时的光场图[81]

    Fig. 3.  Flowchart of DBS algorithm and its application in photonic device design: (a) Flowchart of DBS algorithm; (b) structure diagram of the polarization beam splitter designed by DBS algorithm, and the light field diagram of TE and TM with a wavelength of 1550 nm passing through the device[79]; (c) side view of the discretized nanostructures designed by the improved DBS algorithm[80]; (d) dual-channel wavelength demultiplexer designed by DBS algorithm, and the optical field diagram when light of different wavelengths passing through the device[81].

    图 4  AM在光子器件设计领域的应用 (a) 利用AM设计的功率分束器[86]; (b), (c) 基于AM提出的两种非线性光子器件[87]; (d) 使用AM优化的垂直光栅耦合器[88]

    Fig. 4.  Application of AM in photonic device design: (a) Power splitter designed by AM[86]; (b), (c) two nonlinear photonic devices designed by AM[87]; (d) vertical grating couplers optimized by AM[88].

    图 5  神经网络在光子器件设计领域的应用 (a) 基于人工神经网络架构设计的布拉格光栅[114]; (b) 利用深度神经网络设计的光栅耦合器[115]; (c) 用来预测超表面中的超原子光响应的PNN架构[116]

    Fig. 5.  Application of neural network in photonic device design: (a) Bragg grating based on ANN architecture[114]; (b) grating couplers designed using DNN[115]; (c) PNN architecture for predicting meta-atom light responses in metasurfaces[116].

    图 6  用来解决一些具体技术问题的神经网络架构 (a) “正、逆向串联”神经网络示意图以及利用该网络设计的多层膜系结构 [117]; (b) 基于GA的深度神经网络[118]; (c) 利用少样本数据增强迭代算法优化得到的二维可编程手性超材料[119]; (d) 一种基于全局深度学习的逆设计框架的训练和设计过程[120]

    Fig. 6.  Neural network architectures used to solve some specific technical problems: (a) Schematic of the “forward and backward series” neural network and the multilayer structure designed by this network[117]; (b) GA-based DNN[118]; (c) two-dimensional programmable chiral metamaterial optimized by data enhanced iterative few-sample algorithm[119]; (d) training and design process of an inverse design framework based on global deep learning[120].

    图 7  几种由不同方法设计的功率分束器及对比 (a)利用PSO算法设计的波长不敏感的单模功率分束器[124]; (b) 利用传统方法设计的基于S形曲线脊波导的波长不敏感单模功率分束器[125]; (c) 传统方法设计双模功率分束器的原理示意图(左)和基于对称优化的DBS算法设计的双模功率分束器(右) [126]; (d) 利用多种算法分阶段优化设计的超宽波段适用的双模功率分束器[127]; (e) 基于传统方法设计的任意分束比的功率分束器架构示意图[128]; (f) 基于QPSO算法设计的几种不同分束比的功率分束器[129]

    Fig. 7.  Several power splitters designed by different methods and their comparison: (a) Wavelength insensitive single-mode power splitter designed by PSO algorithm[124]; (b) wavelength insensitive single-mode power splitter based on S-shaped curved ridge waveguide designed by conventional methods[125]; (c) schematic of dual-mode power splitter designed by conventional method (left) and dual-mode power splitter designed by symmetric-optimize-DBS algorithm (right)[126]; (d) dual-mode power splitter suitable for ultra-wide band optimized by multiple algorithms[127]; (e) schematic of the power splitter with arbitrary split ratio designed by conventional methods[128]; (f) power splitters with different split ratios designed by QPSO algorithm[129].

    图 8  几种由不同方法设计的模式(分解)复用器及对比 (a) 基于DBS算法设计的二阶模式复用器[130]; (b)基于锥形定向耦合器的二阶模式复用器[131]; (c), (d) 两种由DBS算法设计的四阶模式(分解)复用器[132,133]; (e)八阶模式/偏振(分解)复用器的光学显微镜成像图[134]

    Fig. 8.  Several mode (de)multiplexers designed by different methods and their comparison: (a) Two-mode multiplexer based on the DBS algorithm[130]; (b) two-mode multiplexer based on conical directional coupler[131]; (c), (d) two kinds of four-mode (de)multiplexers designed by the DBS algorithm[132,133]; (e) optical microscope image of the eight-mode/polarization (de)multiplexers[134].

    图 9  几种由不同方法设计的单、多模弯曲波导及对比 (a) 基于DBS算法设计的单模式90°弯曲波导[133]; (b) 传统方法设计的基于修正欧拉曲线的多模90°弯曲波导[136]; (c) 利用DBS算法设计的双模90°弯曲波导[137]; (d) 基于TO的使用了灰度刻蚀技术的三模90°弯曲波导[138]; (e) 利用DBS算法设计的三模90°弯曲波导[139]; (f) 利用DBS算法设计的三模90°弯曲波导的模拟光场分布示意图

    Fig. 9.  Comparison of several single- and multi-mode bending waveguides designed by different methods: (a) Single-mode 90° bending waveguide designed by DBS algorithm[133]; (b) four-mode 90° bending waveguide based on modified Euler curve designed by conventional methods[136]; (c) two-mode 90° bending waveguide designed by DBS algorithm[137]; (d) three-mode 90° bending waveguide based on TO using grayscale etching technology[138]; (e) three-mode 90° bending waveguide designed by the DBS algorithm[139]; (f) schematic of simulated light field distribution of the three-mode 90° bending waveguide in (e).

