搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超重元素Og(Z = 118)及其同主族元素的电离能和价电子轨道束缚能

张天成 潘高远 俞友军 董晨钟 丁晓彬

引用本文:
Citation:

超重元素Og(Z = 118)及其同主族元素的电离能和价电子轨道束缚能

张天成, 潘高远, 俞友军, 董晨钟, 丁晓彬

Ionization energy and valence electron orbital binding energy of superheavy element Og(Z = 118) and its homologs

Zhang Tian-Cheng, Pan Gao-Yuan, Yu You-Jun, Dong Chen-Zhong, Ding Xiao-Bin
PDF
HTML
导出引用
  • 通过系统地考虑相对论效应、价壳层电子之间的电子关联效应、量子电动力学效应和Breit相互作用, 使用基于多组态Dirac-Hartree-Fock (MCDHF)方法的GRASP2K程序, 系统地计算了超重元素Og(Z = 118)及其同主族元素Ar, Kr, Xe和Rn的原子及其一价至五价离子的电离能. 为了降低电离能中来源于未完全考虑电子关联效应引起的不确定度, 使用外推方法对超重元素Og及其同主族元素Rn的原子及一价至五价离子的电离能进行了外推. 外推得到的Rn0–5+和Og+的电离能与实验值和其他理论值吻合得很好. 这些结果可用于预言超重元素Og的原子和化合物未知的物理和化学性质. 除此之外, 相对论和非相对论情况下超重元素Og及其同主族元素Ar, Kr, Xe和Rn的原子价壳层电子轨道束缚能的计算结果表明, 受相对论效应影响, 超重元素Og中的7s和7p1/2轨道出现了很强的轨道收缩现象, 7p1/2和7p3/2轨道出现了很强的分裂现象, 这些现象可能会导致超重元素Og的物理和化学性质异于同主族其他元素.
    The ionization energy of the superheavy element Og (Z = 118) and its homolog elements Ar, Kr, Xe, Rn, and their ions are systematically calculated by using the GRASP2K program based on the multi-configuration Dirac-Hartree-Fock (MCDHF) method, taking into account relativistic effects, electron correlation effects between valence shell electrons, quantum electrodynamics effects, and Breit interaction. To reduce the uncertainty of the ionization energy derived from electron correlation effects which are not fully considered, the ionization potential of the superheavy element Og0–2+ and its homolog element Rn0–2+ are extrapolated by the extrapolation method. The ionization energy of extrapolated Rn0–5+ and Og5+ coincide well with experimental and other theoretical values. These results can be used to predict the unknown physical and chemical properties of the atoms and compounds of the superheavy element Og. In addition, the calculation results of the electron orbital binding energy of the atomic valence shell of the superheavy element Og and its homolog elements Ar, Kr, Xe, and Rn under relativistic and non-relativistic conditions show that owing to the relativistic effect, there occur strong orbital contraction phenomena in the 7s orbital and 7p1/2 orbital and strong splitting phenomena in the 7p1/2 orbital and 7p3/2 orbital of Og, which may cause the physical and chemical properties of the superheavy element Og to differ from those of other homologs.
      通信作者: 董晨钟, dongcz@nwnu.edu.cn ; 丁晓彬, dingxb@nwnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402300)、国家自然科学基金(批准号: U1832126, 11874051)、甘肃省基础研究创新群体项目(批准号: 20JR5RA541)和兰州城市学院博士科研基金(批准号: LZCU-BS2019-50)资助的课题.
      Corresponding author: Dong Chen-Zhong, dongcz@nwnu.edu.cn ; Ding Xiao-Bin, dingxb@nwnu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. U1832126, 11874051), the Funds for Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541), and the Doctoral Research Funds of Lanzhou City University, China (Grant No. LZCU-BS2019-50).
    [1]

    Düllmann C E 2017 Nucl. Phys. News 27 14Google Scholar

    [2]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [3]

    Kailas S 2014 Pramana 82 619Google Scholar

    [4]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [5]

