搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2复合对Mg3Sb2基材料热电性能的影响

高君玲 赵怀周 许艳丽

引用本文:
Citation:

纳米SiO2复合对Mg3Sb2基材料热电性能的影响

高君玲, 赵怀周, 许艳丽

Effects of nano-SiO2 on thermoelectric properties of Mg3Sb2-based materials

Gao Jun-Ling, Zhao Huai-Zhou, Xu Yan-Li
PDF
HTML
导出引用
  • Mg3(Sb, Bi)2基热电材料由于其优异的热电性能和较低的成本近来受到广泛的关注. 本研究通过将纳米SiO2复合进成分为Mg3.275Mn0.025Sb1.49Bi0.5Te0.01的基体相中, 考察其热电输运性能的变化及机制. 结果表明, 当SiO2复合进Mg3Sb2基材料中时, 由于引进大量的微小晶界, 能有效地散射声子, 促使晶格热导率降低, 优化热输运性能, 如SiO2体积含量为0.54%时, 室温时热导率由复合前的1.24 W/(m·K)降至1.04 W/(m·K), 降幅达到15%; 同时其对电子也产生强烈的散射作用, 导致迁移率和电导率大幅下滑, 结果表现为近室温区功率因子剧烈衰减, 恶化了电输运性能. 电性能相对于热性能较大降低幅度使得材料在整个测试温区的热电优值没有得到改善. 纳米SiO2作为Mg3Sb2基热电材料复合物来调控热电性能是有效的备选物质, 可结合其他手段改善输运特性, 如在晶界处适当修饰, 降低载流子传输的晶界势垒, 能够提升该体系的综合热电性能.
    Recently, Mg3(Sb,Bi)2-based thermoelectric materials have received extensive attention owing to excellent thermoelectric properties and the low cost. This study investigates the change and mechanism of thermoelectric transport properties of Mg3.275Mn0.025Sb1.49Bi0.5Te0.01/SiO2 nanocomposite. The results show that nano-SiO2 can effectively scatter phonons, promote the reduction of lattice thermal conductivity, and optimize the heat transport performance owing to the introduction of a large number of tiny grain boundaries. For example, when SiO2 content is 0.54%, the thermal conductivity decreases by 15% from 1.24 W/(m·K) to 1.04 W/(m·K) compared with that of 0% SiO2 sample at room temperature. At the same time, the material system also has a strong scattering effect on electrons. This leads to a sharp attenuation of power factor and electrical transport performance with decline of mobility and conductivity in the room temperature area. Nano SiO2 is an effective candidate for regulating thermoelectric properties of Mg3Sb2 based thermoelectric material. The thermoelectric transport performance of the material will be improved by combining with other methods, such as appropriate grain boundary modification to reduce the potential barrier of charge carrier transport.
      通信作者: 高君玲, calm228@163.com
    • 基金项目: 山西省高等学校科技创新计划(批准号: 2021L511)资助的课题.
      Corresponding author: Gao Jun-Ling, calm228@163.com
    • Funds: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province, China (Grant No. 2021L511).
    [1]

    Mao J, Liu Z, Zhou J, Zhu H, Zhang Q, Chen G, Ren Z 2018 Adv. Phys. 67 69Google Scholar

    [2]

    Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109Google Scholar

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [4]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [5]

    Boona S R, Myers R C, Heremans J P 2014 Energy Environ. Sci. 7 885Google Scholar

    [6]

    Zheng Y, Lu T, Polash M M, Rasoulianboroujeni M, Liu N, Manley M E, Deng Y, Sun P, Chen X, Hermann R P, Vashaee D, Heremans J P, Zhao H 2019 Sci. Adv. 5 eaat9461Google Scholar

    [7]

    Imasato K, Kang S D, Snyder G J 2019 Energy Environ. Sci. 12 965Google Scholar

    [8]

    Ren Z, Shuai J, Mao J, Zhu Q, Song S, Ni Y, Chen S 2018 Acta Mater. 143 265Google Scholar

    [9]

    Imasato K, Kang S D, Ohno S, Snyder G J 2018 Mater. Horiz. 5 59Google Scholar

    [10]

    Tamaki H, Sato H K, Kanno T 2016 Adv. Mater. 28 10182Google Scholar

    [11]

    Shuai J, Ge B, Mao J, Song S, Wang Y, Ren Z 2018 J. Am. Chem. Soc. 140 1910Google Scholar

    [12]

    Imasato K, Ohno S, Kang S D, Snyder G J 2018 APL Mater. 6 016106Google Scholar

    [13]

    Wood M, Kuo J J, Imasato K, Snyder G J 2019 Adv. Mater. 31 1902337Google Scholar

    [14]

    Mao J, Zhu H, Ding Z, Liu Z, Gamage G A, Chen G, Ren Z 2019 Science 365 495

    [15]

    Yang J, Li G, Zhu H, Chen N, Lu T, Gao J, Guo L, Xiang J, Sun P, Yao Y 2022 Joule 6 193Google Scholar

    [16]

    Ren P, Liu Y, He J, Lv T, Gao J, Xu G 2018 Inorg. Chem. Front. 5 2380Google Scholar

