搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1/f噪声及其在二维材料石墨烯中的研究进展

刘瑛 郭斯琳 张勇 杨鹏 吕克洪 邱静 刘冠军

引用本文:
Citation:

1/f噪声及其在二维材料石墨烯中的研究进展

刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军

Review on 1/f noise and its research progress in two-dimensional material graphene

Liu Ying, Guo Si-Lin, Zhang Yong, Yang Peng, Lyu Ke-Hong, Qiu Jing, Liu Guan-Jun
PDF
HTML
导出引用
  • 1/f噪声具有丰富的物理内涵, 既是科学研究的量化工具, 也是电子器件重要性能指标. 本文从通用数学形式和物理背景两个方面归纳总结1/f噪声模型. 首先介绍了基于马尔可夫过程和基于扩散过程的1/f噪声通用数学模型. 在此基础上, 溯源1/f噪声物理模型的发展历程, 总结五类典型物理模型, 包括Mc Whorter模型、Hooge模型、Voss-Clarker模型、Dutta-Horn模型、干涉模型以及Hung统一模型. 二维材料石墨烯让1/f噪声研究重归学术热点, 本文梳理了当前石墨烯1/f噪声研究中形成的共识性研究成果, 提出石墨烯低频噪声研究的三层次分类分析模型, 分析了不同层面噪声机理研究代表性成果, 归纳总结了各层面可能的主导机制. 通过比较不同团队报道的石墨烯1/f噪声栅极调控特征谱型及测试条件, 分析了复杂多变栅控谱型形成原因. 基于分析结论, 为避免非本征噪声干扰, 提出了石墨烯本征背景1/f噪声规范性测量方案, 为厘清和揭示石墨烯1/f噪声机制及特性探索可行技术途径.
    Noise is a signal. Low-frequency noise with a 1/f-type spectral density (1/f noise) has been observed in a wide variety of systems. There are plenty of physical processes under the 1/f noise phenomenon. It is not only a useful tool for scientific research, but also a quantitative probe for the performance of electronic devices. In this paper, the 1/f noise models are summarized from the general mathematical forms to physical processes. Based on Markov process and diffusion process, two general mathematical models of 1/f noise are introduced respectively. On this basis, tracing the development history, several typical physical models are described, including Mc Whorter model, Hooge model, Voss-Clarker model, Dutta-horn model, interference model and unified Hung model. The advent of the two-dimensional material graphene offers unique opportunities for studying the mechanism of 1/f noise. In the fact of the cloudy and even contradictory conclusions from different reports, this paper combs the consensus accepted widely. An analysis model based on three-level classification for the graphene low-frequency noise study is built, which divides the noise into intrinsic background 1/f noise, 1/f-like noise and Lorentz-like noise. Typical research on the related mechanism at each level is analyzed, and the dominant mechanisms are summarized. Further, we focus on the gate-modulated characteristic spectrum shape of 1/f noise from different reported experiments, which may be a key to the material internal scattering mechanism and charge distribution. The experimental measurements show that the characteristic shape is variable, and mainly exists in three forms: V-type, Λ-type and M-type. Through the comparative analysis of graphene cleanliness, bias current (voltage) and other experimental parameters, the possible causes of the complexity and variability of the characteristic shape are analyzed, showing that the main reason may be that the experimental parameters are not strictly controlled, and the selection of measuring point is unreasonable. In order to capture the accurate noise characteristics and reveal the noise mechanism clearly, a standard 1/f noise measurement paradigm is proposed in this work to guide the effective research on graphene 1/f noise and the distinction betweenintrinsic noise and extrinsic noise. The standard paradigm includes three processes. The first process is to prepare suspended graphene samples, the second one is to remove the surface contamination by using the methods such as current annealing, and the third one is to test the curve of the 1/f noise amplitude versus the bias voltage or current. Based on this curve, suitable test points can be selected for different measurement schemes. The proposed standard intrinsic background 1/f noise measurement paradigm may be expected to clarify and reveal the characteristics of graphene 1/f noise.
      通信作者: 刘瑛, liuying@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12102461)资助的课题.
      Corresponding author: Liu Ying, liuying@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12102461).
    [1]

