搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含多个相干耦合人工原子的单模腔的输入输出特性

郑赟杰 王晨阳 谢双媛 许静平 羊亚平

引用本文:
Citation:

含多个相干耦合人工原子的单模腔的输入输出特性

郑赟杰, 王晨阳, 谢双媛, 许静平, 羊亚平

Input-output characteristics of single-mode cavity with multiple coherently coupled artificial atoms

Zheng Yun-Jie, Wang Chen-Yang, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping
PDF
HTML
导出引用
  • 在以往的腔量子电动力学(QED)系统中原子气通常被处理成单个原子, 从而得到诸如拉比劈裂、单光子阻塞等现象. 受益于超导电路QED的发展, 超导量子比特(SQUID)可以被看成人工原子, 它们之间通过LC谐振子失谐的耦合会构成人工原子间的等效相干耦合. 基于此, 研究了具有相干耦合的多个人工原子对单模腔输入输出的影响, 并从缀饰态的角度对透射谱进行了分析. 结果发现包含多个相干耦合人工原子的单模腔, 其透射谱与只含单个原子的腔显著不同, 更重要的是透射峰的数目并不会随着人工原子数的增加而增加, 最多只有3个透射峰. 为了解释这种透射谱的规律, 应用全量子理论, 计算了整个系统在不含耗散时单能量子情况下的本征值和本征态. 原则上, 有几个粒子, 就会形成几个缀饰态, 理论上就会出现几个透射峰. 然而本文发现存在一些不包含光子成分的缀饰态, 它们并不贡献透射峰. 而原子数增多后会出现透射峰劈裂, 这对应着能级避免交叉现象, 本文从缀饰态角度进行了说明. 从这些缀饰态的具体形式上很多都具有多体纠缠的性质. 因此采用这样一种包含多个相干耦合人工原子的单模腔, 将有利于构建多体纠缠态, 在未来也可以通过透射率的变化, 探知腔内多体纠缠态的形式.
    In previous cavity quantum electrodynamics (QED) systems, atomic gas is usually treated as single atoms, thereby resulting in phenomena such as Rabi splitting, and single-photon blocking. Benefiting from the development of superconducting circuit QED, the superconducting quantum interference devices (SQUIDs) can be regarded as artificial atoms, and the detuned coupling of them through LC harmonic oscillators will constitute an equivalent coherent coupling between artificial atoms. According to this, we study the effect of multiple artificial atoms with coherent coupling on the input and output of a single-mode cavity, and analyze the transmission spectrum from the perspective of decorated state. We find that single-mode cavities containing multiple artificial atoms with coherent coupling have significantly different transmittances from cavities containing single atoms, the transmission spectra of which are correlated with the coherent coupling coefficients between the artificial atoms, and the coupling coefficients between the cavity modes and the artificial atoms, and we also find that both the cavity mode leakage rate and the artificial atom decay rate are related to each other. And as the number of artificial atoms increases, the number of transmission peaks does not increase, and there are only three transmission peaks at most. In order to explain the law of this transmission spectrum, we quantize both artificial atoms and cavity modes, and calculate the eigenvalues and eigenstates of the whole in a single quantum case. In principle, if there are several particles, they will form several decorative states, and there will theoretically appear several transmission peaks. However, we find that there are some decorated states that do not contain the photonic component and thus do not contribute to the transmission peak. From the specific form of these decorated states, many of them have the property of many-body entanglement. Therefore, using such a single-mode cavity containing multiple coherently coupled artificial atoms, we can construct the required many-body entangled state by simply inputting weak monochromatic light, and at the same time, we can sense the forms of multi-body entanglement states in the cavity through the change of transmittance.
      通信作者: 许静平, xx_jj_pp@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274326, 12174288)资助的课题
      Corresponding author: Xu Jing-Ping, xx_jj_pp@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274326, 12174288).
    [1]

    Purcell E M 1946 Phys. Rev. 69 681

    [2]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [3]