    图 10  几种利用智能设计方法优化传统光互连器件得到的结果及其对比器件 (a) 利用PSO算法优化反锥形耦合器结构设计出的片上偏振分束器[74]; (b) 完全基于传统耦合模理论设计的偏振分束器[140]; (c) 利用AM优化耦合区域间隙设计的几种用于不同波长条件下的偏振分束器, 以及其中的横向和纵向的模拟电磁场密度分布[141]; (d) 利用带有制造约束的水平集方法设计的功率分束器, 以及其中的模拟电磁场密度分布[142]

    Fig. 10.  Several results obtained by using intelligent design methods to optimize conventional optical interconnect devices, and their comparison devices: (a) On-chip polarization beam splitter designed by using the PSO algorithm to optimize the anti-conical coupler[74]; (b) polarization beam splitters designed by conventional methods[140]; (c) several polarization beam splitters designed for different wavelength conditions using the AM to optimize the coupling region gap, and their simulated electromagnetic field density distributions[141]; (d) power splitter designed using a level set method with manufacturing constraints, and the simulated electromagnetic field density distribution in it[142].

    图 11  相变材料的典型相变过程和相变材料在可调控光器件领域的应用 (a) 一个典型的相变过程的示意图; (b)基于相变材料设计的全光神经突触网络; (c) 基于相变材料设计的相变存储器单元; (d) 基于相变材料设计的可调控超表面

    Fig. 11.  Typical phase change process of phase change materials and their application in the field of controllable optical devices: (a) Diagram of a typical phase change process; (b) all-optical synaptic networks based on phase change materials; (c) phase-change memory cell based on phasechange material; (d) controllable metasurface based on phase change material.

    图 12  基于传统方法设计的可调控片上光互连器件 (a) 几种可调控方向性耦合开关的光学显微镜图和细节部分的SEM图[150]; (b) 一种高消光比的可调控光开关的结构示意图和调控效果光场图[157]

    Fig. 12.  Controllable on-chip optical interconnection devices designed by traditional methods: (a) Optical microscope images of several controllable directional coupling switches and the SEM images of their details[150]; (b) structural and performance of the optical switch with a high ER[157].

    图 13  利用智能设计方法设计的可调控片上光互连器件 (a) 基于DBS算法设计的一种可调控模式转换器[168]; (b) 基于DBS算法设计的可调控三模式纳米光子波导开关[169]; (c) 基于像素化相变材料设计的功率分束比可调的功率分束器[170]; (d) 基于DBS算法设计的任意功率分束比的功率分束器[171]

    Fig. 13.  Controllable on-chip optical interconnection devices designed by intelligent methods: (a) Controllable mode converter based on the DBS algorithm[168]; (b) controllable three-mode nanophotonic waveguide switch based on the DBS algorithm[169]; (c) power splitter with arbitrary split ratio based on pixelated phase change material[170]; (d) power splitter with arbitrary split ratio based on the DBS algorithm[171].

    图 14  智能化设计的多用途集成光互连器件 (a) 波长分解复用光栅耦合器的SEM成像图[172]; (b) 波长分解复用光栅耦合器的工作原理; (c) 模式转换偏振分束器的SEM成像图[79]; (d)不同偏振态的光输入模式转换偏振分束器后该器件横截面中的模拟电磁场密度分布[79]

    Fig. 14.  Multi-purpose integrated optical interconnection devices designed by intelligent methods: (a) SEM image of the wavelength demultiplexing grating coupler[172]; (b) working principle of the wavelength demultiplexing grating coupler; (c) SEM image of the mode-switching polarization beam splitter[79]; (d) the density distribution of the simulated electromagnetic field in the device[79].

    图 15  智能化设计的模块化集成光互连器件 (a) 模块化集成的可调谐模式产生器[173]; (b) 模块化集成的偏振转换器[174]; (c) 由光子晶体光栅和聚焦波长解复用器直接相连得到的模块化集成光互连器件[176]; (d) 模块化集成的偏振分束转换器, 由双层结构的偏振转换器和模式分解复用器直接相连而成[177]

    Fig. 15.  Modular integrated optical interconnect devices designed by intelligent methods: (a) Modular integrated tunable mode generator[173]; (b) modular integrated polarization converters[174]; (c) modular integrated focusing wavelength demultiplexer[176]; (d) modular integrated polarization beam-splitting converter[177].

    图 16  智能化设计的多层光互连系统 (a) 基于氮化硅波导的层间垂直耦合器[181]; (b) 利用GA设计的层间光栅耦合器[182]; (c) 基于硅波导的层间反射镜[183]; (d) 采用智能设计方法设计的硅层间光学通道[184]

    Fig. 16.  Multi-layer optical interconnection systems designed by intelligent methods: (a) Interlayer vertical coupler based on silicon nitride waveguide[181]; (b) interlayer grating coupler designed by the GA[182]; (c) interlayer reflectors based on silicon waveguides[183]; (d) silicon interlayer optical channel designed by intelligent method[184].

    表 1  相同功能的智能化设计和传统方法设计的功率分束器的尺寸对比

    Table 1.  Size comparison of power beam splitters designed by intelligent and conventional design methods with the same function.

    功率分束器类型智能化设计结果
    最大长度/μm
    传统设计结果
    最大长度/μm
    波长不敏感单模2>25
    双模2.88/5.4>200
    任意分束比1.5>45
    下载: 导出CSV

    表 2  相同(似)功能的智能化设计和传统方法设计的模式(分解)复用器的尺寸对比

    Table 2.  Size comparison of mode (de)multiplexers designed by intelligent and traditional design methods with the same (like) function.

    模式(分解)复用器类型智能化设计结果
    最大长度/μm
    传统设计结果
    最大长度
    二阶3十微米量级
    四阶/八阶(含偏振态)6/4.8百微米量级
    下载: 导出CSV

    表 3  相同(似)功能的智能化设计和传统方法设计的90°弯曲波导的尺寸对比

    Table 3.  Size comparison of bendings designed by intelligent and traditional design methods with the same (like) function.

