搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SrSnO3作为透明导电氧化物的第一性原理研究

丁莉洁 张笑天 郭欣宜 薛阳 林常青 黄丹

引用本文:
Citation:

SrSnO3作为透明导电氧化物的第一性原理研究

丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹

First-principles study of SrSnO3 as transparent conductive oxide

Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan
PDF
HTML
导出引用
  • SrSnO3是一种钙钛矿结构的宽带隙半导体, 透明性高、无毒且价格低廉, 是一种有前景的透明导电氧化物的候选者. 本文通过第一性原理计算, 获得了SrSnO3的电子结构, 着重讨论了SrSnO3的本征缺陷、外界元素掺杂的缺陷形成能及过渡能级, 筛选出适宜的掺杂元素并指出了对应的实验制备环境, 进一步根据带边能量位置对其电导性能机制进行了探讨. 计算结果表明, SrSnO3是一种基础带隙为3.55 eV、光学带隙为4.10 eV的间接带隙半导体, 具有良好的透明性, 电子的有效质量轻, 利于n型电导. 在富金属贫氧条件下, As, Sb掺杂SrSnO3可以提升n型电导率; SrSnO3的价带顶位于–7.5 eV处, 导带底位于–4.0 eV处, 其价带顶和导带底的能量位置均相对较低, 解释了其易于n型掺杂而难于p型掺杂, 符合宽带隙半导体材料的掺杂规律. 最后, Sb掺杂SrSnO3被提出为有前景的廉价n型透明导电材料.
    As a wide band gap semiconductor with perovskite structure, SnSnO3 is regarded as a promising candidate of transparent conductive oxides due to its superior properties like high transparency, non-toxicity and low price. In this work, the electronic structure of SrSnO3 is obtained through first-principles calculations based on HSE06 hybrid functional. Especially, we investigate the defect formation energy and transition levels of the intrinsic and external defects in SrSnO3. The intrinsic defects including the anti-site defects (SrSn and SnSr), the vacancy defects (VSr, VSn, and VO), and the interstitial defects (Sri, Sni and Oi) are considered while the external doping defects are taken into account, including the substitution of Li, Na, K, Al, Ga, In for Sr site, Al, Ga, In, P, As, Sb for Sn site, and N, P at O site. Subsequently, the suitable doping elements and the corresponding experimental preparation environments are pointed out. Furthermore, we discuss the mechanism of its conductance according to the energy positions of the band edges. Our calculation results demonstrate that SrSnO3 is an indirect-type semiconductor with a fundamental band gap of 3.55 eV and an optical band gap of 4.10 eV and then has a good visible light transmittance. Its valence band maximum (VBM) comes from O-2p state while its conduction band minimum (CBM) mainly originates from Sn-5s state. In consistent with the delocalized Sn-5s state at CBM, the electron effective mass is light and isotropic, which is beneficial to n-type conductance. The n-type intrinsic defects SnSr and Vo have lower defect formation energy than the p-type intrinsic defects under O-poor condition while the n-type and p-type defects with low defect formation energy are almost equal under O-rich condition. Moreover, the transition levels of SnSr and VO are both deep. Therefore, SrSnO3 cannot have a good conductance without external doping. Our calculations also demonstrate that it is hard to produce an efficient p-type external doping due to the compensation effect by VO. On the other hand, substitution of As or Sb for Sn site can result in an effective n-type external doping due to their low defect formation energy and shallow transition levels. According to the low energy positions of VBM (–7.5 eV) and CBM (–4.0 eV) of SrSnO3, we explain the reason why it is easy to realize an n-type conductance but hard to produce a high-performance p-type conductance, which follows the doping rules for wide band gap semiconductors. Finally, Sb-doped SrSnO3 is proposed as a promising candidate for n-type transparent conductive materials.
      通信作者: 黄丹, danhuang@gxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61964002)和广东省基础与应用基础研究基金粤桂联合基金(批准号: 2020A1515410008)资助的课题
      Corresponding author: Huang Dan, danhuang@gxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61964002), and the Joint Fund Project of Guangdong and Guangxi, China (Grant No. 2020A1515410008).
    [1]

    Bitla Y, Chu Y H 2020 Nanoscale 12 18523Google Scholar

    [2]

