搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于系数搜索的振动补偿方法

要佳敏 庄伟 冯金扬 王启宇 赵阳 王少凯 吴书清 李天初

引用本文:
Citation:

基于系数搜索的振动补偿方法

要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初

A coefficient searching based vibration correction method

Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu
PDF
HTML
导出引用
  • 绝对重力仪普遍采用激光干涉式或原子干涉式的测量原理来测量重力加速度的绝对值, 在地球物理等领域有着广泛的应用. 振动补偿是一种有效减小地面振动对绝对重力仪测量精度的影响的方法, 尤其适用于复杂振动环境. 本文介绍了一种基于传递函数简化模型的、用于实时修正原子干涉式绝对重力仪干涉条纹的振动补偿方法, 给出了该方法的工作原理及搜索模型系数的具体算法流程, 然后利用仿真运算验证算法的有效性, 最后利用已有的原子干涉式绝对重力仪对算法效果进行了实验评估. 结果表明, 使用该振动补偿算法对原子重力仪的干涉条纹进行修正, 最大可将干涉条纹的余弦拟合残差的标准差衰减58%. 该振动补偿算法具有较强的自适应性, 有望提升原子干涉式绝对重力仪在不同测量环境尤其是复杂振动环境中的测量精度.
    Absolute gravimeter has played an important role in geophysics, metrology, geological exploration, etc. It is an instrument applying laser interferometry or atom interferometry to the measurement of gravitational acceleration g (approximately 9.8 m/s2). To achieve a high accuracy, a vibration correction method is often employed to reduce the influence of the vibration of the reference object (a retro-reflector or a mirror) on the measurement result of absolute gravimeter. Specifically, in an atomic-interferometry absolute gravimeter, the phase noise caused by the vibration of the reference mirror, namely the vibration phase, can be calculated from the output signal of a sensor, either a seismometer or an accelerometer, placed below or next to the mirror. Considering this vibration phase, the fringe signal of the atomic interferometer as a function of the phase shift set by the control system of the gravimeter can be corrected to approach to an ideal sinusoidal curve, thus reducing the fitting residual. Currently, the parameters in the algorithm of most vibration correction methods used in atomic-interferometry absolute gravimeters are set to be constant. As a result, the performances of these methods may be limited when the practical transfer function between the real vibration of the reference mirror and the signal of the sensor has a variation due to the change of measurement environments. In this paper, based on a simplified model of the practical transfer function previously proposed in an algorithm used in laser-interferometry absolute gravimeter, a new vibration correction method for atomic-interferometry absolute gravimeter is presented. Firstly, a detailed description of its principle is introduced. With a searching algorithm, the time delay and the proportional element in the simplified model can be obtained from the fringe signal of the atomic interferometer and the output of the vibration sensor. In this way, the parameters used to calculate the vibration phase can be adjusted to approach to their true values in different environments, causing the fitting residual of the corrected fringe to decrease as much as possible. Then the measurement results of the homemade NIM-AGRb-1 atomic-interferometry absolute gravimeters using this method is analyzed. It is indicated that with the vibration correction algorithm, the standard deviation of the fitting residual of the measured fringe signal can be reduced by 58% at the best level in a quiet environment. In the future, the performance of this vibration correction algorithm will be further improved in other atomic-interferometry absolute gravimeters during their measurements in hostile environments.
      通信作者: 要佳敏, yaojm@nim.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3900204)和中国计量科学研究院基本科研业务费(批准号: 29-AKY1922-21、AKYZD2002)资助的课题
      Corresponding author: Yao Jia-Min, yaojm@nim.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3900204) and the Research Funds for National Institute of Metrology, China (Grant Nos. 29-AKY1922-21, AKYZD2002)
    [1]

    Marson I, Faller J E 1986 J. Phys. E: Sci. Instrum. 19 22Google Scholar

    [2]

    Faller J E 2002 Metrologia 39 425Google Scholar

    [3]

    Steiner R L, Williams E R, Newell D B, Liu R 2005 Metrologia 42 431Google Scholar

    [4]

    Timmen L, Gitlein O, Klemann V, Wolf D 2011 Pure Appl. Geophys. 169 1331Google Scholar

    [5]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [6]

    D’Agostino G, Desogus S, Germak A, Origlia C, Quagliotti D, Berrino G, Corrado G, D’errico V, Ricciardi G 2008 Ann. Geophys. 51 39

    [7]

    胡华, 伍康, 申磊, 李刚, 王力军 2012 61 099101Google Scholar

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101Google Scholar

    [8]

    吴书清, 李春剑, 徐进义, 粟多武, 冯金扬, 吉望西 2017 计量学报 38 127Google Scholar

    Wu S Q, Li C J, Xu J Y, Su D W, Feng J Y, Ji W X 2017 Acta Metrol. Sin. 38 127Google Scholar

    [9]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181Google Scholar

    [10]

    Peters A, Chung K Y, Chu S 1999 Nature 400 6747Google Scholar

    [11]

    Le Gouët J, Mehlstäubler T, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [12]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [13]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [14]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [15]

    Observations and modeling of seismic background noise, Peterson J https://pubs.er.usgs.gov/publication/ofr93322 [2021-03-29]

    [16]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908Google Scholar

    [17]