    Haroche S, Kleppner D 1989 Phys. Today 42 24Google Scholar

    [4]

    Gardiner C W, Collett M J 1985 Phys. Rev. A 31 3761Google Scholar

    [5]

    Auffèves-Garnier A, Simon C, Gérard J M, Poizat J P 2007 Phys. Rev. A 75 053823Google Scholar

    [6]

    Xia X W, Xu J P, Yang Y P 2014 Phys. Rev. A 90 043857Google Scholar

    [7]

    Li H Z, Xu J P, Wang D W, Xia X W, Yang Y P, Zhu S Y 2017 Phys. Rev. A 96 013832Google Scholar

    [8]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [9]

    Reimann R, Alt W, Kampschulte T, Macha T, Ratschbacher L, Thau N, Yoon S, Meschede D 2015 Phys. Rev. Lett. 114 023601Google Scholar

    [10]

    Pleinert M O, Zanthier J V, Agarwal G S 2017 Optica 4 000779Google Scholar

    [11]

    Xu J P, Chang S L, Yang Y P, Zhu S Y, Agarwal G S 2017 Phys. Rev. A 96 013839Google Scholar

    [12]

    Li N, Jiang H W, Xia X W, Zhu C J, Xie S Y, Xu J P, Yang Y P 2021 Phys. Lett. A 420 127772Google Scholar

    [13]

    Liu Q, Li M M, Dai K Z, Zhang K, Xue G M, Tan X S, Yu H F, Yu Y 2017 Appl. Phys. Lett. 110 232602Google Scholar

    [14]

    Rosenberg D, Kim D, Das R, Yost D, Gustavsson S, Hover D, Krantz P, Melville A, Racz L, Samach G O, Weber S J, Yan F, Yoder J L, Kerman A J, Oliver W D 2017 NPJ Quantum Inf. 3 42Google Scholar

    [15]

    Dunsworth A, Barends R, Chen Y, Chen Z J, Chiaro B, Fowler A, Foxen B, Jeffrey E, Kelly J, Klimov P V, Lucero E, Mutus J Y, Neeley M, Neill C, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Neven H, Martinis J M, Megrant A 2018 Appl. Phys. Lett. 112 063502Google Scholar

    [16]

    Nie W, Peng Z H, Nori F, Liu Y X 2020 Phys. Rev. Lett. 124 023603Google Scholar

    [17]

    Nie W, Liu Y X 2020 Phys. Rev. Res. 2 012076Google Scholar

    [18]

    Alsing P M, Cardimona D A, Carmichael H J 1992 Phys. Rev. A 45 1793Google Scholar

    [19]

    Sames C, Chibani H, Hamsen C, Altin P A, Wilk T, Rempe G 2014 Phys. Rev. Lett. 112 043601Google Scholar

    [20]

    Plankensteiner D, Sommer C, Ritsch H, Genes C 2017 Phys. Rev. Lett. 119 093601Google Scholar

    [21]

    Lizuain I, Concepción E H, Muga J G 2009 Phys. Rev. A 79 065602Google Scholar

    [22]

    鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配 2021 70 034204Google Scholar

    Lu L D, Zhu L Q, Zeng Z M, Cui Y P, Zhang D L, Yuan P 2021 Acta Phys. Sin. 70 034204Google Scholar

  • 图 1  (a) 存在输入-输出端口的Su-Schrieffer-Heeger人工原子链-单模腔耦合系统示意图; (b)三维电路QED示意图[16]

    Fig. 1.  (a) Schematic diagram of Su-Schrieffer-Heeger artificial atom chain-single-mode cavity coupling system with input-output ports; (b) three-dimensional circuit QED schematic diagram[16].