    Schädel M 2015 Philos. Trans. R. Soc. London, Ser. A 373 20140191Google Scholar

    [6]

    Heßberger F P 2013 ChemPhysChem 14 483Google Scholar

    [7]

    Öhrström L, Reedijk J 2016 Pure Appl. Chem. 88 1225Google Scholar

    [8]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [9]

    Pyykko P 2011 Phys. Chem. Chem. Phys. 13 161Google Scholar

    [10]

    Desclaux J P 1973 At. Data Nucl. Data Tables 12 311Google Scholar

    [11]

    Fricke B, Greiner W, Waber J T 1971 Theor. Chim. Acta 21 235Google Scholar

    [12]

    Guo Y, Pašteka L F, Eliav E, Borschevsky A 2021 Advances in Quantum Chemistry (Musial M, Hoggan P E Ed.) (New York: Academic Press) pp107–123

    [13]

    Hangele T, Dolg M, Hanrath M, Cao X, Schwerdtfeger P 2012 J. Chem. Phys. 136 214105Google Scholar

    [14]

    Dzuba V A, Berengut J C, Harabati C, Flambaum V V 2017 Phys. Rev. A 95 012503Google Scholar

    [15]

    Sato T K, Asai M, Borschevsky A, Beerwerth R, Kaneya Y, Makii H, Mitsukai A, Nagame Y, Osa A, Toyoshima A, Tsukada K, Sakama M, Takeda S, Ooe K, Sato D, Shigekawa Y, Ichikawa S I, Düllmann C E, Grund J, Renisch D, Kratz J V, Schädel M, Eliav E, Kaldor U, Fritzsche S, Stora T 2018 J. Am. Chem. Soc. 140 14609Google Scholar

    [16]

    Ramanantoanina H, Borschevsky A, Block M, Laatiaoui M 2022 Atoms 10 48Google Scholar

    [17]

    Sewtz M, Backe H, Dretzke A, Kube G, Lauth W, Schwamb P, Eberhardt K, Gruning C, Thorle P, Trautmann N, Kunz P, Lassen J, Passler G, Dong C Z, Fritzsche S, Haire R G 2003 Phys. Rev. Lett. 90 163002Google Scholar

    [18]

    丁晓彬, 董晨钟 2004 53 3326Google Scholar

    Ding X L, Dong C Z 2004 Acta Phys. Sin. 53 3326Google Scholar

    [19]

    Goidenko I, Labzowsky L, Eliav E, Kaldor U, Pyykkö P 2003 Phys. Rev. A 67 020102Google Scholar

    [20]

    Lackenby B G C, Dzuba V A, Flambaum V V 2018 Phys. Rev. A 98 042512Google Scholar

    [21]

    Eliav E, Kaldo U, Ishikawa Y, Pyykkö P 1996 Phys. Rev. Lett. 77 5350Google Scholar

    [22]

    Pershina V, Borschevsky A, Eliav E, Kaldor U 2008 J. Chem. Phys. 129 144106Google Scholar

    [23]

    Jerabek P, Schuetrumpf B, Schwerdtfeger P, Nazarewicz W 2018 Phys. Rev. Lett. 120 053001Google Scholar

    [24]

    Razavi A K, Hosseini R K, Keating D A, Deshmukh P C, Manson S T 2020 J. Phys. B: At. Mol. Opt. Phys. 53 205203Google Scholar

    [25]

    Indelicato P, Santos J P, Boucard S, Desclaux J P 2007 Eur. Phys. J. D 45 155Google Scholar

    [26]

    Pershina V 2019 Radiochim. Acta 107 833Google Scholar

    [27]

    Johnson E, Fricke B, Keller O L, Nestor C W, Tucker T C 1990 J. Chem. Phys. 93 8041Google Scholar

    [28]

    Fricke B, Johnson E, Rivera G M 1993 Radiochim. Acta 62 17Google Scholar

    [29]

    Johnson E, Pershina V, Fricke B 1999 J. Phys. Chem. A 103 8458Google Scholar

    [30]

