搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于车载原子重力仪的外场绝对重力快速测绘研究

王凯楠 徐晗 周寅 许云鹏 宋微 汤鸿志 王巧薇 朱栋 翁堪兴 王河林 彭树萍 王肖隆 程冰 李德钊 乔中坤 吴彬 林强

引用本文:
Citation:

基于车载原子重力仪的外场绝对重力快速测绘研究

王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强

Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter

Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang
PDF
HTML
导出引用
  • 地球重力场信息是大地测量学、地球物理学、地球动力学等学科所必需的重要基础信息, 重力场测绘是获取地球重力场信息的有效手段. 相比于卫星、海洋、航空重力场测绘, 车载重力场测绘具有灵活性强、空间分辨率高、精度高等优点. 基于相对重力仪和高精度绝对重力基准点可以实现陆域小范围重力场测绘, 但相对重力仪存在零点漂移, 不适用于长基线、大范围的陆域测绘. 本文基于小型化原子重力仪搭建了一套车载绝对重力快速测绘系统, 在郊区安静外场环境, 由12个测点约3 km的测绘结果评估仪器的内符合精度为0.123 mGal (1 Gal = 10–2 m/s2), 外符合精度为0.112 mGal, 并在闹市复杂外场环境下实现了单点调节时间小于2 min, 有效测量时间5 min的快速绝对重力测量, 通过19个测点跨区约24 km的重力场快速测绘, 评估仪器的内符合精度为0.162 mGal, 外符合精度为0.169 mGal. 最后将原子重力仪的外场重力场测绘数据与卫星重力模型计算的数据进行了比较, 发现两者的自由空间重力异常数据的整体变化趋势相吻合. 本文为外场绝对重力场快速测绘提供了一种新的方案.
    The information about Earth’s gravity field is an important basic information necessarily for geodesy, geophysics, geodynamics and other disciplines. The mapping of gravity field is an effective mean to obtain the gravity field information. Compared with the surveying of gravity field based on satellite, ship, and airplane, vehicle-mounted gravity mapping has advantages of strong flexibility, high spatial resolution and high accuracy. A short baseline or a small-scale gravity field mapping can be realized based on the combination of relative gravimeters and the high-precision absolute gravity reference point. However, this method is not suitable for the situation of a long baseline or a large-scale gravity field surveying due to the drift of relative gravimeter. In this work, a vehicle-mounted system for rapid surveying of the absolute gravity field is built up based on a miniaturized atomic gravimeter. The inner precision of the instrument is evaluated to be 0.123 mGal, and the outer precision is 0.112 mGal in a field test which contains 12 points for 3 km distance. Furthermore, with this system, the absolute gravity data are obatined within 2 min for adjusting and 5 min for measuring in downtown for each measured point. A rapid surveying of absolute gravity field for 19 points is carried out and the route covers 24 km. The inner precision of the instrument is evaluated to be 0.162 mGal, and the outer precision is 0.169 mGal. Finally, the free-air gravity anomalies obtained from the measured data of atomic gravimeter and the fitting results of satellite gravity model are analyzed, and it is found that the trends of changing are basically consistent with each other. This paper provides a new proposal for the rapid surveying of the absolute gravity field.
      通信作者: 吴彬, wubin@zjut.edu.cn ; 林强, qlin@zjut.edu.cn
    • 基金项目: 国家重点研发计划课题(批准号: 2017YFC0601602)、国家自然科学基金(批准号: 51905482, 61727821, 61875175, 11704334)、中国自然资源航空物探遥感中心项目(批准号: DD20189831)和钱学森实验室太空探索实验培育项目(批准号: TKTSPY-2020-06-01)
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601602), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334), the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program (Grant No. DD20189831), and the Experiments for Space Exploration Program and the Qian Xuesen Laboratory, China Academy of Space Technology (Grant No. TKTSPY-2020-06-01)
    [1]

    Van Camp M, De Viron O, Watlet A, Meurers B, Francis O, Caudron C 2017 Rev. Geophys. 55 938Google Scholar

    [2]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [3]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [4]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [5]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [6]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [7]