    弯曲波导类型智能化设计结果
    转弯半径/μm
    传统设计结果
    转弯半径/μm
    三模2.7578.8
    其他多模<3.6(双模)45(4种TM模式)
    下载: 导出CSV
    Baidu
  • [1]

    周治平 2021 硅基光电子学 (北京: 科学出版社) 第361页

    Zhou Z P 2021 Silicon-based Optoelectronics (Beijing: Science Press) p361

    [2]

    周培基, 李智勇, 俞育德, 余金中 2014 63 104211Google Scholar

    Zhou P J, Li Z Y, Yu Y D, Yu J Z 2014 Acta Phys. Sin. 63 104211Google Scholar

    [3]

    Arumugam M 2001 Pramana J. Phys. 57 849Google Scholar

    [4]

    Han L S, Kuo B P P, Alic N, Radic S 2018 Opt. Express 26 14800Google Scholar

    [5]

    Wang Y, Gao S T, Wang K, Skafidas E 2016 Opt. Lett. 41 2053Google Scholar

    [6]

    Sia J X B, Wang W J, Guo X, Zhou J, Zhang Z C, Rouifed M S, Li X, Qiao Z L, Liu C Y, Littlejohns C, Reed G T, Wang H 2019 IEEE Photonics J. 11 1Google Scholar

    [7]

    Nguyen V H, Kim I K, Seok T J 2020 Appl. Sci. 10 4507Google Scholar

    [8]

    Xu H N, Shi Y C 2016 Opt. Lett. 41 5047Google Scholar

    [9]

    Chung K K, Chan H P, Chu P L 2006 Opt. Commun. 267 367Google Scholar

    [10]

    Tao S H, Fang Q, Song J F, Yu M B, Lo G Q, Kwong D L 2008 Opt. Express 16 21456Google Scholar

    [11]

    Zhang Y, Qin X J, Wang J D, Yu Y F, Wei Z J, Zhang Z M 2022 Chin. Opt. Lett. 20 122701Google Scholar

    [12]

    Wu Q, Zhu Y X, Zhuge Q B, Hu W S 2022 J. Lightwave Technol. 40 7297Google Scholar

    [13]

    Wang X W, Chen Z W, Yin M Z, Wang W, Li Z B, Ni W H, Li F 2022 J. Lightwave Technol. 41 2323Google Scholar

    [14]

    Zhai W L, Wen A J, Gao Y S, Shan D J, Fan Y Y 2022 IEEE T. Microw. Theory 70 1821Google Scholar

    [15]

    Zhu S Y, Liu B, Ren J X, Wu X Y, Mao Y Y, Bai Y, Zhang H J, Yuan L Z, Zhang M T, Zhu X 2022 J. Lightwave Technol. 40 4599Google Scholar

    [16]

    Liu Y, Ding R, Li Q, Xuan Z, Li Y C, Yang Y S, Lim A E J, Lo P G Q, Bergman K, Baehr-Jones T, Hochberg M 2014 Optical Fiber Communications Conference and Exhibition San Francisco, USA, March 09–13, 2014 pTh4G.6

    [17]

    Yu Y, Chen G Y, Sima C T, Zhang X L 2017 Opt. Express 25 28330Google Scholar

    [18]

    Sun C L, Wu W H, Yu Y, Chen G Y, Zhang X L, Chen X, Thomson D J, Reed G T 2018 Nanophotonics 7 1571Google Scholar

    [19]

    Zhou D, Sun C L, Lai Y X, Yu Y, Zhang X L 2019 Opt. Express 27 10798Google Scholar

    [20]

    Xu L, Leijtens X J M, Docter B, de Vries T, Smalbrugge E, Karouta F, Smit M K 2009 35th European Conference on Optical Communication Vienna, Austria, September 20–24, 2009 p24

    [21]

    Ou K, Yu F L, Li G H, Wang W J, Miroshnichenko A E, Huang L J, Wang P, Li T X, Li Z F, Chen X S, Lu W 2020 Sci. Adv. 6 eabc0711Google Scholar

    [22]

    Tian Sh N, Guo H M, Hu J B, Zhuang S L 2019 Opt. Express 27 680Google Scholar

    [23]

    Sakamoto J, Goh T, Katayose S, Kasahara R, Hashimoto T 2019 Opt. Commun. 433 221Google Scholar

    [24]

    Dong F X, Liu A J, Ma P J, Zheng W H 2018 J. Phys. D: Appl. Phys. 51 495101Google Scholar

    [25]

    Michinel H, Costa M F, Frazao O, Pant B, Zhang W W, Tran D, Banakar M, Du H, Yan X Z, Littlejohns C G, Reed G T, Thomson D J 2020 EPJ Web of Conferences 238 1007Google Scholar

    [26]

    Chen H B, He Z J, Wang W 2018 Prog. Electromagn. Res. Lett. 75 47Google Scholar

    [27]

    Dai D X, Wang J 2014 IEEE Photonics Soc. Newslett. 28 8

    [28]

    Dai D X, Bowers J E 2011 Opt. Express 19 10940Google Scholar

    [29]

    Dai D X, Wang J, Shi Y C 2013 Opt. Lett. 38 1422Google Scholar

    [30]

    Chesca B, John D, Cantor R 2021 Appl. Phys. Lett. 118 42601Google Scholar

    [31]

    Nath J P, Dhingra N, Saxena G J, Sharma E K 2020 IEEE Photonics Technol. Lett. 32 595Google Scholar

    [32]