    Johnson E F B, Jacob T, Dong C Z, Fritzsche S, Pershina V 2002 J. Chem. Phys. 116 1862Google Scholar

    [31]

    Yu Y J, Li J G, Dong C Z, Ding X B, Fritzsche S, Fricke B 2007 Eur. Phys. J. D 44 51Google Scholar

    [32]

    Yu Y J, Dong C Z, Li J G, Fricke B 2008 J. Chem. Phys. 128 124316Google Scholar

    [33]

    Liu J S, Wang X, Sang K C 2020 J. Chem. Phys. 152 204303Google Scholar

    [34]

    Chang Z, Li J, Dong C 2010 J. Phys. Chem. A 114 13388Google Scholar

    [35]

    Zhang D, Zhang F, Ding X, Dong C 2021 Chin. Phys. B 30 043102Google Scholar

    [36]

    Ding X, Wu C, Zhang D, Zhang M, Dong C 2021 J. Quant. Spectrosc. Radiat. Transfer 259 107426Google Scholar

    [37]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Phys. Rev. A 101 042509Google Scholar

    [38]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer)

    [39]

    Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Comput. Phys. Commun. 21 207Google Scholar

    [40]

    Mackenzie B, Grant I, Norrington P 1980 Comput. Phys. Commun. 21 233Google Scholar

    [41]

    Dyall K, Grant I, Johnson C, Parpia F, Plummer E 1989 Comput. Phys. Commun. 55 425Google Scholar

    [42]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249Google Scholar

    [43]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Comput. Phys. Commun. 184 2197Google Scholar

    [44]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [45]

    Borschevsky A, Pašteka L F, Pershina V, Eliav E, Kaldor U 2015 Phys. Rev. A 91 020501Google Scholar

    [46]

    Gaston N, Schwerdtfeger P, Nazarewicz W 2002 Phys. Rev. A 66 062505Google Scholar

    [47]

    Glushkov A V, Ambrosov S V, Loboda A, Chernyakova Y G, Khetselius O Y, Svinarenko A A 2004 Nucl. Phys. A 734 E21Google Scholar

    [48]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2021 NIST Atomic Spectra Database (version 5.9), [Online], Available: https://physics.nist.gov/asd

  • 图 1  超重元素Og和其同主族元素Ar, Kr, Xe和Rn的价壳层电子轨道束缚能

    Fig. 1.  Valence shell orbital energies diagram for the ground state of Ar, Kr, Xe, Rn and Og.

    表 1  超重元素Og0–6+基态电子组态、总角动量(J)、宇称(P), 在不同关联模型和活动空间下产生的组态波函数数目. 其中, DHF表示单组态Dirac-Hartree-Fock计算. nSD表示电子单、双激发到主量子数为n的活动空间形成的电子关联模型, {nalb}表示n = a, l = 0, 1, 2$, \cdots ,$b的活动空间轨道, 其中n为量子数, l 为轨道量子数

    Table 1.  Electron configuration, total angular momentum, parity, and number of configuration wave functions of the superheavy element Og0–6+ in different correlation models and active Spaces. DHF represents the single-configuration Dirac-Hartree-Fock calculation. nSD represents an electron association model formed by the single and double excitation of electrons to the active space where the principal quantum number is n. {nalb} represents the active space orbital of n = a, l = 0, 1, 2$ , \cdots , $b, where $ n $ is the principal quantum number and $ l $ is the orbital quantum number.