    Stadler A 2012 Materials 5 661Google Scholar

    [3]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo Jin H, Sadhanala A, Myoung N, Yoo S, Im Sang H, Friend Richard H, Lee T W 2015 Science 350 1222Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [5]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947Google Scholar

    [6]

    Comini E, Faglia G, Sberveglieri G, Pan Z, Wang Z L 2002 Appl. Phys. Lett. 81 1869Google Scholar

    [7]

    Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47Google Scholar

    [8]

    Dou L, Yang Y, You J, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [9]

    Lee Michael M, Teuscher J, Miyasaka T, Murakami Takurou N, Snaith Henry J 2012 Science 338 643Google Scholar

    [10]

    Baedeker K 1907 Ann. Phys. 327 749Google Scholar

    [11]

    Minami T 2008 Thin Solid Films 516 1314Google Scholar

    [12]

    Minami T 2008 Thin Solid Films 516 5822Google Scholar

    [13]

    Chen M J, Yang J R, Shiojiri M 2012 Semicond. Sci. Technol. 27 074005Google Scholar

    [14]

    Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q, Kuznetsov A Y 2009 Adv. Mater. 21 4625Google Scholar

    [15]

    王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰 2020 69 197801Google Scholar

    Wang Y F, Xie X C, Liu X J, Han B, Wu H H, Lian N N, Yang F, Song Q G, Pei H L, Li J J 2020 Acta. Phys. Sin. 69 197801Google Scholar

    [16]

    Wu F, Tong X, Zhao Z, Gao J, Zhou Y, Kelly P 2017 J. Alloys Compd. 695 765Google Scholar

    [17]

    Fleischer K, Norton E, Mullarkey D, Caffrey D, Shvets I V 2017 Materials 10 1019Google Scholar

    [18]

    Zhang K H L, Xi K, Blamire M G, Egdell R G 2016 J. Phys. Condens. Mater. 28 383002Google Scholar

    [19]

    Cao R, Deng H X, Luo J W 2019 ACS Appl. Mater. Interfaces 11 24837Google Scholar

    [20]

    Dixon S C, Scanlon D O, Carmalt C J, Parkin I P 2016 J. Mater. Chem. C 4 6946Google Scholar

    [21]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631Google Scholar

    [22]

    Selopal G S, Milan R, Ortolani L, Morandi V, Rizzoli R, Sberveglieri G, Veronese G P, Vomiero A, Concina I 2015 Sol. Energy Mater. Sol. Cells 135 99Google Scholar

    [23]

    王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 62 247802Google Scholar

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802Google Scholar

    [24]

    王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇 2016 65 087802Google Scholar

    Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802Google Scholar

    [25]

    Ong K P, Fan X, Subedi A, Sullivan M B, Singh D J 2015 APL Mater. 3 062505Google Scholar

    [26]

    Riza M A, Ibrahim M A, Ahamefula U C, Mat Teridi M A, Ahmad Ludin N, Sepeai S, Sopian K 2016 Sol. Energy 137 371Google Scholar

    [27]

    Liu Q, Dai J, Zhang X, Zhu G, Liu Z, Ding G 2011 Thin Solid Films 519 6059Google Scholar

    [28]

    Liu Q, Jin F, Gao G, Wang W 2017 J. Alloys Compd. 717 62Google Scholar

    [29]

    Kumar Y, Kumar R, Asokan K, Choudhary R J, Phase D M, Singh A P 2021 J. Mater. Sci. -Mater. Electron. 32 11835Google Scholar

    [30]

    Wei M, Sanchela A V, Feng B, Ikuhara Y, Cho H J, Ohta H 2020 Appl. Phys. Lett. 116 022103Google Scholar

    [31]

    Liu Y, Zhou Y, Jia D, Zhao J, Wang B, Cui Y, Li Q, Liu B 2020 J. Mater. Sci. Technol. 42 212Google Scholar

    [32]

    Rahman A B A, Sarjadi M S, Alias A, Ibrahim M A 2019 J. Phys:Conf. Ser. 1358 012043Google Scholar

    [33]

    Kumar Y, Kumar R, Choudhary R J, Thakur A, Singh A P 2020 Ceram. Int. 46 17569Google Scholar