    Jiang X P, Yuan H, He X, Du T, Ma H S, Li X, Luo M Y, Zhang Z J, Huan C, Yu Y, Zhu G Y, Yan P G, Wu J G, Zhang Z F, Yang J B 2023 Nanophotonics 12 1891Google Scholar

    [33]

    Maidment P, Sorel M 2022 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, May 15–20, 2022 p1

    [34]

    Jiang X P, Yuan H, Chen D B, Zhang Z J, Du T, Ma H S, Yang J B 2021 Adv. Opt. Mater. 9 2100575Google Scholar

    [35]

    Jiang X P, Zhang Z J, Ma H S, Du T, Luo M Y, Liu D Q, Yang J B 2022 Opt. Express 30 18250Google Scholar

    [36]

    Chang W J, Xu S Y, Cheng M F, Liu D M, Zhang M M 2020 Opt. Express 28 28343Google Scholar

    [37]

    Shastri B J, Tait A N, Ferreira D L T, Pernice W H P, Bhaskaran H, Wright C D, Prucnal P R 2021 Nat. Photonics 15 102Google Scholar

    [38]

    Li G H Y, Sekine R, Nehra R, Gray R M, Ledezma L, Guo Q S, Marandi A 2023 Nanophotonics 12 847Google Scholar

    [39]

    Yeung C, Pham B, Tsai R, Fountaine K T, Raman A P 2022 ACS Photonics 10 884Google Scholar

    [40]

    Jiang L, Li X Z, Wu Q X, Wang L H, Gao L 2021 Opt. Express 29 2521Google Scholar

    [41]

    Meng C, Qiu J F, Tian Y, Ye Z, Wu J 2016 15th International Conference on Optical Communications and Networks (ICOCN) Hangzhou, China, September 24–27, 2016 p1

    [42]

    An S S, Fowler C, Zheng B W, Shalaginov M Y, Tang H, Li H, Zhou L, Ding J, Agarwal A M, Rivero-Baleine C, Richardson K A, Gu T, Hu J J, Zhang H L 2019 ACS Photonics 6 3196Google Scholar

    [43]

    Aoad A, Simsek M, Aydin Z 2017 Int. J. Numer. Model. 30 2129Google Scholar

    [44]

    Ma L F, Li J, Liu Z H, Zhang Y X, Zhang N E, Zheng S Q, Lu C C 2021 Chin. Opt. Lett. 19 11301Google Scholar

    [45]

    Liu Y J, Sun W Z, Xie H C, Zhang N, Xu K, Yao Y, Xiao S M, Song Q H 2018 Opt. Lett. 43 2482Google Scholar

    [46]

    An X P, Cao Y, Wei Y X, Zhou Z H, Hu T, Feng X, He G Q, Zhao M, Yang Z Y 2021 Opt. Lett. 46 3881Google Scholar

    [47]

    Wiecha P R, Arbouet A, Girard C, Muskens O L 2021 Photonics Res. 9 182Google Scholar

    [48]

    Zeng Z S, Lu L H, He P X, Liu D M, Zhang M M 2021 IEEE Photonics Technol. Lett. 33 1289Google Scholar

    [49]

    Yeung C, Ho D, Zhang Z, Raman A P, Pham B, Fountaine K T, Levy K 2022 ACS Photonics 9 1577Google Scholar

    [50]

    Yu Z J, Cui H R, Sun X K 2017 Photonics Res. 5 15Google Scholar

    [51]

    Ma T G, Tobah M, Wang H Z, Guo L J 2022 Opto-Electronic Science 1 210011Google Scholar

    [52]

    Schubert M F, Cheung A, Williamson I, Spyra A, Alexander D H 2022 ACS Photonics 9 2327Google Scholar

    [53]

    Hodge J A, Mishra K V, Zaghloul A I 2021 arXiv: 2101.09131 [physics. app-ph

    [54]

    Campbell S D, Werner D H, Werner P L 2021 Proc. SPIE 11769 117690NGoogle Scholar

    [55]

    Deotare P B 2012 Ph. D. Dissertation (Boston: Harvard University

    [56]

    Urban P J, Pluk E G C, KleIn E J, Koonen A M J, Khoe G D, de Waardt H 2006 2nd Institution of Engineering and Technology International Conference Osaka, Japan, June 21–22, 2006 p93

    [57]

    Shen Y C, Harris N C, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S, Larochelle H, Englund D, Soljačić M 2017 Nat. Photonics 11 441Google Scholar

    [58]

    Yu T, Ma X, Pastor E, George J K, Wall S, Miscuglio M, Simpson R E, Sorger V J 2021 arXiv: 2102.10398 [physics. optics

    [59]

    Wu C M, Yu H S, Lee S, Peng R M, Takeuchi I, Li M 2021 Nat. Commun. 12 96Google Scholar

    [60]

    Chen H, Li J T, Shang Z Y, Wang G Q, Zhang Z M, Zhao Z X, Zhang M Y, Yin J D, Wang J Z, Guo K, Yang J B, Yan P G 2022 Laser Photonics Rev. 16 2200254Google Scholar

    [61]

    Yang K Y, Skarda J, Cotrufo M, Dutt A, Ahn G H, Sawaby M, Vercruysse D, Arbabian A, Fan S H, Alù A, Vučković J 2020 Nat. Photonics 14 369Google Scholar

    [62]

    Wu Y T, Shi Y C, Zhao Y, Li L Y, Wu P H, Dai P, Fang T, Chen X F 2019 Opt. Express 27 38541Google Scholar

    [63]

    Huang L C, Whitehead J, Colburn S, Majumdar A 2020 Photonics Res. 8 1613Google Scholar

    [64]

