搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预填充模式下同轴枪放电等离子体加速模型分析与优化

张津硕 孙辉 杜志杰 张雪航 肖青梅 范金蕤 闫慧杰 宋健

引用本文:
Citation:

预填充模式下同轴枪放电等离子体加速模型分析与优化

张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健

Analysis and optimization of acceleration model in coaxial plasma gun in pre-fill mode

Zhang Jin-Shuo, Sun Hui, Du Zhi-Jie, Zhang Xue-Hang, Xiao Qing-Mei, Fan Jin-Rui, Yan Hui-Jie, Song Jian
PDF
HTML
导出引用
  • 雪犁模型是描述预填充模式下同轴枪放电装置加速过程的主要手段, 其能够直接给出枪内等离子体轴向速度与加速时间的解析关系式, 因此在面向不同应用需求的装置结构设计中成为了重要的参考依据. 通过理论推导及光、电、磁信号的测量, 本文对比分析了不同充电电压与预填充气压条件下在加速阶段及喷口处等离子体的理论与实验速度, 并给出了雪犁模型的优化方法. 首先, 用实测电流来替代近似的正弦电流, 有效消除了磁压力计算误差对模型准确性的影响. 其次, 随着加速距离的延长, 喷口处等离子体速度的饱和现象开始出现, 摩擦阻力的存在是其主导的形成原因. 相比于现有模型25.8%—53.6%的偏差范围, 添加摩擦阻力项后不同电压和气压下的理论与实测速度的差值仅为3.1%—8.4%.
    Snowplow model is the main method to describe the acceleration process of coaxial plasma gun in the pre-fill mode, which can directly give the analytical expression of plasma velocity versus time. So it has become an important reference in designing the device structures satisfying the requirements for different applications. Through measuring the current, magnetic and optical signals, the characteristics of current during the discharge and the motion of plasmoid are investigated. The variation of discharge current with time is close to the damping sine curve, which is an underdamping solution of RLC equivalent discharge circuit. The measured current in lieu of the sine one is used to calculate the theoretical velocity so as to eliminate the error of magnetic pressure. The variation of plasma velocity with discharge voltage and chamber pressure are consistent with those obtained by solving the equation of plasma motion under snow plough model, but the acceleration process is another story. At the initial stage of the discharge, owing to the low sweep efficiency, the plasma is accelerated to a higher velocity than the predicted one, the increase of voltage and the decrease of pressure further enhance the effect. With the extension of the acceleration distance, owing to the friction resistance between plasma and electrodes, the acceleration slows down and the velocity starts to fall below the predicated value, the saturation of plasma velocity at the nozzle is found. The friction resistance term is added to the equation of plasma motion. Compared with the deviation range of 26.8%–53.6% of the existing model, the differences between the theoretical speed and the measured speed under different voltages and pressures are in a range of 3.1%–8.4% after adding the friction resistance term into the equation of plasma motion. The optimization of snow plow model greatly improves the accuracy of velocity prediction, which can provide an effective reference for designing device structure and calculating energy efficiency.
      通信作者: 宋健, songjian@dlut.edu.cn
      Corresponding author: Song Jian, songjian@dlut.edu.cn
    [1]

    Marshall J 1960 Phys. Fluids 3 134Google Scholar

    [2]

    Ticoş C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar

    [3]

    Ticoş C M, Wang Z, Wurden G A, Kline J L, Montgomery D S, Dorf L A, Shukla P K 2008 Phys. Rev. Lett. 100 155002Google Scholar

    [4]

    Cheng D Y 1971 AIAA J. 9 1681Google Scholar

    [5]

    Lu M F, Yang S Z, Liu C Z 1997 IEEE International Conference on Plasma Science San Diego, CA, USA, May 19–22, 1997 p175

    [6]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [7]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2009 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [8]

    Federici G, Zhitlukhin A, Arkhipov N, Giniyatulin R, Klimov N, Landman I, Podkovyrov V, Safronov V, Loarte A, Merola M 2005 J. Nucl. Mater. 337 684Google Scholar

    [9]

    Borthakur S, Talukdar N, Neog N K, Borthakur T K 2017 Fusion Eng. Des. 122 131Google Scholar

    [10]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银, 张振龙, 陈赵峰, 王龙, 杨宣宗, 冯春华 2009 科学通报 02 150