    Le Gouët J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [8]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [9]

    Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49Google Scholar

    [10]

    Schmidt M, Senger A, Hauth M, Freier C, Schkolnik V, Peters A 2011 Gyroscopy Navig. 2 170Google Scholar

    [11]

    Bodart Q, Merlet S, Malossi N, Dos Santos F P, Bouyer P, Landragin A 2010 Appl. Phys. Lett. 96 134101Google Scholar

    [12]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [13]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [14]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [15]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [16]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [17]

    Heine N, Matthias J, Sahelgozin M, Herr W, Abend S, Timmen L, Müller J, Rasel E M 2020 Eur. Phys. J. D 74 174Google Scholar

    [18]

    Chen B, Long J, Xie H, Li C, Chen L, Jiang B, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar

    [19]

    Zhu D, Zhou Y, Wu B, Weng K X, Wang K N, Cheng B, Lin Q 2021 Appl. Opt. 60 7910Google Scholar

    [20]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [21]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [24]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [25]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [26]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [27]

    Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K, Zhou M K 2021 AIP Adv. 11 115223Google Scholar

    [28]

    Guo J, Ma S, Zhou C, Liu J, Wang B, Pan D, Mao H 2021 Preprints 202111.0255.v1

    [29]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

  • 图 1  车载绝对重力场快速测绘系统示意图

    Fig. 1.  Schematic diagram of the vehicle-mounted system for rapid surveying of the absolute gravity field.

    图 2  外场环境下的振动噪声功率谱密度

    Fig. 2.  Power spectral density of the vibration noise in the field.

    图 3  车载静态环境下的长扫重力测量结果(单点5 min平均)

    Fig. 3.  Long-term measured results of gravity on a static truck (each point takes average of 5 minutes).

    图 4  车载静态情况下的重力测量灵敏度评估

    Fig. 4.  Evaluation of sensitivity with the measured gravity data when the truck is stationary.

    图 5  杭州市宝寿山测线以及测点分布图, 蓝色实线为测线, 红点表示各测点分布

    Fig. 5.  Measurement route and the distribution of measured points on Baoshou Mountain in the city of Hangzhou. The blue curve depicts the measurement route and the red points are the measurement locations.

    图 6  杭州宝寿山原子重力仪两次测绘的结果及其残差

    Fig. 6.  Surveyed results of absolute gravity of two repeated measured line and the corresponding residuals obtained by the atomic gravimeter on Baoshou Mountain in the city of Hangzhou.

    图 7  在杭州宝寿山由原子重力仪与CG-5相对重力仪测绘的数据及两者的残差数据. 图中黑点为原子重力仪两次测绘结果的平均值, 红点为相对重力仪两次测绘结果的平均值

    Fig. 7.  Gravity data surveyed by atomic gravimeter and relative gravimeter of CG-5 on Baoshou Mountain in Hangzhou city and the residuals data between them. The black dots and red dots are the average values of measured gravity data of two repeated lines with atomic gravimeter and relative gravimeter CG-5, respectively.

    图 8  长沙黄兴大道测线及测点分布图, 其中蓝色实线是规划的测线, 红色标记点是各测点位置

    Fig. 8.  Measurement route and the distribution of measured points on Huangxing Avenue of Changsha city. The blue curve depicts the measurement route and the red marked points are the measurement locations.

    图 9  高振动噪声环境下原子重力仪在同一测线两次重力测绘的数据及其残差数据

    Fig. 9.  Surveyed gravity data of the same line for twice measurements with atomic gravimeter in the environment of high vibration noise and the residuals data.

    图 10  高振动噪声环境下由原子重力仪与相对重力仪CG-5测绘的数据及两者的残差数据, 图中黑点为原子重力仪两次测绘结果的平均值, 红点为相对重力仪三次测绘结果的平均值

    Fig. 10.  Gravity data surveyed by atomic gravimeter and relative gravimeter of CG-5 in the environment of high vibration noise and the residuals data between them. The black dots and red dots are the average values of measured gravity data of two repeated lines with atomic gravimeter and three repeated lines with relative gravimeter CG-5, respectively.