    电子组态关联模型活动空间组态波函数数目
    Og (J = 0+)
    [Rn]5f146d107s27p6DHF{n 7l 1}1
    7SD{n 7l 2}14
    8SD7SD + {n 8l 3}143
    9SD8SD + {n 9l 4}468
    10SD9SD + {n 10l 4}987
    11SD10SD + {n 11l 4}1700
    12SD11SD + {n 12l 4}2607
    Og1+ (J = 3/2)
    [Rn]5f146d107s27p5DHF{n 7l 1}1
    7SD{n 7l 2}51
    8SD7SD + {n 8l 3}758
    9SD8SD + {n 9l 4}2738
    10SD9SD + {n 10l 4}5982
    11SD10SD + {n 11l 4}10490
    12SD11SD + {n 12l 4}16262
    Og2+ (J = 2+)
    [Rn]5f146d107s27p4DHF{n 7l 1}2
    7SD{n 7l 2}76
    8SD7SD + {n 8l 3}1054
    9SD8SD + {n 9l 4}3841
    10SD9SD + {n 10l 4}8404
    11SD10SD + {n 11l 4}14743
    12SD11SD + {n 12l 4}22858
    Og3+ (J = 3/2)
    [Rn]5f146d107s27p3DHF{n 7l 1}3
    7SD{n 7l 2}66
    8SD7SD + {n 8l 3}802
    9SD8SD + {n 9l 4}2816
    10SD9SD + {n 10l 4}6094
    11SD10SD + {n 11l 4}10636
    12SD11SD + {n 12l 4}16442
    Og4+ (J = 0+)
    [Rn]5f146d107s27p2DHF{n 7l 1}2
    7SD{n 7l 2}22
    8SD7SD + {n 8l 3}163
    9SD8SD + {n 9l 4}500
    10SD9SD + {n 10l 4}1031
    11SD10SD + {n 11l 4}1756
    12SD11SD + {n 12l 4}2675
    Og5+ (J = 1/2)
    [Rn]5f146d107s27p1DHF{n 7l 1}1
    7SD{n 7l 2}13
    8SD7SD + {n 8l 3}96
    9SD8SD + {n 9l 4}293
    10SD9SD + {n 10l 4}606
    11SD10SD + {n 11l 4}1035
    12SD11SD + {n 12l 4}1580
    Og6+ (J = 0+)
    [Rn]5f146d107s2DHF{n 7l 1}1
    7SD{n 7l 2}5
    8SD7SD + {n 8l 3}17
    9SD8SD + {n 9l 4}38
    10SD9SD + {n 10l 4}68
    11SD10SD + {n 11l 4}107
    12SD11SD + {n 12l 4}155
    下载: 导出CSV

    表 2  超重元素Og及其同主族元素Ar, Kr, Xe, Rn的电离能(IP1—IP6)的计算值、外推值、误差以及其他理论值. 单位: eV. *表示实验测量值. 所有数据均保留到小数点后两位

    Table 2.  Calculated ionization energy (IP1–IP6, in eV) of the superheavy element Og and its homolog elements Ar, Kr, Xe and Rn by MCDHF method. Extrapolated, error, and other theoretical result are also given. *: Represents experimental measurements. All data is retained to two decimal digits.

    元素MCDHFNIST[48]αβ外推值误差Others
    IP1
    Ar15.5015.76*0.26
    Kr13.7414.00*0.260.00
    Xe11.8512.13*0.280.02
    Rn10.4810.75*(0.32)(0.04)10.800.0410.76[12]
    Og8.53(0.38)(0.06)8.910.068.86[13]
    8.87[20]
    8.91[22]
    8.84[23]
    8.88[12]
    IP2
    Ar27.3627.63*0.27
    Kr24.0624.36*0.300.03
    Xe20.6320.98*0.350.05
    Rn18.6521.40±1.90(0.42)(0.07)19.070.0718.99[12]
    Og15.80(0.51)(0.09)16.310.0916.19[12]
    IP3
    Ar40.4540.74*±0.010.29
    Kr35.4935.84*±0.020.350.06
    Xe30.6031.05*±0.040.450.10
    Rn28.2129.40±1.00(0.59)(0.14)28.800.14
    Og24.28(0.77)(0.18)25.050.18
    IP4
    Ar58.9659.58±0.180.62
    Kr50.4850.85*±0.110.37
    Xe42.1142.20*±0.200.09
    Rn37.8836.90±1.70(0.44)38.321.53
    Og32.70(0.55)33.250.99
    IP5
    Ar74.6074.84±0.170.24
    Kr64.0864.69*±0.200.61
    Xe54.3854.10*±0.50–0.28
    Rn52.8352.90±1.90(0.44)53.272.13
    Og55.37(0.55)55.922.24
    IP6
    Ar91.1391.29*0.16
    Kr78.0778.49*±0.200.42
    Xe66.1666.70*0.54
    Rn64.4264.00±2.00(0.44)64.862.59
    Og67.04(0.55)67.592.70
    下载: 导出CSV