    [17]

    Shi X, Wang X, Li W, Pei Y 2018 Small Methods 2 1800022Google Scholar

    [18]

    Brod M K, Anand S, Snyder G J 2023 Mater. Today Phys. 31 100959Google Scholar

    [19]

    Imasato K, Wood M, Anand S, Kuo J J, Snyder G J 2022 Adv. Energy Sustainability Res. 3 2100208Google Scholar

    [20]

    Sharp J W, Volckmann E H, Goldsmid H J 2001 Phys. Status Solidi A 185 257Google Scholar

    [21]

    Sharp J W, Goldsmid H J 1999 Proceedings of the 18th International Conference on Thermoelectrics Baltimore, USA, August 29–September 2, 1999 p709

    [22]

    Jin H, Heremans J P 2018 Phys. Rev. Mater. 2 115401Google Scholar

    [23]

    Kuo J J, Kang S D, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder G J 2018 Energy Environ. Sci. 11 429Google Scholar

    [24]

    Kanno T, Tamaki H, Sato H K, Kang S D, Ohno S, Imasato K, Kuo J J, Snyder G J, Miyazaki Y 2018 Appl. Phys. Lett. 112 033903Google Scholar

    [25]

    Mao T, Qiu P, Liu J, Du X, Hu P, Zhao K, Ren D, Shi X, Chen L 2020 Phys. Chem. Chem. Phys. 22 7374Google Scholar

  • 图 1  不同SiO2含量的Mg3.275Mn0.025Sb1.49Bi0.5Te0.01 XRD图谱

    Fig. 1.  XRD of Mg3.275Mn0.025Sb1.49Bi0.5Te0.01 with different SiO2 content.

    图 2  (a), (b), (d)不同SiO2含量的Mg3.275Mn0.025Sb1.49Bi0.5Te0.01电性能温度依赖曲线; (c)室温和723 K时样品的简约费米能级变化趋势图

    Fig. 2.  (a), (b) and (d) are temperature dependence curves of electrical properties of Mg3.275Mn0.025Sb1.49Bi0.5Te0.01 with different SiO2 content; (c) change trend of reduced Fermi level of samples at room temperature and 723 K.

    图 3  室温霍尔载流子浓度与迁移率随SiO2含量变化关系图

    Fig. 3.  The composition dependence of hall carrier concentration and mobility at room temperature.

    图 4  塞贝克系数、功率因子作为电导率函数在723 K时的关系曲线

    Fig. 4.  Relation curve of Seebeck coefficient and power factor as conductivity function at 723 K.

    图 5  实验测试的热扩散系数(a)和热导率(b)的温度依赖关系曲线

    Fig. 5.  Temperature dependence curve of thermal diffusivity (a) and thermal conductivity (b).

    图 6  计算所得洛伦兹常数(a)、电子热导率(b)、电子热导率占比(c)和晶格热导率(d)的温度依赖关系曲线

    Fig. 6.  The temperature dependence curves of Lorentz constant (a), electronic thermal conductivity (b), electronic thermal conductivity ratio (c) and lattice thermal conductivity (d).

    图 7  不同纳米SiO2含量的Mg3.3Sb1.5Bi0.49Te0.01样品ZT值温度依赖曲线; 插图为纳米SiO2复合的Mg3Sb2基材料样品电子和声子输运过程中的散射原理图

    Fig. 7.  Temperature dependence curve of ZT value of Mg3.3Sb1.5Bi0.49Te0.01 samples with different nano-SiO2 content; the illustration shows the scattering schematic diagram of the electron and phonon transport process of the composite with Mg3Sb2-based material and nano-SiO2.

    Baidu
  • [1]

    Mao J, Liu Z, Zhou J, Zhu H, Zhang Q, Chen G, Ren Z 2018 Adv. Phys. 67 69Google Scholar

    [2]

    Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109Google Scholar

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [4]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [5]

    Boona S R, Myers R C, Heremans J P 2014 Energy Environ. Sci. 7 885Google Scholar

    [6]

    Zheng Y, Lu T, Polash M M, Rasoulianboroujeni M, Liu N, Manley M E, Deng Y, Sun P, Chen X, Hermann R P, Vashaee D, Heremans J P, Zhao H 2019 Sci. Adv. 5 eaat9461Google Scholar

    [7]

    Imasato K, Kang S D, Snyder G J 2019 Energy Environ. Sci. 12 965Google Scholar

    [8]

    Ren Z, Shuai J, Mao J, Zhu Q, Song S, Ni Y, Chen S 2018 Acta Mater. 143 265Google Scholar

    [9]

    Imasato K, Kang S D, Ohno S, Snyder G J 2018 Mater. Horiz. 5 59Google Scholar

    [10]

    Tamaki H, Sato H K, Kanno T 2016 Adv. Mater. 28 10182Google Scholar

    [11]

    Shuai J, Ge B, Mao J, Song S, Wang Y, Ren Z 2018 J. Am. Chem. Soc. 140 1910Google Scholar

    [12]

    Imasato K, Ohno S, Kang S D, Snyder G J 2018 APL Mater. 6 016106Google Scholar

    [13]