    [34]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [35]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Heyd J, Scuseria G E 2004 J. Chem. Phys. 121 1187Google Scholar

    [38]

    Green M A, Prassides K, Day P, Neumann D A 2000 J. Inorg. Mater. 2 35Google Scholar

    [39]

    Schumann T, Raghavan S, Ahadi K, Kim H, Stemmer S 2016 J. Vac. Sci. Technol., A 34 050601

    [40]

    Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667Google Scholar

    [41]

    Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205Google Scholar

    [42]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104Google Scholar

    [43]

    Singh M K, Hong J W, Karan N K, Jang H M, Katiyar R S, Redfern S A T, Scott J F 2010 J. Phys. Condens. Matter. 22 095901Google Scholar

    [44]

    Gao Q, Chen H, Li K, Liu Q 2018 ACS Appl. Mater. Interfaces 10 27503Google Scholar

    [45]

    KC S, Rowberg A J E, Weston L, Van de Walle C G 2019 J. Appl. Phys. 126 195701Google Scholar

    [46]

    Putz M V, Russo N, Sicilia E 2005 Theor. Chem. Acc. 114 38Google Scholar

    [47]

    Huang D, Xu J P, Jiang J W, Zhao Y J, Peng B L, Zhou W Z, Guo J 2017 Phys. Lett. A 381 2743Google Scholar

    [48]

    Hu S, Xia B, Yan Y, Xiao Z 2020 Phys. Rev. Mater. 4 115201Google Scholar

    [49]

    Schein F L, von Wenckstern H, Grundmann M 2013 Appl. Phys. Lett. 102 092109Google Scholar

    [50]

    Arai T, Iimura S, Kim J, Toda Y, Ueda S, Hosono H 2017 J. Am. Chem. Soc. 139 17175Google Scholar

    [51]

    Zhang Z, Guo Y, Robertson J 2022 Chem. Mater. 34 643Google Scholar

    [52]

    Yan Y, Wei S H 2008 Phys. Status Solidi B 245 641Google Scholar

  • 图 1  SrSnO3的单胞结构示意图.

    Fig. 1.  The crystal structure of SrSnO3 unit cell.

    图 2  SrSnO3的总态密度(a), Sr原子(b), Sn原子(c)以及O原子(d)的分波态密度. 体系费米能级设为零

    Fig. 2.  The total density of states (TDOS) (a), partial density of states (PDOS) of Sr (b), Sn (c) and O (d) in SrSnO3. The Fermi energy level is set to zero.

    图 3  SrSnO3中价带顶和导带底的电荷密度实空间分布

    Fig. 3.  The electronic charge densities of the VBM and CBM in SrSnO3.

    图 4  SrSnO3的能带结构(a)和光吸收系数(b). 图(b)中彩色区域可见光谱范围, SrSnO3在可见光谱基本无光吸收, 说明其具有较好的透明性

    Fig. 4.  The band structure (a) and the absorption coefficients (b) of SrSnO3. Colorful regions in figure b are the range of visible light spectrum. SrSnO3 cannot absorb light at the range of visible light spectrum, which stands for it has a good transparency.

    图 5  形成稳定SrSnO3允许的相对化学势范围(图中淡黄色区域). AD点分别代表四个不同的相对化学势极限条件

    Fig. 5.  Allowed relative chemical potential region (faint yellow area) for a stable SrSnO3. Points A–D represent four different chemical potential limit conditions.

    图 6  SrSnO3中本征缺陷的缺陷形成能, AD点分别代表不同的相对化学势极限条件, 对应不同的实验制备环境

    Fig. 6.  Defect formation energies of intrinsic defects in SrSnO3. Points AD represent different chemical potential limit conditions, which is corresponding to the different preparation environments for experiments.

    图 7  在不同相对化学势条件下, 各外界掺杂施主型缺陷的缺陷形成能. 灰色的线条表示为可能产生补偿作用的p型本征缺陷的缺陷形成能

    Fig. 7.  The defect formation energies of external donor defects under different relative chemical potential conditions. The grey lines represent the defect formation energies of p-type intrinsic defects which may lead to a carrier compensation effect.