    图 2  腔中存在一组共两个人工原子时, 透射率随入射场与腔模失谐$\delta $和原子间耦合$ {t_{\text{A}}} $的变化 (a)双原子与腔模的耦合强度一致, ${\varOmega _1} = {\varOmega _2} = {\varOmega _0}$; (b)双原子与腔模的耦合强度不同, ${\varOmega _1} = 2{\varOmega _0}, {\varOmega _2} = 0.1{\varOmega _0}$, 采用参数$\kappa = \gamma = {\text{0}}{\text{.1}}{\varOmega _0}$

    Fig. 2.  In the case of a set of altogether two artificial atoms in the cavity, transmittance varies with the detuning $\delta $ between incident field and cavity mode and interatomic coupling $ {t_{\text{A}}} $: (a) The coupling strength of diatoms and cavity mode is consistent, ${\varOmega _1} = {\varOmega _2} = {\varOmega _0}$; (b) the coupling strength between diatoms and cavity modes is different, ${\varOmega _1} = 2{\varOmega _0}, {\varOmega _2} = 0.1{\varOmega _0}$, the parameters are $\kappa = \gamma = {\text{0}}{\text{.1}}{\varOmega _0}$.

    图 3  腔中存在两组共4个人工原子时, (a) 透射谱随原子间耦合强度${t_{\text{B}}}$的变化, $\varOmega = 2{\varOmega _0}$; (b) 透射谱随原子与腔模耦合强度$\varOmega $的变化, ${t_{\text{B}}} = 3{\varOmega _0}$. 采用参数为${t_{\text{A}}} = {\varOmega _0}, \kappa = 0.2{\varOmega _0}, \gamma = 0.1{\varOmega _0}$

    Fig. 3.  (a) In the case of two sets of altogether four artificial atoms in the cavity, transmission spectrum varies with the interatomic coupling intensity ${t_{\text{B}}}$, $\varOmega = 2{\varOmega _0}$; (b) The transmission spectrum varies with the coupling strength $\varOmega $ between the atom and the cavity mode, ${t_{\text{B}}} = 3{\varOmega _0}$. The parameters are ${t_{\text{A}}} = {\varOmega _0}, \kappa = 0.2{\varOmega _0}, \gamma = 0.1{\varOmega _0}$.

    图 4  腔中存在3组共6个人工原子时, (a) 透射谱随原子间耦合强度${t_{\text{B}}}$的变化, $\varOmega = 2{\varOmega _0}$; (b) 透射谱随原子与腔模耦合强度$\varOmega $的变化, ${t_{\text{B}}} = 3{\varOmega _0}$. 采用参数为${t_{\text{A}}} = {\varOmega _0}, \kappa = 0.2{\varOmega _0}, \gamma = 0.1{\varOmega _0}$, 红圈内为本文定义的劈裂

    Fig. 4.  (a) In the case of three sets of altogether six artificial atoms in the cavity, transmission spectrum varies with the interatomic coupling intensity ${t_{\text{B}}}$, $\varOmega = 2{\varOmega _0}$; (b) the transmission spectrum varies with the coupling strength $\varOmega $ between the atom and the cavity mode, ${t_{\text{B}}} = 3{\varOmega _0}$. The parameters are ${t_{\text{A}}} = {\varOmega _0}, \kappa = 0.2{\varOmega _0}, \gamma = 0.1{\varOmega _0}$. The splits defined in this article are circled in red.

    图 5  腔内双原子条件下, (a)缀饰态的能级; (b)—(d)各能级对应的原子占据数$ \left\langle{{S}_{zi}}\right\rangle $与腔内平均光子数$ \left\langle{{a}^{+}a}\right\rangle $${t_{\text{A}}}$的变化; (e)避免交叉点放大图. 其他参数为${\varOmega _1} = {\varOmega _2} = {\varOmega _0}$; 按照本征值从小到大分别用红、绿、蓝三色代表不同的本征态

    Fig. 5.  In the case of two atoms in the cavity, (a) the energy levels of the dressed states; (b)–(d) the corresponding atomic excitation probability of each energy level and the average number of photons in the cavity change with ${t_{\text{A}}}$; (e) a larger version of avoid crossing points. The parameters are ${\varOmega _1} = {\varOmega _2} = {\varOmega _0}$. The eigen states are represented by red, green, and blue in order of eigen values from smallest to largest.