    表 3  超重元素Og及其同主族元素Ar, Kr, Xe和Rn的价壳层轨道在相对论和非相对论下的轨道束缚能(单位: a.u.). R表示相对论、NR表示非相对论结果(n = 3, 4, 5, 6, 7分别对应元素Ar, Kr, Xe和Rn)

    Table 3.  Relativistic and non-relativistic orbital binding energies (in a.u.) of the valence shell orbitals of superheavy element Og and its homolog elements Ar, Kr, Xe and Rn. R for relativistic, NR for non-relativistic (n = 3, 4, 5, 6, 7 correspond to elements Ar, Kr, Xe, Rn and Og, respectively).

    轨道ArKrXeRnOg
    RNRRNR RNR RNR RNR
    $ {n\mathrm{s}}_{1/2} $1.291.281.191.151.010.941.070.871.300.77
    $ {n\mathrm{p}}_{1/2} $0.600.590.540.520.490.460.540.430.740.39
    $ {n\mathrm{p}}_{3/2} $0.590.590.510.520.440.460.380.430.310.39
    下载: 导出CSV
    Baidu
  • [1]

    Düllmann C E 2017 Nucl. Phys. News 27 14Google Scholar

    [2]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [3]

    Kailas S 2014 Pramana 82 619Google Scholar

    [4]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [5]

    Schädel M 2015 Philos. Trans. R. Soc. London, Ser. A 373 20140191Google Scholar

    [6]

    Heßberger F P 2013 ChemPhysChem 14 483Google Scholar

    [7]

    Öhrström L, Reedijk J 2016 Pure Appl. Chem. 88 1225Google Scholar

    [8]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [9]

    Pyykko P 2011 Phys. Chem. Chem. Phys. 13 161Google Scholar

    [10]

    Desclaux J P 1973 At. Data Nucl. Data Tables 12 311Google Scholar

    [11]

    Fricke B, Greiner W, Waber J T 1971 Theor. Chim. Acta 21 235Google Scholar

    [12]

    Guo Y, Pašteka L F, Eliav E, Borschevsky A 2021 Advances in Quantum Chemistry (Musial M, Hoggan P E Ed.) (New York: Academic Press) pp107–123

    [13]

    Hangele T, Dolg M, Hanrath M, Cao X, Schwerdtfeger P 2012 J. Chem. Phys. 136 214105Google Scholar

    [14]

    Dzuba V A, Berengut J C, Harabati C, Flambaum V V 2017 Phys. Rev. A 95 012503Google Scholar

    [15]

    Sato T K, Asai M, Borschevsky A, Beerwerth R, Kaneya Y, Makii H, Mitsukai A, Nagame Y, Osa A, Toyoshima A, Tsukada K, Sakama M, Takeda S, Ooe K, Sato D, Shigekawa Y, Ichikawa S I, Düllmann C E, Grund J, Renisch D, Kratz J V, Schädel M, Eliav E, Kaldor U, Fritzsche S, Stora T 2018 J. Am. Chem. Soc. 140 14609Google Scholar

    [16]

    Ramanantoanina H, Borschevsky A, Block M, Laatiaoui M 2022 Atoms 10 48Google Scholar

    [17]

    Sewtz M, Backe H, Dretzke A, Kube G, Lauth W, Schwamb P, Eberhardt K, Gruning C, Thorle P, Trautmann N, Kunz P, Lassen J, Passler G, Dong C Z, Fritzsche S, Haire R G 2003 Phys. Rev. Lett. 90 163002Google Scholar