    图 8  在不同相对化学势条件下, 各外界掺杂受主型缺陷的缺陷形成能. 灰色的线条表示为可能产生补偿作用的n型本征缺陷的缺陷形成能

    Fig. 8.  The defect formation energies of external acceptor defects under different relative chemical potential conditions. The grey lines represent the defect formation energies of n-type intrinsic defects which may lead to a carrier compensation effect.

    图 9  一系列宽禁带半导体材料SnO2, In2O3, SrSnO3, CuI和Cu2O的带边能量位置对比, 带隙宽度分别为3.52 eV, 3.73 eV, 3.55 eV, 3.1 eV以及2.02 eV

    Fig. 9.  The band-edge energy positions among a series of wide band gap semiconductors: SnO2, In2O3, SrSnO3, CuI and Cu2O. The band gaps of them are 3.52 eV, 3.73 eV, 3.55 eV, 3.1 eV and 2.02 eV, respectively.

    表 1  SrSnO3中电子和空穴的有效质量(单位: m0)

    Table 1.  Effective masses of electrons and holes in SrSnO3 (in: m0).

    有效质量电子空穴
    $ {m}_{001}^{*} $0.361.72
    $ {m}_{010}^{*} $0.320.44
    $ {m}_{100}^{*} $0.360.48
    下载: 导出CSV
    Baidu
  • [1]

    Bitla Y, Chu Y H 2020 Nanoscale 12 18523Google Scholar

    [2]

    Stadler A 2012 Materials 5 661Google Scholar

    [3]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo Jin H, Sadhanala A, Myoung N, Yoo S, Im Sang H, Friend Richard H, Lee T W 2015 Science 350 1222Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [5]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947Google Scholar

    [6]

    Comini E, Faglia G, Sberveglieri G, Pan Z, Wang Z L 2002 Appl. Phys. Lett. 81 1869Google Scholar

    [7]

    Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47Google Scholar

    [8]

    Dou L, Yang Y, You J, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [9]

    Lee Michael M, Teuscher J, Miyasaka T, Murakami Takurou N, Snaith Henry J 2012 Science 338 643Google Scholar

    [10]

    Baedeker K 1907 Ann. Phys. 327 749Google Scholar

    [11]

    Minami T 2008 Thin Solid Films 516 1314Google Scholar

    [12]

    Minami T 2008 Thin Solid Films 516 5822Google Scholar

    [13]

    Chen M J, Yang J R, Shiojiri M 2012 Semicond. Sci. Technol. 27 074005Google Scholar

    [14]

    Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q, Kuznetsov A Y 2009 Adv. Mater. 21 4625Google Scholar

    [15]

    王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰 2020 69 197801Google Scholar

    Wang Y F, Xie X C, Liu X J, Han B, Wu H H, Lian N N, Yang F, Song Q G, Pei H L, Li J J 2020 Acta. Phys. Sin. 69 197801Google Scholar

    [16]

    Wu F, Tong X, Zhao Z, Gao J, Zhou Y, Kelly P 2017 J. Alloys Compd. 695 765Google Scholar

    [17]

    Fleischer K, Norton E, Mullarkey D, Caffrey D, Shvets I V 2017 Materials 10 1019Google Scholar

    [18]

    Zhang K H L, Xi K, Blamire M G, Egdell R G 2016 J. Phys. Condens. Mater. 28 383002Google Scholar

    [19]

    Cao R, Deng H X, Luo J W 2019 ACS Appl. Mater. Interfaces 11 24837Google Scholar

    [20]

    Dixon S C, Scanlon D O, Carmalt C J, Parkin I P 2016 J. Mater. Chem. C 4 6946Google Scholar

    [21]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631Google Scholar

    [22]

    Selopal G S, Milan R, Ortolani L, Morandi V, Rizzoli R, Sberveglieri G, Veronese G P, Vomiero A, Concina I 2015 Sol. Energy Mater. Sol. Cells 135 99Google Scholar

    [23]

    王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 62 247802Google Scholar

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802Google Scholar

    [24]

    王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇 2016 65 087802Google Scholar

    Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802Google Scholar

    [25]

    Ong K P, Fan X, Subedi A, Sullivan M B, Singh D J 2015 APL Mater. 3 062505Google Scholar

    [26]