    Guo L H, Hu Z L, Wan R Q, Long L Y, Li T, Yan J C, Lin Y, Zhang L, Zhu W H, Wang L C 2018 Nanophotonics 8 171Google Scholar

    [65]

    Ossiander M, Meretska M L, Hampel H K, Lim S W D, K N, Jauk T, Capasso F, Schultze M 2023 Science 380 59Google Scholar

    [66]

    Li T Y, Xu X H, Fu B Y, Wang S M, Li B J, Wang Z L, Zhu S N 2021 Photonics Res. 9 1062Google Scholar

    [67]

    Guo W P, Liang W Y, Cheng C W, Wu W L, Wang Y T, Sun Q, Zu S, Misawa H, Cheng P J, Chang S W, Ahn H, Lin M, Gwo S 2020 Nano Lett. 20 2857Google Scholar

    [68]

    Ollanik A J, Smith J A, Belue M J, Escarra M D 2018 ACS Photonics 5 1351Google Scholar

    [69]

    Huang J, Ma H S, Chen D B, Yuan H, Zhang J P, Li Z K, Han J M, Wu J G, Yang J B 2021 Nanophotonics 10 1011Google Scholar

    [70]

    Sanchis P, Villalba P, Cuesta F, Hakansson A, Griol A, Galan J V, Brimont A, Marti J 2009 Opt. Lett. 34 2760Google Scholar

    [71]

    Yu Z J, Cui H R, Sun X K 2017 Opt. Lett. 42 3093Google Scholar

    [72]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar

    [73]

    Kennedy J, Eberhart R 1995 ICNN95-International Conference on Neural Networks Perth, WA, Australia, November 27–December 1, 1995 p1942

    [74]

    Chen W W, Zhang B H, Wang P J, Dai S X, Liang W, Li H X, Fu Q, Li J, Li Y, Dai T G, Yu H, Yang J Y 2020 Opt. Express 28 30701Google Scholar

    [75]

    Qin F, Liu B Q, Zhu L W, Lei J, Fang W, Hu D J, Zhu Y, Ma W D, Wang B W, Shi T, Cao Y Y, Guan B O, Qiu C W, Lu Y R, Li X P 2021 Nat. Commun. 12 32Google Scholar

    [76]

    Chen W W, Lin J, Li H X, Wang P J, Dai S X, Liu Y X, Yao R K, Li J, Fu Q, Dai T G, Yang J Y 2022 Opt. Express 30 46236Google Scholar

    [77]

    Seldowitz M A, Allebach J P, Sweeney D W 1987 Appl. Optics 26 2788Google Scholar

    [78]

    Shen B, Wang P, Polson R, Menon R 2014 Opt. Express 22 27175Google Scholar

    [79]

    Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378Google Scholar

    [80]

    Wen X, Xu K, Song Q H 2016 Photonics Res. 4 209Google Scholar

    [81]

    Zhou F Y, Lu L L Z, Zhang M M, Chang W J, Li D Y, Deng L, Liu D M 2017 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, May 14–19, 2017 p1

    [82]

    Cao Y, Li S T, Petzold L, Serban R 2003 SIAM J. Sci. Comput. 24 1076Google Scholar

    [83]

    Jameson A 2003 Aerodynamic Shape Optimization Using the Adjoint Method (Brussels: Von Karman Institute

    [84]

    McNamara A, Treuille A, Popović Z 2004 ACM Transactions On Graphics (TOG) 3 449Google Scholar

    [85]

    Pedersen C B W, Allinger P 2006 IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Copenhagen, Denmark, 2006 p229

    [86]

    Lalau-Keraly C M, Bhargava S, Miller O D, Yablonovitch E 2013 Opt. Express 21 21693Google Scholar

    [87]

    Hughes T W, Minkov M, Williamson I A D, Fan S H 2018 ACS Photonics 5 4781Google Scholar

    [88]

    Michaels A, Yablonovitch E 2018 Opt. Express 26 4766Google Scholar

    [89]

    Dai Y H 2002 SIAM J. Optimiz. 13 693Google Scholar

    [90]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [91]

    Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y 2013 arXiv: 1312.6229 [cs.CV

    [92]

    Girshick R, Donahue J, Darrell T, Malik J 2016 IEEE T. Pattern Anal. 38 142Google Scholar

    [93]

    Ren S Q, He K M, Girshick R, Sun J 2017 IEEE T. Pattern Anal. 39 1137Google Scholar

    [94]

    Redmon J, Divvala S, Girshick R, Farhadi A 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, USA, June 27–30, 2016 p779

    [95]

    汪宋, 费树岷 2019 工业控制计算机 32 103

    Wang S, Fei S 2019 Industrial Control Computer 32 103

    [96]

    Lin T Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S 2016 arXiv: 1612.03144 [cs.CV

    [97]

    Joseph R A F 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Honolulu, USA, July 21–26, 2017 p6517

    [98]

    Lin T Y, Goyal P, Girshick R, He K M, Dollar P 2020 IEEE Trans. Pattern Anal. 42 318Google Scholar

    [99]

    Redmon J, Farhadi A 2018 arXiv: 1804.02767v1 [cs.CV

    [100]

    Tan M X, Pang R M, Le Q V 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Seattle, USA, June 13–19, 2020 p10778

    [101]

    Bahdanau D, Cho K, Bengio Y 2014 Statistics 3 1467Google Scholar

    [102]

    Nguyen H Q, Nguyen T M, Vu H H, Nguyen V V, Nguyen P T, Dao T N M, Tran K H, Dinh K Q 2019 6th NAFOSTED Conference on Information and Computer Science (NICS) Hanoi, Vietnam, December 12–13, 2019 p240

    [103]