    Huang J G, Han J W, Lee H W, Cai M H, Lee X Y, Zhang Z L, Chen Z F, Wang L, Yang X Z, Feng C H 2009 Chin. Sci. Bull. 02 150

    [11]

    Cassibry J T, Thio Y C F, Markusic T E, Wu S T 2006 J. Propul. Power 22 628Google Scholar

    [12]

    Cassibry J T 2008 IEEE Trans. Plasma Sci. 36 2180Google Scholar

    [13]

    彭志坚 2004 博士学位论文 (北京: 清华大学)

    Peng Z J 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [14]

    Kikuchi Y, Nishijima D, Nakatsuka M, Ando K, Higashi T, Ueno Y, Ishihara M, Shoda K, Nagata M, Kawai T, Ueda Y, Fukumoto N, Doerner R P 2011 J. Nucl. Mater. 415 55

    [15]

    Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar

    [16]

    Abdou A E, Ismail M I, Mohamed A E, Lee S, Saw S H, Verma R 2012 IEEE Trans. Plasma Sci. 40 2741Google Scholar

    [17]

    Raman R, Martin, F, Quirion B, St-Onge M, Lachambre J L, Michaud D, Sawatzky B, Thomas J, Hirose A, Hwang D, Richard N, Cote C, Abel G, Pinsonneault D, Gauvreau J L, Stansfield B, Decoste R, Cote A, Zuzak W, Bouche C 1994 Phys. Rev. Lett. 73 3101Google Scholar

    [18]

    Francis Thio Y C, Hsu S C, Witherspoon F D, Cruz E, Case A, Langendorf S, Yates K, Dunn J, Cassibry J, Samulyak R, Stoltz P, Brockington S J, Williams A, Luna M, Becker R, Cook A 2019 Fusion Sci. Technol. 75 581Google Scholar

    [19]

    Ticos C M, Wang Z, Wurden G A 2008 IEEE Trans. Plasma Sci. 36 2770Google Scholar

    [20]

    Nawaz A, Albertoni R, Auweter-Kurtz M 2010 Acta Astronaut. 67 440Google Scholar

    [21]

    Asai T, Matsumoto T, Roche T, Allfrey I, Gota H, Sekiguchi J, Edo T, Garate E, Takahashi T, Binderbauer M, Tajima T 2017 Nucl. Fusion 57 076018Google Scholar

    [22]

    Raman R 2008 Fusion Eng. Des. 83 1368Google Scholar

    [23]

    Hart P J 1962 Phys. Fluids. 5 38Google Scholar

    [24]

    Burkhardt L C, Lovberg R H 1962 Phys. Fluids. 5 341Google Scholar

    [25]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar

    [26]

    Chen Y H, Lee S 1973 Int. J. Electron. 35 341Google Scholar

    [27]

    Shen Z G, Liu C H, Lee C H, Wu C, Yang S 1995 J. Phys. 28 314Google Scholar

    [28]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [29]

    余鑫, 漆亮文, 赵崇霄, 任春生 2020 69 035202Google Scholar

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar

    [30]

    Dietz D 1987 J. Appl. Phys. 62 2669Google Scholar

    [31]

    Chen F F 2016 Introduction to Plasma Physics and Controlled Fusion (Cham: Springer) pp166–171

    [32]

    宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真 2021 70 105201Google Scholar

    Song J, Lee J W, Bai X D, Zhang J S, Yan H J, Xiao Q M, Wang D Z 2021 Acta Phys. Sin. 70 105201Google Scholar

    [33]

    Wiechula J, Hock C, Iberler M, Manegold T, Schonlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

    [34]

    刘帅 2019 博士学位论文 (西安: 西安交通大学)

    Liu S 2019 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [35]

    Thom K, Norwood J, Jalufka N 1964 Phys. Fluids 7 67Google Scholar

  • 图 1  同轴枪装置示意图

    Fig. 1.  Schematic of coaxial gun device.

    图 2  同轴枪放电的典型电流、磁信号及光信号波形(充电电压6 kV, 预填充气压20 Pa)

    Fig. 2.  Typical electrical, magnetic and optical signals of discharge in a coaxial gun (V = 6 kV and P = 20 Pa).

    图 3  同轴枪放电等效回路示意图

    Fig. 3.  Schematic of discharge equivalent circuit in a coaxial gun.

    图 4  电流实测波形与理论计算波形对比

    Fig. 4.  Comparison of the measured and the theoretical current signals.