    Vandamme L, Hooge F 2005 Phys. B Condens. Matter 357 507Google Scholar

    [2]

    Wilamowski B M, Irwin J D 2011 Fundamentals of Industrial Electronics: The Industrial Electronics Handbook (1st Ed.) (CRC Press) p11

    [3]

    Liu G, Stillman W, Rumyantsev S, Shur M, Balandin A A 2011 Int. J. High Speed Electron. Syst. 20 161Google Scholar

    [4]

    Johnson J B 1925 Phys. Rev. 26 71Google Scholar

    [5]

    Voss R F, Clarke J 1975 Nature 258 317Google Scholar

    [6]

    Daniel A 2015 Ph D Dissertation (Nottingham: The University of Nottingham)

    [7]

    庄奕琪, 马中发, 杜磊 1999 世界科技研究与发展 21 69Google Scholar

    Zhuang Y Q, Ma Z F, Du L 1999 World Sci-Tech R. D. 21 69Google Scholar

    [8]

    Dutta P, Dimon P, Horn P 1979 Phys. Rev. Lett. 43 646Google Scholar

    [9]

    Clarke J, Voss R F 1974 Phys. Rev. Lett. 33 24Google Scholar

    [10]

    Burstein E, McWhorter A L, Miller P H, Stevenson D T, Weisz P B 1957 Semiconductor Surface Physics (University of Pennsylvania Press) p207

    [11]

    Hooge F, Kleinpenning T, Vandamme L 1981 Rep. Prog. Phys. 44 479Google Scholar

    [12]

    Hooge F 1972 Physica 60 130Google Scholar

    [13]

    Hung K K, Ko P K, Hu C, Cheng Y C 1990 IEEE Trans. Electron Devices 37 1323Google Scholar

    [14]

    Peransin J, Vignaud P, Rigaud D, Vandamme L K J 1990 IEEE Trans. Electron Devices 37 2250Google Scholar

    [15]

    Pellegrini B 1988 Phys. Rev. B 38 8279Google Scholar

    [16]

    Dmitriev A P, Levinshtein M E, Rumyantsev S L, Shur M S 2005 J. Appl. Phys. 97 123706Google Scholar

    [17]

    Liu Y, Tan Z, Kumar M, Abhilash T S, Liu G J, Hakonen P 2018 APL Mater. 6 091102Google Scholar

    [18]

    杜磊, 庄奕琪, 薛丽君 2002 51 2836Google Scholar

    Du L, Zhuang Y Q, Xue L J 2002 Acta Phys. Sin. 51 2836Google Scholar

    [19]

    Song X X, Li H O, You J, Han T Y, Cao G, Tu T, Xiao M, Guo G C, Jiang H W, Guo G P 2015 Sci. Rep. 5 8142Google Scholar

    [20]

    Paladino E, Galperin Y M, Falci G, Altshuler B L 2014 Rev. Mod. Phys. 86 361Google Scholar

    [21]

    Dutta P, Horn P 1981 Rev. Mod. Phys. 53 497Google Scholar

    [22]

    Macdonald K C, Lindsay R B 1963 Phys. Today 16 74

    [23]

    Landauer R 1998 Nature 392 658Google Scholar

    [24]

    Kogan S 2008 Electronic Noise and Fluctuations in Solids (Cambridge University Press) pp24

    [25]

    Surdin M 1939 J. Phys. Radium 10 188Google Scholar

    [26]

    M. Richardson J 1950 Bell Syst. Tech. J. 29 117Google Scholar

    [27]

    Weissman M B 1975 Phys. Rev. Lett. 35 689Google Scholar

    [28]

    Kirton M J, Uren M J 1989 Adv. Phys. 38 367Google Scholar

    [29]