    图 11  长沙黄兴大道测区高程剖面图(红色倒三角为测点)

    Fig. 11.  Elevation profile of measurement locations on Huangxing Avenue of Changsha city (the red inverted triangles are the measured points).

    图 12  由EGM2008模型拟合获取重力异常分布图

    Fig. 12.  Distribution map of the gravity anomaly obtained by fitting of the EGM2008 model.

    图 13  实测与模型计算的自由空间重力异常数据及其残差, 图中红色点为由卫星重力模型拟合获取的测点自由空间重力异常, 黑色点为原子重力仪测量值改正后的测点自由空间重力异常

    Fig. 13.  Free-air gravity anomalies obtained by the measured data with atomic gravimeter and the fitting of gravity model and the residual date between them. The black and red dots are the results acquired by atomic gravimeter and the theoretical model, respectively.

    表 1  车载快速绝对重力测量系统B类不确定度表

    Table 1.  Class B uncertainty table for vehicle-mounted rapid absolute gravimetry system

    项目修正量/μGal不确定度/μGal
    科里奥利力效应39.003.06
    双光子频移–13.232.52
    激光波长–5.501.10
    参考频率0.001.00
    射频相移–131.4710.81
    自引力效应–2.700.10
    残余边带–241.56103.00
    其他修正量0.172.00
    合成结果–355.29103.61
    下载: 导出CSV
    Baidu
  • [1]

    Van Camp M, De Viron O, Watlet A, Meurers B, Francis O, Caudron C 2017 Rev. Geophys. 55 938Google Scholar

    [2]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [3]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [4]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [5]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [6]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [7]

    Le Gouët J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [8]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [9]

    Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49Google Scholar

    [10]

    Schmidt M, Senger A, Hauth M, Freier C, Schkolnik V, Peters A 2011 Gyroscopy Navig. 2 170Google Scholar

    [11]

    Bodart Q, Merlet S, Malossi N, Dos Santos F P, Bouyer P, Landragin A 2010 Appl. Phys. Lett. 96 134101Google Scholar

    [12]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [13]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [14]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [15]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [16]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [17]

    Heine N, Matthias J, Sahelgozin M, Herr W, Abend S, Timmen L, Müller J, Rasel E M 2020 Eur. Phys. J. D 74 174Google Scholar

    [18]

    Chen B, Long J, Xie H, Li C, Chen L, Jiang B, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar

    [19]

    Zhu D, Zhou Y, Wu B, Weng K X, Wang K N, Cheng B, Lin Q 2021 Appl. Opt. 60 7910Google Scholar

    [20]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [21]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [24]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [25]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [26]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [27]

    Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K, Zhou M K 2021 AIP Adv. 11 115223Google Scholar

    [28]

    Guo J, Ma S, Zhou C, Liu J, Wang B, Pan D, Mao H 2021 Preprints 202111.0255.v1

    [29]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

  • [1] 叶留贤, 许云鹏, 王巧薇, 程冰, 吴彬, 王河林, 林强. 基于激光双边带抑制的冷原子干涉相移优化与控制.  , 2023, 72(2): 024204. doi: 10.7498/aps.72.20221711
    [2] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析.  , 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [3] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 基于系数搜索的振动补偿方法.  , 2022, 71(11): 119101. doi: 10.7498/aps.71.20220037
    [4] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验.  , 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理.  , 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [6] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究.  , 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [7] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析.  , 2021, (): . doi: 10.7498/aps.70.20211686
    [8] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 固定相位振动噪声对绝对重力测量的影响.  , 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [9] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究.  , 2021, (): . doi: 10.7498/aps.70.20211449
    [10] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量.  , 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [11] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量.  , 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [12] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响.  , 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [13] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用.  , 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [14] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [15] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理.  , 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [16] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪.  , 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [17] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响.  , 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] 徐信业, 王育竹. 多普勒型原子干涉仪的理论探讨.  , 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
计量
  • 文章访问数:  4412
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-13
  • 修回日期:  2022-03-27
  • 上网日期:  2022-07-21
  • 刊出日期:  2022-08-05

/

返回文章
返回
Baidu
map