    [18]

    丁晓彬, 董晨钟 2004 53 3326Google Scholar

    Ding X L, Dong C Z 2004 Acta Phys. Sin. 53 3326Google Scholar

    [19]

    Goidenko I, Labzowsky L, Eliav E, Kaldor U, Pyykkö P 2003 Phys. Rev. A 67 020102Google Scholar

    [20]

    Lackenby B G C, Dzuba V A, Flambaum V V 2018 Phys. Rev. A 98 042512Google Scholar

    [21]

    Eliav E, Kaldo U, Ishikawa Y, Pyykkö P 1996 Phys. Rev. Lett. 77 5350Google Scholar

    [22]

    Pershina V, Borschevsky A, Eliav E, Kaldor U 2008 J. Chem. Phys. 129 144106Google Scholar

    [23]

    Jerabek P, Schuetrumpf B, Schwerdtfeger P, Nazarewicz W 2018 Phys. Rev. Lett. 120 053001Google Scholar

    [24]

    Razavi A K, Hosseini R K, Keating D A, Deshmukh P C, Manson S T 2020 J. Phys. B: At. Mol. Opt. Phys. 53 205203Google Scholar

    [25]

    Indelicato P, Santos J P, Boucard S, Desclaux J P 2007 Eur. Phys. J. D 45 155Google Scholar

    [26]

    Pershina V 2019 Radiochim. Acta 107 833Google Scholar

    [27]

    Johnson E, Fricke B, Keller O L, Nestor C W, Tucker T C 1990 J. Chem. Phys. 93 8041Google Scholar

    [28]

    Fricke B, Johnson E, Rivera G M 1993 Radiochim. Acta 62 17Google Scholar

    [29]

    Johnson E, Pershina V, Fricke B 1999 J. Phys. Chem. A 103 8458Google Scholar

    [30]

    Johnson E F B, Jacob T, Dong C Z, Fritzsche S, Pershina V 2002 J. Chem. Phys. 116 1862Google Scholar

    [31]

    Yu Y J, Li J G, Dong C Z, Ding X B, Fritzsche S, Fricke B 2007 Eur. Phys. J. D 44 51Google Scholar

    [32]

    Yu Y J, Dong C Z, Li J G, Fricke B 2008 J. Chem. Phys. 128 124316Google Scholar

    [33]

    Liu J S, Wang X, Sang K C 2020 J. Chem. Phys. 152 204303Google Scholar

    [34]

    Chang Z, Li J, Dong C 2010 J. Phys. Chem. A 114 13388Google Scholar

    [35]

    Zhang D, Zhang F, Ding X, Dong C 2021 Chin. Phys. B 30 043102Google Scholar

    [36]

    Ding X, Wu C, Zhang D, Zhang M, Dong C 2021 J. Quant. Spectrosc. Radiat. Transfer 259 107426Google Scholar

    [37]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Phys. Rev. A 101 042509Google Scholar

    [38]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer)

    [39]

    Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Comput. Phys. Commun. 21 207Google Scholar

    [40]

    Mackenzie B, Grant I, Norrington P 1980 Comput. Phys. Commun. 21 233Google Scholar

    [41]

    Dyall K, Grant I, Johnson C, Parpia F, Plummer E 1989 Comput. Phys. Commun. 55 425Google Scholar

    [42]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249Google Scholar

    [43]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Comput. Phys. Commun. 184 2197Google Scholar

    [44]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [45]

    Borschevsky A, Pašteka L F, Pershina V, Eliav E, Kaldor U 2015 Phys. Rev. A 91 020501Google Scholar

    [46]

    Gaston N, Schwerdtfeger P, Nazarewicz W 2002 Phys. Rev. A 66 062505Google Scholar

    [47]

    Glushkov A V, Ambrosov S V, Loboda A, Chernyakova Y G, Khetselius O Y, Svinarenko A A 2004 Nucl. Phys. A 734 E21Google Scholar