    Hooge F N 1994 IEEE Trans. Electron Devices 41 1926Google Scholar

    [30]

    Voss R F, Clarke J 1976 Phys. Rev. Lett. 36 42Google Scholar

    [31]

    Voss R F, Clarke J 1976 Phys. Rev. B 13 556Google Scholar

    [32]

    Hershfield S 1988 Phys. Rev. B 37 8557Google Scholar

    [33]

    Raychaudhuri A K 2002 Curr. Opin. Solid State Mater. Sci. 6 67Google Scholar

    [34]

    Pelz J, Clarke J 1987 Phys. Rev. B 36 4479Google Scholar

    [35]

    Ralls K S, Buhrman R A 1991 Phys. Rev. B 44 5800Google Scholar

    [36]

    Hung K K, Ko P K, Hu C, Cheng Y C 1990 IEEE Trans. Electron Devices 37 654Google Scholar

    [37]

    Koga J, Takagi S, Toriumi A Proceedings of 1994 IEEE International Electron Devices Meeting, San Francisco, USA 11-14 Dec. 1994 pp475–478

    [38]

    Vandamme E P, Vandamme L K 2000 IEEE Trans. Electron Devices 47 2146Google Scholar

    [39]

    Xi'an: Xidian University) 张鹏 2010 博士学位论文 (西安: 西安电子科技大学

    Zhang P 2010 Ph. D. Dissertation (in Chinese)

    [40]

    Lin Y-M, Avouris P 2008 Nano Lett. 8 2119Google Scholar

    [41]

    Heller I, Chatoor S, Männik J, Zevenbergen M A, Oostinga J B, Morpurgo A F, Dekker C, Lemay S G 2010 Nano Lett. 10 1563Google Scholar

    [42]

    Liu G, Stillman W, Rumyantsev S, Shao Q, Shur M, Balandin A 2009 Appl. Phys. Lett. 95 033103Google Scholar

    [43]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Phys. E (Amsterdam, Neth. ) 40 228Google Scholar

    [44]

    Kumar M, Laitinen A, Cox D, Hakonen P J 2015 Appl. Phys. Lett. 106 263505Google Scholar

    [45]

    Rumyantsev S, Liu G, Stillman W, Shur M, Balandin A A 2010 J. Phys. Condens. Matter 22 395302 7

    [46]

    Liu G X, Rumyantsev S, Shur M S, Balandin A A 2013 Appl. Phys. Lett. 102 093111Google Scholar

    [47]

    Zhang Y, Mendez E E, Du X 2011 ACS nano 5 8124Google Scholar

    [48]

    Cheng Z, Li Q, Li Z, Zhou Q, Fang Y 2010 Nano Lett. 10 1864Google Scholar

    [49]

    Zahid Hossain M, Rumyantsev S, Shur M S, Balandin A A 2013 Appl. Phys. Lett. 102 153512Google Scholar

    [50]

    Rehman A, Delgado Notario J A, Salvador Sanchez J, Meziani Y M, Cywiński G, Knap W, Balandin A A, Levinshtein M, Rumyantsev S 2022 Nanoscale 14 7242Google Scholar

    [51]

    Kamada M, Laitinen A, Zeng W, Will M, Sarkar J, Tappura K, Seppä H, Hakonen P 2021 Nano Lett. 21 7637Google Scholar

    [52]

    Pal A N, Ghatak S, Kochat V, Sneha E, Sampathkumar A, Raghavan S, Ghosh A 2011 ACS Nano 5 2075Google Scholar

    [53]

    Kaverzin A A, Mayorov A S, Shytov A, Horsell D W 2012 Phys. Rev. B 85 075435 5

    [54]

    Macucci M, Marconcini P 2020 J. Sens. 2020 2850268

    [55]

    Pellegrini B, Marconcini P, Macucci M, Fiori G, Basso G 2016 J. Stat. Mech. Theory Exp. 2016 054017Google Scholar

    [56]

    Pellegrini B 2013 Eur. Phys. J. B 86 373Google Scholar

    [57]