    图 5  气压20 Pa时, 不同电压下等离子体(a)轴向位置和(b)速度随加速时间的变化

    Fig. 5.  (a) Axial position and (b) velocity of plasma versus acceleration time with different voltage at 20 Pa.

    图 6  电压6 kV时, 不同气压下等离子体(a)轴向位置和(b)速度随加速时间的变化

    Fig. 6.  (a) Axial position and (b) velocity of plasma versus acceleration time with different pressure at 6 kV.

    图 7  实测和正弦电流下的轴向安培力对比

    Fig. 7.  Comparison of ampere force calculated by measured and sinusoidal current.

    图 8  实测和正弦电流下的理论速度对比

    Fig. 8.  Comparison of theoretical velocity calculated by measured and sinusoidal current.

    图 9  气压20 Pa时, 不同电压下等离子体速度随加速时间的变化

    Fig. 9.  Plasma velocity versus acceleration time with different voltage at 20 Pa

    图 10  电压6 kV时, 不同气压下等离子体速度随加速时间的变化

    Fig. 10.  Plasma velocity versus acceleration time with different pressure at 6 kV.

    图 11  气压20 Pa时, 等离子体枪口速度随电压的变化

    Fig. 11.  Muzzle velocity of plasma jet versus voltage at 20 Pa.

    图 12  电压6 kV时, 等离子体枪口速度随气压的变化

    Fig. 12.  Muzzle velocity of plasma jet versus pressure at 6 kV.

    图 13  气压20 Pa时, 加速饱和阶段等离子体速度随加速时间的变化

    Fig. 13.  Plasma velocity versus acceleration time in saturation stage at 20 Pa.

    图 14  电压6 kV时, 加速饱和阶段等离子体速度随加速时间的变化

    Fig. 14.  Plasma velocity versus acceleration time in saturation stage at 6 kV.

    Baidu
  • [1]

    Marshall J 1960 Phys. Fluids 3 134Google Scholar

    [2]

    Ticoş C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar

    [3]

    Ticoş C M, Wang Z, Wurden G A, Kline J L, Montgomery D S, Dorf L A, Shukla P K 2008 Phys. Rev. Lett. 100 155002Google Scholar

    [4]

    Cheng D Y 1971 AIAA J. 9 1681Google Scholar

    [5]

    Lu M F, Yang S Z, Liu C Z 1997 IEEE International Conference on Plasma Science San Diego, CA, USA, May 19–22, 1997 p175

    [6]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [7]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2009 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [8]

    Federici G, Zhitlukhin A, Arkhipov N, Giniyatulin R, Klimov N, Landman I, Podkovyrov V, Safronov V, Loarte A, Merola M 2005 J. Nucl. Mater. 337 684Google Scholar

    [9]

    Borthakur S, Talukdar N, Neog N K, Borthakur T K 2017 Fusion Eng. Des. 122 131Google Scholar

    [10]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银, 张振龙, 陈赵峰, 王龙, 杨宣宗, 冯春华 2009 科学通报 02 150

    Huang J G, Han J W, Lee H W, Cai M H, Lee X Y, Zhang Z L, Chen Z F, Wang L, Yang X Z, Feng C H 2009 Chin. Sci. Bull. 02 150

    [11]

    Cassibry J T, Thio Y C F, Markusic T E, Wu S T 2006 J. Propul. Power 22 628Google Scholar

    [12]

    Cassibry J T 2008 IEEE Trans. Plasma Sci. 36 2180Google Scholar

    [13]

    彭志坚 2004 博士学位论文 (北京: 清华大学)

    Peng Z J 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [14]

    Kikuchi Y, Nishijima D, Nakatsuka M, Ando K, Higashi T, Ueno Y, Ishihara M, Shoda K, Nagata M, Kawai T, Ueda Y, Fukumoto N, Doerner R P 2011 J. Nucl. Mater. 415 55

    [15]

    Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar

    [16]

    Abdou A E, Ismail M I, Mohamed A E, Lee S, Saw S H, Verma R 2012 IEEE Trans. Plasma Sci. 40 2741Google Scholar

    [17]

    Raman R, Martin, F, Quirion B, St-Onge M, Lachambre J L, Michaud D, Sawatzky B, Thomas J, Hirose A, Hwang D, Richard N, Cote C, Abel G, Pinsonneault D, Gauvreau J L, Stansfield B, Decoste R, Cote A, Zuzak W, Bouche C 1994 Phys. Rev. Lett. 73 3101Google Scholar