    [48]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2021 NIST Atomic Spectra Database (version 5.9), [Online], Available: https://physics.nist.gov/asd

  • [1] 赵国栋, 曹进, 梁婷, 冯敏, 卢本全, 常宏. 镱原子超精细诱导5d6s 3D1,3→6s2 1S0 E2跃迁及超精细常数的精确计算.  , 2024, 73(9): 093101. doi: 10.7498/aps.73.20240028
    [2] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子.  , 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [3] 肖智磊, 全威, 许松坡, 柳晓军, 魏政荣, 陈京. 中红外激光场下阈上电离能谱中的低能结构.  , 2022, 71(23): 233208. doi: 10.7498/aps.71.20221609
    [4] 段春泱, 李娜, 赵岩, 李昌勇. 利用静电场中光电离效率谱精确确定1,3-二乙氧基苯分子的电离能.  , 2021, 70(5): 053301. doi: 10.7498/aps.70.20201273
    [5] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究.  , 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [6] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响.  , 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [7] 张婷贤, 李冀光, 刘建鹏. Al+离子3s2 1S0→3s3p 3,1P1o跃迁同位素偏移的理论研究.  , 2018, 67(5): 053101. doi: 10.7498/aps.67.20172261
    [8] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究.  , 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [9] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算.  , 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [10] 李文亮, 张季, 姚洪斌. 三种不同表象下多组态含时Hartree Fock理论实现方案.  , 2013, 62(12): 123202. doi: 10.7498/aps.62.123202
    [11] 王克栋, 关君, 朱川川, 刘玉芳. 从头计算研究CH3C(O)OSSOC(O)CH3的构型和能量.  , 2011, 60(7): 073102. doi: 10.7498/aps.60.073102
    [12] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究.  , 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [13] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究.  , 2007, 56(3): 1347-1352. doi: 10.7498/aps.56.1347
    [14] 贾 飞, 徐瑚珊, 陈若富, 张宏斌, Avazbek Nasirov, 李君清, Scheid W.. 核对称轴不同相对取向对熔合动力学的影响.  , 2007, 56(2): 764-768. doi: 10.7498/aps.56.764
    [15] 贾 飞, 徐瑚珊, 郑 川, 樊瑞睿, 张雪荧, 李君清, W. Scheid. 基于双核模型对超重元素合成机制的研究.  , 2007, 56(4): 2047-2052. doi: 10.7498/aps.56.2047
    [16] 苏国林, 任雪光, 张书锋, 宁传刚, 周 晖, 李 彬, 黄 峰, 李桂琴, 邓景康. 环戊烯分子内价轨道1a′的电子动量谱学研究.  , 2005, 54(9): 4108-4112. doi: 10.7498/aps.54.4108
    [17] 张书锋, 苏国林, 任雪光, 宁传刚, 周 晖, 李 彬, 李桂琴, 邓景康. 二乙酰分子内价轨道4ag+4bu的电子动量谱学研究.  , 2005, 54(4): 1552-1556. doi: 10.7498/aps.54.1552
    [18] 李桂琴, 邓景康, 李 彬, 任雪光, 宁传刚, 张书锋, 苏国林. 丁酮分子内价轨道1a″的电子动量谱学研究.  , 2005, 54(10): 4669-4672. doi: 10.7498/aps.54.4669
    [19] 丁晓彬, 董晨钟. 超重元素Bh(Z=107)的激发态结构和共振吸收率的理论预言.  , 2004, 53(10): 3326-3329. doi: 10.7498/aps.53.3326
    [20] 葛自明, 王治文, 周雅君. 类锂体系(Z=21—30)基态1s22s电离能和相对论项能的理论计算.  , 2004, 53(1): 42-47. doi: 10.7498/aps.53.42
计量
  • 文章访问数:  4088
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-07-05
  • 上网日期:  2022-10-22
  • 刊出日期:  2022-11-05

/

返回文章
返回
Baidu
map