    Rumyantsev S, Liu G X, Shur M S, Potyrailo R A, Balandin A A 2012 Nano Lett. 12 2294Google Scholar

    [58]

    Kazi R A, Aveek B 2014 Curr. Sci. India 107 430

    [59]

    Cui Y, Liu Y M, Yu J C, Hayasaka T, Li X Q, Cai W H, Liu H L, Lin L W 2017 Ieee 19th International Conference on Solid-State Sensors, Actuators and Microsystems Taiwan China pp246–249

    [60]

    Xu G, Torres C M, Jr., Zhang Y, Liu F, Song E B, Wang M, Zhou Y, Zeng C, Wang K L 2010 Nano Lett. 10 3312Google Scholar

    [61]

    Takeshita S, Matsuo S, Tanaka T, Nakaharai S, Tsukagoshi K, Moriyama T, Ono T, Arakawa T, Kobayashi K 2016 Appl. Phys. Lett. 108 103106Google Scholar

    [62]

    Arnold H N, Sangwan V K, Schmucker S W, Cress C D, Luck K A, Friedman A L, Robinson J T, Marks T J, Hersam M C 2016 Appl. Phys. Lett. 108 073108Google Scholar

    [63]

    Kayyalha M, Chen Y P 2015 Appl. Phys. Lett. 107 113101Google Scholar

    [64]

    Stolyarov M A, Liu G, Rumyantsev S L, Shur M, Balandin A A 2015 Appl. Phys. Lett. 107 023106Google Scholar

    [65]

    Karnatak P, Sai T P, Goswami S, Ghatak S, Kaushal S, Ghosh A 2016 Nat. Commun. 7 13703Google Scholar

    [66]

    Mavredakis N, Garcia Cortadella R, Bonaccini Calia A, Garrido J A, Jiménez D 2018 Nanoscale 10 14947Google Scholar

  • 图 1  1/f 噪声模型研究时间线和趋势

    Fig. 1.  Timeline of the important events in the history of 1/f noise model research and its trend.

    图 2  (a)载流子随机隧穿示意图; (b)单次隧穿产生G-R噪声; (c)集体隧穿形成1/f噪声

    Fig. 2.  (a) The diagram of carrier random tunneling; (b) generation of G-R noise by single tunneling event; (c) 1/f type noise formation by collective tunneling events.

    图 3  载流子干涉示意图 (a)局域干涉; (b)UCF干涉

    Fig. 3.  schamatic of carrier interference: (a) local interference effect; (b) the universal-conductance-fluctuation interference effect.

    图 4  (a)不同温度下悬空石墨烯电阻栅极调控特性曲线; (b)不同温度下石墨烯1/f噪声栅极调控特征谱型

    Fig. 4.  (a) Resistivity vs. gate voltage in suspended device at different temperatures; (b) noise amplitude vs. gate voltage in suspended device at different temperatures.

    图 5  (a) 300 K下石墨烯噪声谱密度磁场调控特性; (b) 200 K下石墨烯噪声谱密度磁场调控特性

    Fig. 5.  (a) Relative noise spectral density as a function of the magnetic field at T = 300 K; (b) relative noise spectral density as a function of the magnetic field at T = 200 K.

    图 6  (a)不同偏置电流下的石墨烯1/f噪声; (b)石墨烯噪声幅值与电流关系; (c)噪声幅值(蓝色)及电阻(红色)与载流子浓度关系

    Fig. 6.  (a) 1/f noise in graphene under different current bias values; (b) the relation between noise power and bias current; (c) resistance and low frequency noise characteristics with respect to charge carrier density.

    图 7  (a)石墨烯晶体管及两种噪声机制示意图; (b)不同载流子浓度下时域电导涨落; (c)不同栅压下典型电导归一化噪声功率谱; (d)1 Hz处噪声幅值的栅极调控特性及模型拟合结果

    Fig. 7.  (a) Schematic of the GraFET device showing two different charge noise mechanisms; (b) time domain conductivity fluctuations at different carrier densities; (c) typical noise power spectra at various backgate voltages; (d) noise amptitude at 1 Hz vs. density, fitted by the equation.