    [18]

    Francis Thio Y C, Hsu S C, Witherspoon F D, Cruz E, Case A, Langendorf S, Yates K, Dunn J, Cassibry J, Samulyak R, Stoltz P, Brockington S J, Williams A, Luna M, Becker R, Cook A 2019 Fusion Sci. Technol. 75 581Google Scholar

    [19]

    Ticos C M, Wang Z, Wurden G A 2008 IEEE Trans. Plasma Sci. 36 2770Google Scholar

    [20]

    Nawaz A, Albertoni R, Auweter-Kurtz M 2010 Acta Astronaut. 67 440Google Scholar

    [21]

    Asai T, Matsumoto T, Roche T, Allfrey I, Gota H, Sekiguchi J, Edo T, Garate E, Takahashi T, Binderbauer M, Tajima T 2017 Nucl. Fusion 57 076018Google Scholar

    [22]

    Raman R 2008 Fusion Eng. Des. 83 1368Google Scholar

    [23]

    Hart P J 1962 Phys. Fluids. 5 38Google Scholar

    [24]

    Burkhardt L C, Lovberg R H 1962 Phys. Fluids. 5 341Google Scholar

    [25]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar

    [26]

    Chen Y H, Lee S 1973 Int. J. Electron. 35 341Google Scholar

    [27]

    Shen Z G, Liu C H, Lee C H, Wu C, Yang S 1995 J. Phys. 28 314Google Scholar

    [28]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [29]

    余鑫, 漆亮文, 赵崇霄, 任春生 2020 69 035202Google Scholar

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar

    [30]

    Dietz D 1987 J. Appl. Phys. 62 2669Google Scholar

    [31]

    Chen F F 2016 Introduction to Plasma Physics and Controlled Fusion (Cham: Springer) pp166–171

    [32]

    宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真 2021 70 105201Google Scholar

    Song J, Lee J W, Bai X D, Zhang J S, Yan H J, Xiao Q M, Wang D Z 2021 Acta Phys. Sin. 70 105201Google Scholar

    [33]

    Wiechula J, Hock C, Iberler M, Manegold T, Schonlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

    [34]

    刘帅 2019 博士学位论文 (西安: 西安交通大学)

    Liu S 2019 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [35]

    Thom K, Norwood J, Jalufka N 1964 Phys. Fluids 7 67Google Scholar

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性.  , 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 刘帅, 徐涛, 刘康琪, 张永鹏, 杨兰均. 静态气压下平行轨道加速器电流分布与等离子体速度特性.  , 2023, 72(19): 195202. doi: 10.7498/aps.72.20231007
    [3] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响.  , 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [4] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响.  , 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [5] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响.  , 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [6] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比.  , 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [7] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响.  , 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [8] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究.  , 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [9] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究.  , 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [10] 向飞, 吴平, 曾凡光, 王淦平, 李春霞, 鞠炳全. 强流碳纳米管阴极快脉冲重频发射特性.  , 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [11] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响.  , 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [12] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [13] 李向东. 基于等离子体环境涨落的原子结构计算模型.  , 2011, 60(5): 053201. doi: 10.7498/aps.60.053201
    [14] 段耀勇, 郭永辉, 邱爱慈, 吴刚. 碰撞辐射稳态等离子体电荷态分布的一种扩展模型.  , 2010, 59(8): 5588-5595. doi: 10.7498/aps.59.5588
    [15] 彭政, 李湘群, 蒋礼, 符力平, 蒋亦民. 应力未饱和粮仓系统中器壁与颗粒的摩擦阻力.  , 2009, 58(3): 2090-2096. doi: 10.7498/aps.58.2090
    [16] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解.  , 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [17] 王 龙. 等离子体中的颗粒成长模型.  , 1999, 48(6): 1072-1077. doi: 10.7498/aps.48.1072
    [18] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究.  , 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [19] 张承福. 等离子体模型碰撞项的比较.  , 1986, 35(7): 947-952. doi: 10.7498/aps.35.947
    [20] 康寿万, 蔡诗东. 磁化等离子体中逃逸电子的临界速度.  , 1980, 29(3): 311-319. doi: 10.7498/aps.29.311
计量
  • 文章访问数:  2582
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-05-08
  • 上网日期:  2023-05-25
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map