    Wu Y H, Schuster M, Chen Z F, Le Q V, Norouzi M 2016 arXiv: 1609.08144 [cs.CL

    [104]

    Cho K, van Merrienboer B, Bahdanau D, Bengio Y 2014 Statistics 2 1467Google Scholar

    [105]

    Sennrich R, Haddow B, Birch A 2015 arXiv: 1511.06709 [cs.CL

    [106]

    Johnson M, Schuster M, Le Q V, Krikun M, Wu Y H, Chen Z F, Thorat N, Viégas F, Wattenberg M, Corrado G, Dean M H 2017 T. Assoc. Comput. Ling. 5 339Google Scholar

    [107]

    Jean S, Cho K, Memisevic R, Bengio Y 2014 arXiv: 1412.2007 [cs.CL

    [108]

    Tu Z P, Lu Z D, Liu Y, Liu X H, Li H 2016 arXiv: 1601.04811 [cs.CL

    [109]

    Gao L, Mi H B, Zhu B Q, Feng D W, Li Y C, Peng Y X 2019 IEEE Access 7 105319Google Scholar

    [110]

    Li Y C, Feng D W, Lu M L, Li D S 2019 In Knowledge Science, Engineering and Management: 12th International Conference, KSEM Athens, Greece, August 28–30, 2019 p37

    [111]

    Li Y C, Chen H X, Sun X G, Sun Z C, Li L, Cui L Z, Yu P S, Xu G D 2021 CIKM '21: Proceedings of the 30th ACM International Conference on Information & Knowledge Management Queensland Australia, November 1–5, 2021 p988

    [112]

    Li Y C, Chen H X, Li Y L, Li L, Yu P S, Xu G D 2023 IEEE T. Knowl. Data En. (early access) DOI: 10.1109/TKDE.2023.3237741

    [113]

    Chen H X, Li Y C, Sun X G, Xu G D, Yin H Z 2021 WSDM '21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining Virtual Event Israel, March 8–12, 2021 p1056

    [114]

    Hammond A M, Camacho R M 2019 Opt. Express 27 29620Google Scholar

    [115]

    Tu X, Xie W S, Chen Z M, Ge M F, Huang T Y, Song C L, Fu H Y 2021 J. Lightwave Technol. 39 2790Google Scholar

    [116]

    An S S, Zheng B W, Shalaginov M Y, Tang H, Li H, Zhou L, Dong Y X, Haerinia M, Agarwal A M, Rivero B C, Kang M, Richardson K A, Gu T, Hu J J, Fowler C, Zhang H L 2022 Adv. Opt. Mater. 10 2102113Google Scholar

    [117]

    Liu D J, Tan Y X, Khoram E F, Yu Z F 2018 ACS Photonics 5 1365Google Scholar

    [118]

    Ren Y M, Zhang L X, Wang W Q, Wang X Y, Lei Y F, Xue Y L, Sun X C, Zhang W F 2021 Photonics Res. 9 B247Google Scholar

    [119]

    Zhao Z Y, You J, Zhang J, Du S Y, Tao Z L, Tang Y H, Jiang T 2022 Nanophotonics 11 4465Google Scholar

    [120]

    Yeung C, Tsai R, Pham B, King B, Kawagoe Y, Ho D, Liang J, Knight M W, Raman A P 2021 Adv. Opt. Mater 9 2100548Google Scholar

    [121]

    Meindl J D 2003 Comput. Sci. Eng. 5 20Google Scholar

    [122]

    Mack C A. 2011 IEEE T. Semiconduct. M. 24 202Google Scholar

    [123]

    Schaller R R 1997 IEEE Spectrum 34 52Google Scholar

    [124]

    Zhang Y, Yang S Y, Lim A E J, Lo G Q, Galland C, Baehr-Jones T, Hochberg M 2013 Opt. Express 21 1310Google Scholar

    [125]

    Kumari S, Prince S 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET) Chennai, India, March 24–26, 2022 p231

    [126]

    Chang W J, Ren X S, Ao Y Q, Lu L H, Cheng M F, Deng L, Liu D M, Zhang M M 2018 Opt. Express 26 24135Google Scholar

    [127]

    Xu J F, Liu Y J, Guo X Y, Song Q H, Xu K 2022 Opt. Express 30 26266Google Scholar

    [128]

    Zhu J B, Chao Q, Huang H Y, Zhao Y X, Li Y, Tao L, She X J, Liao H, Huang R, Zhu Z J, Liu X, Sheng Z, Gan F W 2021 Appl. Opt. 60 413Google Scholar

    [129]

    Sheng J C, Liu Y J, Xu K 2019 The International Photonics and Optoelectronics Meeting Wuhan China, November 11–14, 2019 paper OW3D.6

    [130]

    Chang W J, Lu L L Z, Ren X S, Li D Y, Pan Z P, Cheng M F, Liu D M, Zhang M M 2018 Opt. Express 26 8162Google Scholar

    [131]

    Ding Y H, Xu J, Da R F, Huang B, Ou H Y, Peucheret C 2013 Opt. Express 21 10376Google Scholar

    [132]

    Xie H C, Liu Y J, Wang S, Wang Y J, Yao Y, Song Q H, Du J B, He Z Y, Xu K 2020 IEEE Photonics Technol. Lett. 32 166Google Scholar

    [133]

    Zhou H L, Wang Y L, Gao X Y, Gao D S, Dong J J, Huang D M, Li F, Alexander W P K, Zhang X L 2022 Laser Photonics Rev. 16 2100521Google Scholar

    [134]

    Wang J, He S L, Dai D X 2014 Laser Photonics Rev. 8 L18Google Scholar

    [135]

    Li C L, Liu D J, Dai D X 2019 Nanophotonics 8 227Google Scholar

    [136]