    图 8  (a)悬空单层Corbino结构石墨烯; (b) 10 Hz处归一化电流噪声栅控特性

    Fig. 8.  (a) Suspended single-layer Corbino graphene sample; (b) noise characteristics with respect to gate voltage.

    图 9  (a)不考虑puddle的噪声幅值随n-p变化特性曲线; (b)考虑puddle的噪声幅值随n-p变化特性曲线

    Fig. 9.  (a) Noise characteristics with respect to n-p in the absence of potential disorder; (b) noise characteristics with respect to n-p with various potential disorders.

    图 10  (a)1/f噪声应用于生化检测; (b)1/f噪声应用于电子隧穿监测

    Fig. 10.  (a) Biosensing application; (b) electron-tunneling monitoring.

    图 11  石墨烯3种典型栅极调控特征谱型 (a)${{\Lambda }} $型; (b)M型; (c)V型

    Fig. 11.  Three characteristic shape of gate dependence of 1/f noise in the graphene: (a) ${{\Lambda }} $ shape; (b) M shape; (c) V shape.

    图 12  1/f 噪声测点位置选取

    Fig. 12.  Selection of possible test points.

    图 13  石墨烯本征背景1/f噪声实验研究范式

    Fig. 13.  Paradigm of exprimental research on graphene intrinsic background 1/f noise.

    表 1  不同研究层次石墨烯噪声主导机制

    Table 1.  The main noise mechanisms for graphene at different levels.

    层次分类散射截面(迁移率)涨落载流子数
    涨落
    短程无序散射长程无序散射随机隧穿
    本征背景噪声靠近DP
    (结合电阻网络模型)
    远离DP
    类1/f噪声靠近DP
    (结合电阻网络模型)
    远离DP
    洛伦兹类噪声
    下载: 导出CSV

    表 2  石墨烯1/f噪声特征谱型对比

    Table 2.  comparison of the characteristic shape of 1/f noise in graphene.

    参考文献 特征谱型
    ${{\Lambda }} $型V型M型
    Kaverzin et al.[53]√, T = 60 K, Vb = ?, D√, T = 40 K, Vb = ?, D√, T=40 K, Vb=?, H2O 吸附, D
    Heller et al.[41]√, RT, Vb < 5 mV, D√, RT, Vb < 5 mV, D
    Lin el al.[40]√, RT, Vb=100 mV, Bi , D√, RT, Vb=100 mV, D
    Pal el al.[52]√, T = 78–290 K, Ib=50 μA, D√, T = 100 K, Ib=50 μA, Bi, D√, T = 262–275 K,
    Ib=50 μA , Bi, D
    √, T = 150–300 K, Ib=50 μA , Sus, D√, T = 78–90 K, Ib=50 μA, Multi, D
    Zhang el al.[47]√, T = 30–50 K, Vb = ?, D√, T = 145–300 K, Vb = ?, D
    √, T = 30–300 K, Vb = ?, Sus, C
    Xu el al.[60]√, T = 70–300 K, Vb = ?, Bi, D√, T = 90-300 K, Vb = ?, D
    Takeshita el al.[61]√, T = 1.6 K,
    Vb < 0.6 mV, D
    作者认为Heller, Zhang Y, Xu G S,
    Rumyantsev, Kaverzin, Stolyarov
    等实验偏置电压过大
    √, T = 1.6 K, Vb > 0.6 mV, D
    Arnold el al.[62]√, RT, Vb = 0.3 V, D√, RT, Vb=0.3 V, D√, RT, Vb = 0.3 V, D
    Mavredakis el al.[66]√, RT, Vb = 20–60 mV, D
    Kayyalha el al.[64]√, RT, Vb = 40 mV,
    C, BN-encapsulated
    √, RT, Vb = 40 mV, D
    Stolyarov el al.[65]√, RT, Vb = ?, C, BN-encapsulated√, RT, Vb = ?, D,
    Pellegrini el al.[55]理论仿真模型
    Karnatak el al.[66]√, T = 80–300 K,
    Ib = 100 nA, C,
    BN-encapsulated
    Vb表示样品偏置电压, Vb = ?表示偏置电流未知; Ib表示样品偏置电流; RT表示室温; Bi表示双层石墨烯, Multi表示多层石墨烯, 其他未标注的均为单层石墨烯; Sus表示悬浮石墨烯, BN-encapsulated表示六方氮化硼(h-BN)包覆的石墨烯, 其他未标注的均为二氧化硅基底上的石墨烯; D表示非洁净石墨烯, C表示洁净石墨烯.
    下载: 导出CSV
    Baidu
  • [1]