    Riza M A, Ibrahim M A, Ahamefula U C, Mat Teridi M A, Ahmad Ludin N, Sepeai S, Sopian K 2016 Sol. Energy 137 371Google Scholar

    [27]

    Liu Q, Dai J, Zhang X, Zhu G, Liu Z, Ding G 2011 Thin Solid Films 519 6059Google Scholar

    [28]

    Liu Q, Jin F, Gao G, Wang W 2017 J. Alloys Compd. 717 62Google Scholar

    [29]

    Kumar Y, Kumar R, Asokan K, Choudhary R J, Phase D M, Singh A P 2021 J. Mater. Sci. -Mater. Electron. 32 11835Google Scholar

    [30]

    Wei M, Sanchela A V, Feng B, Ikuhara Y, Cho H J, Ohta H 2020 Appl. Phys. Lett. 116 022103Google Scholar

    [31]

    Liu Y, Zhou Y, Jia D, Zhao J, Wang B, Cui Y, Li Q, Liu B 2020 J. Mater. Sci. Technol. 42 212Google Scholar

    [32]

    Rahman A B A, Sarjadi M S, Alias A, Ibrahim M A 2019 J. Phys:Conf. Ser. 1358 012043Google Scholar

    [33]

    Kumar Y, Kumar R, Choudhary R J, Thakur A, Singh A P 2020 Ceram. Int. 46 17569Google Scholar

    [34]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [35]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Heyd J, Scuseria G E 2004 J. Chem. Phys. 121 1187Google Scholar

    [38]

    Green M A, Prassides K, Day P, Neumann D A 2000 J. Inorg. Mater. 2 35Google Scholar

    [39]

    Schumann T, Raghavan S, Ahadi K, Kim H, Stemmer S 2016 J. Vac. Sci. Technol., A 34 050601

    [40]

    Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667Google Scholar

    [41]

    Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205Google Scholar

    [42]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104Google Scholar

    [43]

    Singh M K, Hong J W, Karan N K, Jang H M, Katiyar R S, Redfern S A T, Scott J F 2010 J. Phys. Condens. Matter. 22 095901Google Scholar

    [44]

    Gao Q, Chen H, Li K, Liu Q 2018 ACS Appl. Mater. Interfaces 10 27503Google Scholar

    [45]

    KC S, Rowberg A J E, Weston L, Van de Walle C G 2019 J. Appl. Phys. 126 195701Google Scholar

    [46]

    Putz M V, Russo N, Sicilia E 2005 Theor. Chem. Acc. 114 38Google Scholar

    [47]

    Huang D, Xu J P, Jiang J W, Zhao Y J, Peng B L, Zhou W Z, Guo J 2017 Phys. Lett. A 381 2743Google Scholar

    [48]

    Hu S, Xia B, Yan Y, Xiao Z 2020 Phys. Rev. Mater. 4 115201Google Scholar

    [49]

    Schein F L, von Wenckstern H, Grundmann M 2013 Appl. Phys. Lett. 102 092109Google Scholar

    [50]

    Arai T, Iimura S, Kim J, Toda Y, Ueda S, Hosono H 2017 J. Am. Chem. Soc. 139 17175Google Scholar

    [51]

    Zhang Z, Guo Y, Robertson J 2022 Chem. Mater. 34 643Google Scholar

    [52]

    Yan Y, Wei S H 2008 Phys. Status Solidi B 245 641Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算.  , 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究.  , 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [3] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [4] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [5] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究.  , 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [6] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究.  , 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [7] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究.  , 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [8] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性.  , 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [9] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [10] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究.  , 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [11] 李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳. Ag-N共掺p型ZnO的第一性原理研究.  , 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [12] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算.  , 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [13] 彭丽萍, 夏正才, 尹建武. 金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算.  , 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [14] 张华, 唐元昊, 周薇薇, 李沛娟, 施思齐. LiFePO4中对位缺陷的第一性原理研究.  , 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
    [15] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究.  , 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究.  , 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [18] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究.  , 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究.  , 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算.  , 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
计量
  • 文章访问数:  4646
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-09-15
  • 上网日期:  2022-12-23
  • 刊出日期:  2023-01-05

/

返回文章
返回
Baidu
map