    Jiang X H, Wu H, Dai D X 2018 Opt. Express 26 17680Google Scholar

    [137]

    Chang W J, Lu L L Z, Liu D M, Zhang M M 2018 Optical Fiber Communication (OFC) Conference San Diego, USA, March 11–15, 2018 p1

    [138]

    Gabrielli L H, Liu D, Johnson S G, Lipson M 2012 Nat. Commun. 3 1217Google Scholar

    [139]

    Liu Y J, Xu K, Wang S, Shen W H, Xie H C, Wang Y J, Xiao S M, Yao Y, Du J B, He Z Y, Song Q H 2019 Nat. Commun. 10 3263Google Scholar

    [140]

    Wu H, Tan Y, Dai D X 2017 Opt. Express 25 6069Google Scholar

    [141]

    Huang J, Yang J B, Chen D B, He X, Han Y X, Zhang J J, Zhang Z J 2018 Photonics Res. 6 574Google Scholar

    [142]

    Piggott A Y, Petykiewicz J, Su L, Vučković J 2017 Sci. Rep. 7 1786Google Scholar

    [143]

    Yu L H, Yin Y L, Shi Y C, Dai D X, He S L 2016 J. Operat. Theo. 3 159Google Scholar

    [144]

    Gentry C M, Zeng X, Popović M A 2014 Opt. Lett. 39 5689Google Scholar

    [145]

    Wuttig M, Bhaskaran H, Taubner T 2017 Nat. Photonics 11 465Google Scholar

    [146]

    Sherwood-Droz N, Wang H, Chen L, Lee B G, Lipson M 2008 Opt. Express 16 15915Google Scholar

    [147]

    Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M 2020 Nat. Photonics 14 37Google Scholar

    [148]

    Gong Z L, Yang F Y, Wang L T, Chen R, Wu J Q, Grigoropoulos C P, Yao J 2021 J. Appl. Phys. 129 30902Google Scholar

    [149]

    Fang Z R, Chen R, Tara V, Majumdar A 2023 Sci. Bull. 68 783Google Scholar

    [150]

    Xu P P, Zheng J J, Doylend J K. , Majumdar A 2019 ACS Photonics 6 553Google Scholar

    [151]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G H, Teng J H, Zheludev N I 2016 Nat. Photonics 10 60Google Scholar

    [152]

    Zhang Y F, Fowler C, Liang J H, Azhar B, Shalaginov M Y, Deckoff-Jones S, An S S, Chou J B, Roberts C M, Liberman V, Kang M, Ríos C, Richardson K A, Rivero-Baleine C, Gu T, Zhang H L, Hu J J 2021 Nat. Nanotechnol. 16 661Google Scholar

    [153]

    Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M 2008 Nat. Mater. 7 653Google Scholar

    [154]

    Kim S, Burr G W, Nam W K Sung W 2019 MRS Bull. 44 710Google Scholar

    [155]

    Loke D, Lee T H, Wang W J, Zhao R, Shi L P, Yeo Y C, Chong T C, Elliott S R 2012 Science 336 1566Google Scholar

    [156]

    Orava J, Greer A L, Gholipour B, Hewak D W, Smith C E 2012 Nat. Mater. 11 279Google Scholar

    [157]

    Li W F, Cao X Y, Song S N, Wu L S, Wang R B, Jin Y, Song Z T, Wu A M 2022 Laser Photonics Rev. 16 2100717Google Scholar

    [158]

    Stegmaier M, Iacute C R, Bhaskaran H, Wright C D, Pernice W H P 2016 Adv. Opt. Mater. 5 1600346Google Scholar

    [159]

    Feldmann J, Youngblood N, Wright C D, Bhaskaran H, Pernice W H P 2019 Nature 569 208Google Scholar

    [160]

    Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, Le Gallo M, Fu X, Lukashchuk A, Raja A. S, Liu J, Wright C D, Sebastian A, Kippenberg T J, Pernice W H P, Bhaskaran H 2021 Nature 589 52Google Scholar

    [161]

    Pernice W H P, Bhaskaran H 2012 Appl. Phys. Lett. 101 171101Google Scholar

    [162]

    Raoux S, Xiong F, Wuttig M, Pop E 2014 MRS Bull. 39 703Google Scholar

    [163]

    Zhang Y F, Chou J B, Li J Y, Li H S, Du Q Y, Yadav A, Zhou Si, Shalaginov M Y, Fang Z R, Zhong H K, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H T, Kang M, Gu T, Warner J, Liberman V, Richardson K, Hu J J 2019 Nat. Commun. 10 4279Google Scholar

    [164]

    Fang Z R, Zheng J J, Saxena A, Whitehead J, Chen Y Y, Majumdar A 2021 Adv. Opt. Mater. 9 2002049Google Scholar

    [165]

    Delaney M, Zeimpekis I, Lawson D, Hewak D W, Muskens O L 2020 Adv. Funct. Mater. 30 2002447Google Scholar

    [166]

    Yang S, Shamim A, Vaseem M 2019 Adv. Mater. Technol. 4 11Google Scholar

    [167]

    Wang N N, Li T T, Sun B S, Wang Z, Zhou L J, Gu T Y 2021 Opt. Lett. 46 4088Google Scholar

    [168]

    Chen H X, Jia H, Wang T, Tian Y H, Yang J H 2020 J. Lightwave Technol. 38 1874Google Scholar

    [169]

    Ma H S, Yang J B, Huang J, Zhang Z J, Zhang K W 2021 Results Phys. 26 104384Google Scholar

    [170]

    Delaney M, Zeimpekis I, Du H, Yan X Z, Banakar M, Thomson D J, Hewak D W, Muskens O L 2021 Sci. Adv. 7