    Vandamme L, Hooge F 2005 Phys. B Condens. Matter 357 507Google Scholar

    [2]

    Wilamowski B M, Irwin J D 2011 Fundamentals of Industrial Electronics: The Industrial Electronics Handbook (1st Ed.) (CRC Press) p11

    [3]

    Liu G, Stillman W, Rumyantsev S, Shur M, Balandin A A 2011 Int. J. High Speed Electron. Syst. 20 161Google Scholar

    [4]

    Johnson J B 1925 Phys. Rev. 26 71Google Scholar

    [5]

    Voss R F, Clarke J 1975 Nature 258 317Google Scholar

    [6]

    Daniel A 2015 Ph D Dissertation (Nottingham: The University of Nottingham)

    [7]

    庄奕琪, 马中发, 杜磊 1999 世界科技研究与发展 21 69Google Scholar

    Zhuang Y Q, Ma Z F, Du L 1999 World Sci-Tech R. D. 21 69Google Scholar

    [8]

    Dutta P, Dimon P, Horn P 1979 Phys. Rev. Lett. 43 646Google Scholar

    [9]

    Clarke J, Voss R F 1974 Phys. Rev. Lett. 33 24Google Scholar

    [10]

    Burstein E, McWhorter A L, Miller P H, Stevenson D T, Weisz P B 1957 Semiconductor Surface Physics (University of Pennsylvania Press) p207

    [11]

    Hooge F, Kleinpenning T, Vandamme L 1981 Rep. Prog. Phys. 44 479Google Scholar

    [12]

    Hooge F 1972 Physica 60 130Google Scholar

    [13]

    Hung K K, Ko P K, Hu C, Cheng Y C 1990 IEEE Trans. Electron Devices 37 1323Google Scholar

    [14]

    Peransin J, Vignaud P, Rigaud D, Vandamme L K J 1990 IEEE Trans. Electron Devices 37 2250Google Scholar

    [15]

    Pellegrini B 1988 Phys. Rev. B 38 8279Google Scholar

    [16]

    Dmitriev A P, Levinshtein M E, Rumyantsev S L, Shur M S 2005 J. Appl. Phys. 97 123706Google Scholar

    [17]

    Liu Y, Tan Z, Kumar M, Abhilash T S, Liu G J, Hakonen P 2018 APL Mater. 6 091102Google Scholar

    [18]

    杜磊, 庄奕琪, 薛丽君 2002 51 2836Google Scholar

    Du L, Zhuang Y Q, Xue L J 2002 Acta Phys. Sin. 51 2836Google Scholar

    [19]

    Song X X, Li H O, You J, Han T Y, Cao G, Tu T, Xiao M, Guo G C, Jiang H W, Guo G P 2015 Sci. Rep. 5 8142Google Scholar

    [20]

    Paladino E, Galperin Y M, Falci G, Altshuler B L 2014 Rev. Mod. Phys. 86 361Google Scholar

    [21]

    Dutta P, Horn P 1981 Rev. Mod. Phys. 53 497Google Scholar

    [22]

    Macdonald K C, Lindsay R B 1963 Phys. Today 16 74

    [23]