    Wood M, Kuo J J, Imasato K, Snyder G J 2019 Adv. Mater. 31 1902337Google Scholar

    [14]

    Mao J, Zhu H, Ding Z, Liu Z, Gamage G A, Chen G, Ren Z 2019 Science 365 495

    [15]

    Yang J, Li G, Zhu H, Chen N, Lu T, Gao J, Guo L, Xiang J, Sun P, Yao Y 2022 Joule 6 193Google Scholar

    [16]

    Ren P, Liu Y, He J, Lv T, Gao J, Xu G 2018 Inorg. Chem. Front. 5 2380Google Scholar

    [17]

    Shi X, Wang X, Li W, Pei Y 2018 Small Methods 2 1800022Google Scholar

    [18]

    Brod M K, Anand S, Snyder G J 2023 Mater. Today Phys. 31 100959Google Scholar

    [19]

    Imasato K, Wood M, Anand S, Kuo J J, Snyder G J 2022 Adv. Energy Sustainability Res. 3 2100208Google Scholar

    [20]

    Sharp J W, Volckmann E H, Goldsmid H J 2001 Phys. Status Solidi A 185 257Google Scholar

    [21]

    Sharp J W, Goldsmid H J 1999 Proceedings of the 18th International Conference on Thermoelectrics Baltimore, USA, August 29–September 2, 1999 p709

    [22]

    Jin H, Heremans J P 2018 Phys. Rev. Mater. 2 115401Google Scholar

    [23]

    Kuo J J, Kang S D, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder G J 2018 Energy Environ. Sci. 11 429Google Scholar

    [24]

    Kanno T, Tamaki H, Sato H K, Kang S D, Ohno S, Imasato K, Kuo J J, Snyder G J, Miyazaki Y 2018 Appl. Phys. Lett. 112 033903Google Scholar

    [25]

    Mao T, Qiu P, Liu J, Du X, Hu P, Zhao K, Ren D, Shi X, Chen L 2020 Phys. Chem. Chem. Phys. 22 7374Google Scholar

  • [1] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟.  , 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [2] 熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏. FeNiMo/SiO2复合粉芯的制备与软磁性能调控.  , 2022, 71(15): 157502. doi: 10.7498/aps.71.20212317
    [3] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能.  , 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [4] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系.  , 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [5] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能.  , 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [6] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究.  , 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [7] 张晓荷, 王冬杰, 夏海平. 卟啉铜接枝SiO2有机-无机复合材料及强的非线性折射率.  , 2011, 60(2): 024210. doi: 10.7498/aps.60.024210
    [8] 周鸿娟, 甄聪棉, 张永进, 赵翠莲, 马丽, 侯登录. N掺杂SiO2纳米薄膜的制备及其磁性.  , 2010, 59(5): 3499-3503. doi: 10.7498/aps.59.3499
    [9] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能.  , 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [10] 孙小飞, 魏长平, 李启源. Ag-Au合金/SiO2复合薄膜的制备与表征.  , 2009, 58(8): 5816-5820. doi: 10.7498/aps.58.5816
    [11] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能.  , 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [12] 马保宏, 李 燕, 王成伟, 王 建, 陈建彪, 刘维民. 多孔TiO2/Al/SiO2纳米复合结构的紫外光吸收特性研究.  , 2008, 57(1): 586-591. doi: 10.7498/aps.57.586
    [13] 岳建岭, 孔 明, 赵文济, 李戈扬. 反应溅射VN/SiO2纳米多层膜的微结构与力学性能.  , 2007, 56(3): 1568-1573. doi: 10.7498/aps.56.1568
    [14] 夏正月, 韩培高, 韦德远, 陈德媛, 徐 骏, 马忠元, 黄信凡, 陈坤基. 发光纳米硅/二氧化硅多层膜的特性与氢气氛退火的影响.  , 2007, 56(11): 6691-6694. doi: 10.7498/aps.56.6691
    [15] 朱振华, 雷明凯. Er3+掺杂SiO2复合的Al2O3粉末结构及光致发光特性.  , 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [16] 姜海青, 姚 熹, 车 俊, 汪敏强. ZnSe/SiO2复合薄膜光学常数与荧光光谱的研究.  , 2006, 55(4): 2084-2091. doi: 10.7498/aps.55.2084
    [17] 张 芸, 张波萍, 焦力实, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究.  , 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [18] 鲁 欣, 奚婷婷, 李英竣, 张 杰. 超短超强脉冲激光在空气中产生的电离通道的寿命研究.  , 2004, 53(10): 3404-3408. doi: 10.7498/aps.53.3404
    [19] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜.  , 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [20] 丁瑞钦, 王浩, W.F.LAU, W.Y.CHEUNG, S.P.WONG, 王宁娟, 于英敏. InP/SiO2纳米复合膜的微观结构和光学性质.  , 2001, 50(8): 1574-1579. doi: 10.7498/aps.50.1574
计量
  • 文章访问数:  3436
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-11
  • 修回日期:  2023-05-04
  • 上网日期:  2023-05-16
  • 刊出日期:  2023-06-05

/

返回文章
返回
Baidu
map