    图 6  腔内六原子条件下, (a)缀饰态的能级; (b)—(h)各能级对应的原子占居数$ \left\langle{{S}_{zi}}\right\rangle $与腔内平均光子数$ \left\langle{{a}^{+}a}\right\rangle $${t_{\text{B}}}$的变化; (i), (j)避免交叉点放大图. 采用参数为$\varOmega = 2{\varOmega _0}, {t_{\text{A}}} = {\varOmega _0}$; 不同颜色分别代表不同的能级, 并依照本征值的大小编号

    Fig. 6.  In the case of six atoms in the cavity, (a) the energy levels of the dressed states; (b)–(h) the corresponding atomic excitation probability of each energy level and the average number of photons in the cavity change with ${t_{\text{B}}}$; (i), (j) two larger versions of avoid crossing points. The parameters are $\varOmega = 2{\varOmega _0}, {t_{\text{A}}} = {\varOmega _0}$. Different colors represent different energy levels and are numbered according to the magnitude of the eigenvalue.

    图 7  (a) $\kappa = \gamma = {\text{0}}{\text{.1}}{\varOmega _0}$条件下的透射谱; (b)原子自发衰减增大后的透射谱, $ \kappa = {\text{0}}{\text{.1}}{\varOmega _0}, {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} \gamma = {\text{0}}{\text{.5}}{\varOmega _0} $; (c)腔的泄漏率增大后的透射谱, $\kappa = {\text{0}}{\text{.5}}{\varOmega _0}, \gamma = {\text{0}}{\text{.1}}{\varOmega _0}$. 采用参数为$\varOmega = {\varOmega _0}, {t_{\text{A}}} = {\varOmega _0}, {t_{\text{B}}} = 3{\varOmega _0}$

    Fig. 7.  (a) Transmission spectrum under $\kappa = \gamma = {\text{0}}{\text{.1}}{\varOmega _0}$; (b) the transmission spectrum after the increase of atomic spontaneous attenuation, $ \kappa = {\text{0}}{\text{.1}}{\varOmega _0}, {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} \gamma = {\text{0}}{\text{.5}}{\varOmega _0} $; (c) the transmission spectrum after the increase of leakage rate of cavity, $\kappa = {\text{0}}{\text{.5}}{\varOmega _0}, $$ \gamma = {\text{0}}{\text{.1}}{\varOmega _0}$. The parameters are $\varOmega = {\varOmega _0}, {t_{\text{A}}} = {\varOmega _0}, {t_{\text{B}}} = 3{\varOmega _0}$.

    Baidu
  • [1]

    Purcell E M 1946 Phys. Rev. 69 681

    [2]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [3]

    Haroche S, Kleppner D 1989 Phys. Today 42 24Google Scholar

    [4]

    Gardiner C W, Collett M J 1985 Phys. Rev. A 31 3761Google Scholar

    [5]

    Auffèves-Garnier A, Simon C, Gérard J M, Poizat J P 2007 Phys. Rev. A 75 053823Google Scholar

    [6]

    Xia X W, Xu J P, Yang Y P 2014 Phys. Rev. A 90 043857Google Scholar

    [7]

    Li H Z, Xu J P, Wang D W, Xia X W, Yang Y P, Zhu S Y 2017 Phys. Rev. A 96 013832Google Scholar

    [8]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [9]

    Reimann R, Alt W, Kampschulte T, Macha T, Ratschbacher L, Thau N, Yoon S, Meschede D 2015 Phys. Rev. Lett. 114 023601Google Scholar

    [10]

    Pleinert M O, Zanthier J V, Agarwal G S 2017 Optica 4 000779Google Scholar

    [11]

    Xu J P, Chang S L, Yang Y P, Zhu S Y, Agarwal G S 2017 Phys. Rev. A 96 013839Google Scholar

    [12]