    [171]

    Yuan H, Wu J G, Zhang J P, Pu X, Zhang Z F, Yu Y, Yang J B 2022 Nanomaterials 12 669Google Scholar

    [172]

    Piggott A Y, Lu J, Babinec T M, Lagoudakis K G, Petykiewicz J, Vučković J 2014 Sci. Rep. 4 7210Google Scholar

    [173]

    Ma H S, Luo M Y, He J, Du T, Zhang Z J, Jiang X P, He X, Fang L, Yang J B 2022 J. Lightwave Technol. 40 7869Google Scholar

    [174]

    Ma H S, Du T, Zhang Z J, Jiang X P, Fang L, Yang J B 2023 Opt. Commun. 526 128912Google Scholar

    [175]

    Dai D X, Wu H 2016 Opt. Lett. 41 2346Google Scholar

    [176]

    Huang J, Yang J B, Chen D B, Bai W, Han J M, Zhang Z J, Zhang J J, He X, Han Y X, Liang L M 2020 Nanophotonics 9 159Google Scholar

    [177]

    Ruan X K, Li H, Chu T 2022 J. Lightwave Technol. 40 7142Google Scholar

    [178]

    Li C L, Zhang M, Xu H N, Tan Y, Shi Y C, Dai D X 2021 PhotoniX 2 1991Google Scholar

    [179]

    Dai D X, Li C L, Wang S P, Wu H, Shi Y C, Wu Z H, Gao S M, Dai T G, Yu H, Tsang H K 2018 Laser Photonics Rev. 12 1700109Google Scholar

    [180]

    Shen W W, Chen K N 2017 Nanoscale Res. Lett. 12 56Google Scholar

    [181]

    Moreira R, Barton J, Belt M, Huffman T, Blumenthal D 2013 Advanced Photonics CongressIntegrated Photonics Research, Silicon and Nanophotonics Rio Grande, USA, July 14–17, 2013 paper IT2A.4

    [182]

    Sodagar M, Pourabolghasem R, Eftekhar A A, Adibi A 2014 Opt. Express 22 16767Google Scholar

    [183]

    Zheng X, Cunningham J E, Shubin I, Simons J, Asghari M, Feng D, Lei H, Zheng D, Liang H, Kung C C, Luff J, Sze T, Cohen D, Krishnamoorthy A V 2008 Opt. Express 16 15052Google Scholar

    [184]

    Yu Z X, Qiu J F, Dong Z L, Zheng L, Guo H X, Wu J 2018 Asia Communications and Photonics Conference (ACP) Hangzhou, China, October 26–29, 2018 p1

  • [1] 杨旭, 李静, 毛宇, 陶可爱, 孙宽, 陈珊珊, 周永利, 郑玉杰. 基于六水氯化钙的单相变材料热二极管的实验研究.  , 2024, 73(5): 058301. doi: 10.7498/aps.73.20231686
    [2] 张赞, 黄北举, 陈弘达. 基于可重构硅光滤波器的计算重建片上光谱仪.  , 2024, 73(14): 140701. doi: 10.7498/aps.73.20240224
    [3] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇.  , 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [4] 周昆, 马豪悦, 孙希贤, 吴小虎. 基于VO2和石墨烯实现hBN声子极化激元和自发发射率的主动调谐.  , 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [5] 朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化.  , 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [6] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [7] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器.  , 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [8] 冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣. 纳米组装相变储热材料的热设计前沿.  , 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [9] 李科, 董明利, 袁配, 鹿利单, 孙广开, 祝连庆. 基于阵列波导光栅的光纤布拉格光栅解调技术综述.  , 2022, 71(9): 094207. doi: 10.7498/aps.71.20212063
    [10] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] 李庚霖, 贾曰辰, 陈峰. 绝缘体上铌酸锂薄膜片上光子学器件的研究进展.  , 2020, 69(15): 157801. doi: 10.7498/aps.69.20200302
    [12] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [13] 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究.  , 2019, 68(10): 100502. doi: 10.7498/aps.68.20182068
    [14] 肖廷辉, 于洋, 李志远. 石墨烯-硅基混合光子集成电路.  , 2017, 66(21): 217802. doi: 10.7498/aps.66.217802
    [15] 田曼曼, 王国祥, 沈祥, 陈益敏, 徐铁峰, 戴世勋, 聂秋华. ZnSb掺杂的Ge2Sb2Te5薄膜的相变性能研究.  , 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [16] 周培基, 李智勇, 俞育德, 余金中. 硅基光子集成研究进展.  , 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
    [17] 王强, 周海京, 杨春, 李彪, 何晓阳. 过模波导器件的迭代设计方法.  , 2013, 62(11): 115204. doi: 10.7498/aps.62.115204
    [18] 查晓明, 张扬, 孙建军, 樊友平. 基于微分同调和混沌分析的集成三相变流电路的降阶方法.  , 2012, 61(2): 020505. doi: 10.7498/aps.61.020505
    [19] 舒 斌, 张鹤鸣, 朱国良, 樊 敏, 宣荣喜. 基于智能剥离技术的SOI材料制备.  , 2007, 56(3): 1668-1673. doi: 10.7498/aps.56.1668
    [20] 沈 强, 张联盟, 王传彬, 华劲松, 谭 华, 经福谦. 梯度飞片材料的波阻抗分布设计与优化.  , 2003, 52(7): 1663-1667. doi: 10.7498/aps.52.1663
计量
  • 文章访问数:  7388
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-30
  • 修回日期:  2023-08-01
  • 上网日期:  2023-08-19
  • 刊出日期:  2023-09-20

/

返回文章
返回
Baidu
map