    Landauer R 1998 Nature 392 658Google Scholar

    [24]

    Kogan S 2008 Electronic Noise and Fluctuations in Solids (Cambridge University Press) pp24

    [25]

    Surdin M 1939 J. Phys. Radium 10 188Google Scholar

    [26]

    M. Richardson J 1950 Bell Syst. Tech. J. 29 117Google Scholar

    [27]

    Weissman M B 1975 Phys. Rev. Lett. 35 689Google Scholar

    [28]

    Kirton M J, Uren M J 1989 Adv. Phys. 38 367Google Scholar

    [29]

    Hooge F N 1994 IEEE Trans. Electron Devices 41 1926Google Scholar

    [30]

    Voss R F, Clarke J 1976 Phys. Rev. Lett. 36 42Google Scholar

    [31]

    Voss R F, Clarke J 1976 Phys. Rev. B 13 556Google Scholar

    [32]

    Hershfield S 1988 Phys. Rev. B 37 8557Google Scholar

    [33]

    Raychaudhuri A K 2002 Curr. Opin. Solid State Mater. Sci. 6 67Google Scholar

    [34]

    Pelz J, Clarke J 1987 Phys. Rev. B 36 4479Google Scholar

    [35]

    Ralls K S, Buhrman R A 1991 Phys. Rev. B 44 5800Google Scholar

    [36]

    Hung K K, Ko P K, Hu C, Cheng Y C 1990 IEEE Trans. Electron Devices 37 654Google Scholar

    [37]

    Koga J, Takagi S, Toriumi A Proceedings of 1994 IEEE International Electron Devices Meeting, San Francisco, USA 11-14 Dec. 1994 pp475–478

    [38]

    Vandamme E P, Vandamme L K 2000 IEEE Trans. Electron Devices 47 2146Google Scholar

    [39]

    Xi'an: Xidian University) 张鹏 2010 博士学位论文 (西安: 西安电子科技大学

    Zhang P 2010 Ph. D. Dissertation (in Chinese)

    [40]

    Lin Y-M, Avouris P 2008 Nano Lett. 8 2119Google Scholar

    [41]

    Heller I, Chatoor S, Männik J, Zevenbergen M A, Oostinga J B, Morpurgo A F, Dekker C, Lemay S G 2010 Nano Lett. 10 1563Google Scholar

    [42]

    Liu G, Stillman W, Rumyantsev S, Shao Q, Shur M, Balandin A 2009 Appl. Phys. Lett. 95 033103Google Scholar

    [43]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Phys. E (Amsterdam, Neth. ) 40 228Google Scholar

    [44]

    Kumar M, Laitinen A, Cox D, Hakonen P J 2015 Appl. Phys. Lett. 106 263505Google Scholar

    [45]

    Rumyantsev S, Liu G, Stillman W, Shur M, Balandin A A 2010 J. Phys. Condens. Matter 22 395302 7

    [46]

    Liu G X, Rumyantsev S, Shur M S, Balandin A A 2013 Appl. Phys. Lett. 102 093111Google Scholar

    [47]

    Zhang Y, Mendez E E, Du X 2011 ACS nano 5 8124Google Scholar

    [48]

    Cheng Z, Li Q, Li Z, Zhou Q, Fang Y 2010 Nano Lett. 10 1864Google Scholar

    [49]

    Zahid Hossain M, Rumyantsev S, Shur M S, Balandin A A 2013 Appl. Phys. Lett. 102 153512Google Scholar

    [50]

    Rehman A, Delgado Notario J A, Salvador Sanchez J, Meziani Y M, Cywiński G, Knap W, Balandin A A, Levinshtein M, Rumyantsev S 2022 Nanoscale 14 7242Google Scholar

    [51]

    Kamada M, Laitinen A, Zeng W, Will M, Sarkar J, Tappura K, Seppä H, Hakonen P 2021 Nano Lett. 21 7637Google Scholar

    [52]