    Li N, Jiang H W, Xia X W, Zhu C J, Xie S Y, Xu J P, Yang Y P 2021 Phys. Lett. A 420 127772Google Scholar

    [13]

    Liu Q, Li M M, Dai K Z, Zhang K, Xue G M, Tan X S, Yu H F, Yu Y 2017 Appl. Phys. Lett. 110 232602Google Scholar

    [14]

    Rosenberg D, Kim D, Das R, Yost D, Gustavsson S, Hover D, Krantz P, Melville A, Racz L, Samach G O, Weber S J, Yan F, Yoder J L, Kerman A J, Oliver W D 2017 NPJ Quantum Inf. 3 42Google Scholar

    [15]

    Dunsworth A, Barends R, Chen Y, Chen Z J, Chiaro B, Fowler A, Foxen B, Jeffrey E, Kelly J, Klimov P V, Lucero E, Mutus J Y, Neeley M, Neill C, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Neven H, Martinis J M, Megrant A 2018 Appl. Phys. Lett. 112 063502Google Scholar

    [16]

    Nie W, Peng Z H, Nori F, Liu Y X 2020 Phys. Rev. Lett. 124 023603Google Scholar

    [17]

    Nie W, Liu Y X 2020 Phys. Rev. Res. 2 012076Google Scholar

    [18]

    Alsing P M, Cardimona D A, Carmichael H J 1992 Phys. Rev. A 45 1793Google Scholar

    [19]

    Sames C, Chibani H, Hamsen C, Altin P A, Wilk T, Rempe G 2014 Phys. Rev. Lett. 112 043601Google Scholar

    [20]

    Plankensteiner D, Sommer C, Ritsch H, Genes C 2017 Phys. Rev. Lett. 119 093601Google Scholar

    [21]

    Lizuain I, Concepción E H, Muga J G 2009 Phys. Rev. A 79 065602Google Scholar

    [22]

    鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配 2021 70 034204Google Scholar

    Lu L D, Zhu L Q, Zeng Z M, Cui Y P, Zhang D L, Yuan P 2021 Acta Phys. Sin. 70 034204Google Scholar

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制.  , 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才. 微光学腔内单原子的俘获及其耦合强度的精确调控.  , 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [3] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现.  , 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [4] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征.  , 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [5] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用.  , 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [6] 陈臻, 王帅鹏, 李铁夫, 游建强. 超强耦合电路量子电动力学系统中反旋波效应对量子比特频率移动的影响.  , 2020, 69(12): 124204. doi: 10.7498/aps.69.20200474
    [7] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英. 微纳光子结构中光子和激子相互作用.  , 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [8] 邢贵超, 夏云杰. 与热库耦合的光学腔内三原子间的纠缠动力学.  , 2018, 67(7): 070301. doi: 10.7498/aps.67.20172546
    [9] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象.  , 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [10] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来. 偶极子位置及偏振对激发光子晶体H1微腔的影响.  , 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [11] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟.  , 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [12] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才. 内腔多原子直接俘获的强耦合腔量子力学系统的构建.  , 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [13] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性.  , 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [14] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展.  , 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [15] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究.  , 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [16] 余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭. 高阶阈值上电离的量子电动力学理论.  , 2005, 54(8): 3542-3547. doi: 10.7498/aps.54.3542
    [17] 赖振讲, 杨志勇, 白晋涛, 孙中禹. 二能级原子与相干态腔场相互作用过程中的纠缠交换.  , 2004, 53(11): 3733-3738. doi: 10.7498/aps.53.3733
    [18] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应.  , 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [19] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征.  , 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
    [20] 刘 辽. 时空泡沫结构与量子电动力学中发散的消除.  , 1998, 47(3): 363-367. doi: 10.7498/aps.47.363
计量
  • 文章访问数:  3529
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 修回日期:  2022-08-22
  • 上网日期:  2022-12-13
  • 刊出日期:  2022-12-24

/

返回文章
返回
Baidu
map