    Pal A N, Ghatak S, Kochat V, Sneha E, Sampathkumar A, Raghavan S, Ghosh A 2011 ACS Nano 5 2075Google Scholar

    [53]

    Kaverzin A A, Mayorov A S, Shytov A, Horsell D W 2012 Phys. Rev. B 85 075435 5

    [54]

    Macucci M, Marconcini P 2020 J. Sens. 2020 2850268

    [55]

    Pellegrini B, Marconcini P, Macucci M, Fiori G, Basso G 2016 J. Stat. Mech. Theory Exp. 2016 054017Google Scholar

    [56]

    Pellegrini B 2013 Eur. Phys. J. B 86 373Google Scholar

    [57]

    Rumyantsev S, Liu G X, Shur M S, Potyrailo R A, Balandin A A 2012 Nano Lett. 12 2294Google Scholar

    [58]

    Kazi R A, Aveek B 2014 Curr. Sci. India 107 430

    [59]

    Cui Y, Liu Y M, Yu J C, Hayasaka T, Li X Q, Cai W H, Liu H L, Lin L W 2017 Ieee 19th International Conference on Solid-State Sensors, Actuators and Microsystems Taiwan China pp246–249

    [60]

    Xu G, Torres C M, Jr., Zhang Y, Liu F, Song E B, Wang M, Zhou Y, Zeng C, Wang K L 2010 Nano Lett. 10 3312Google Scholar

    [61]

    Takeshita S, Matsuo S, Tanaka T, Nakaharai S, Tsukagoshi K, Moriyama T, Ono T, Arakawa T, Kobayashi K 2016 Appl. Phys. Lett. 108 103106Google Scholar

    [62]

    Arnold H N, Sangwan V K, Schmucker S W, Cress C D, Luck K A, Friedman A L, Robinson J T, Marks T J, Hersam M C 2016 Appl. Phys. Lett. 108 073108Google Scholar

    [63]

    Kayyalha M, Chen Y P 2015 Appl. Phys. Lett. 107 113101Google Scholar

    [64]

    Stolyarov M A, Liu G, Rumyantsev S L, Shur M, Balandin A A 2015 Appl. Phys. Lett. 107 023106Google Scholar

    [65]

    Karnatak P, Sai T P, Goswami S, Ghatak S, Kaushal S, Ghosh A 2016 Nat. Commun. 7 13703Google Scholar

    [66]

    Mavredakis N, Garcia Cortadella R, Bonaccini Calia A, Garrido J A, Jiménez D 2018 Nanoscale 10 14947Google Scholar

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱.  , 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响.  , 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [3] 白占斌, 王锐, 周亚洲, 吴天如, 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用.  , 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [4] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真.  , 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [5] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用.  , 2021, (): . doi: 10.7498/aps.70.20211815
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理.  , 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征.  , 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [10] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨.  , 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [11] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用.  , 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [12] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究.  , 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [13] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模.  , 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [14] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究.  , 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [15] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究.  , 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [16] 陈东猛. 在不同应力下石墨烯中拉曼谱的G峰劈裂的变化.  , 2010, 59(9): 6399-6404. doi: 10.7498/aps.59.6399
    [17] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性.  , 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [18] 李瑞珉, 杜 磊, 庄奕琪, 包军林. MOSFET 辐照诱生界面陷阱形成过程的1/f噪声研究.  , 2007, 56(6): 3400-3406. doi: 10.7498/aps.56.3400
    [19] 包军林, 庄奕琪, 杜 磊, 李伟华, 万长兴, 张 萍. N/P沟道MOSFET1/f噪声的统一模型.  , 2005, 54(5): 2118-2122. doi: 10.7498/aps.54.2118
    [20] 孙 涛, 陈兴国, 胡晓宁, 李言谨. HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究.  , 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
计量
  • 文章访问数:  6142
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-09-21
  • 上网日期:  2022-10-19
  • 刊出日期:  2023-01-05

/

返回文章
返回
Baidu
map