    Cessaro R K, Chan W 1989 J. Geophys. Res.-Solid Earth 94 15555Google Scholar

    [18]

    Richardson L L 2019 Ph. D. Dissertation (Hannover: Institutionelles Repositorium der Leibniz Universität Hannover)

    [19]

    许翱鹏 2016 博士学位论文 (杭州: 浙江大学)

    Xu A P 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [20]

    张旭 2019 硕士学位论文 (长沙: 国防科技大学)

    Zhang X 2019 Master Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [21]

    王吉鹏, 胡栋, 白金海, 贡昊 2020 计测技术 40 26Google Scholar

    Wang J P, Hu D, Bai J H, Gong H 2020 Metrology & Measurement Technology 40 26Google Scholar

    [22]

    Tang B, Zhou L, Xiong Z, Wang J, Zhan M 2014 Rev. Sci. Instrum. 85 093109Google Scholar

    [23]

    陈斌 2020 博士学位论文 (合肥: 中国科技大学)

    Chen B 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    胡青青 2017 博士学位论文(长沙: 国防科技大学)

    Hu Q Q 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [25]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735Google Scholar

    [26]

    Freier C 2010 Ph. D. Dissertation (Berlin: University of Humboldt)

    [27]

    Wang G, Hu H, Wu K, Wang L J 2017 Meas. Sci. Technol. 28 3Google Scholar

    [28]

    Qian J, Wang G, Wu K, Wang L J 2018 Meas. Sci. Technol. 29 2Google Scholar

    [29]

    Guo M, Wu K, Yao J, Wen Y, Wang L 2021 IEEE Trans. Instrum. Meas. 70 1004310Google Scholar

    [30]

    吴书清, 李天初 2021 光学学报 41 44Google Scholar

    Wu S, Li T 2021 Acta. Optica. Sinica. 41 44Google Scholar

    [31]

    CMG-3 ESP Operator’s Guide, Guralp Systems Limited, https://www.guralp.com/documents/MAN-ESP-0001.pdf [2021-11-25]

    [32]

    Device Specifications NI 6361, National Instruments, https://www.ni.com/pdf/manuals/374650 c.pdf [2021-11-25]

    [33]

    伯特瑟卡斯 D P, 齐齐克利斯 J N 著 (郑忠国, 童行伟 译) 2016 概率导论 (北京: 人民邮电出版社) 第190—194页

    Bertsekas D P, Tsitsiklis J N (translated by Zheng Z G, Tong X W) 2016 Introduction to Probability (Beijing: POSTS & TELECOM PRESS) pp190–194 (in Chinese)

  • 图 1  原子干涉条纹示意图

    Fig. 1.  Schematic diagram of the fringe signal of atomic interferometer.

    图 2  地震计输出信号与参考镜真实振动的关系

    Fig. 2.  Transfer function between the vibration of reference mirror and the output signal of seismometer.

    图 3  基于系数搜索的振动补偿算法流程

    Fig. 3.  The algorithm of the vibration correction method based on element searching.

    图 4  (a) 仿真干涉条纹; (b) 仿真振动信号

    Fig. 4.  (a) The simulated fringe signal; (b) the simulated output of seismometer.

    图 5  其他相位噪声为0时仿真得到的拟合RMSE值与(a)延时系数和(b)增益系数的关系

    Fig. 5.  The RMSE value of fringe fitting as a function of (a) time delay and (b) proportional element, without considering other phase noises, calculated by simulation.

    图 6  其他相位噪声为0时仿真得到的(a)修正前后的干涉条纹与理论拟合曲线(典型修正点用橘色圆圈标出), (b)原始条纹的拟合残差与计算出的仅由振动导致的条纹的拟合残差

    Fig. 6.  (a) The simulated fringe signals before and after vibration correction with the fitted curve as the reference (with the typical corrected data marked by orange circles), and (b) the fitting residual of the simulated fringe signals, without considering other phase noises.

    图 7  考虑其他相位噪声时仿真得到的拟合RMSE值与(a)延时系数和(b)增益系数的关系

    Fig. 7.  The RMSE value of fringe fitting as a function of (a) time delay and (b) proportional element, with other phase noises considered, calculated by simulation.

    图 8  考虑其他相位噪声时仿真得到的(a)修正前后的干涉条纹与理论拟合曲线(典型修正点用橘色圆圈和绿色方框标出), (b)原始残差与计算出的仅由振动导致的条纹残差

    Fig. 8.  (a) The simulated fringe signals before and after vibration correction with the fitted curve as the reference (with the typical corrected data marked by orange circles and green square), and (b) the fitting residual of the simulated fringe signals, with other phase noises considered.

    图 9  实验现场图 (a) NIM-AGRb-1型原子重力仪; (b)地震计信号及触发信号采集系统

    Fig. 9.  Photograph of (a) NIM-AGRb-1 atomic-interferometry absolute gravimeter, and (b) the data acquisition device recording the voltage signal of seismometer and trigger.

    图 10  测试地点的地面振动加速度功率谱密度

    Fig. 10.  The power spectrum density of the ground vibration acceleration at the measurement site.

    图 11  第1组实测数据的拟合RMSE值与(a)延时系数和(b)增益系数的关系

    Fig. 11.  The RMSE value of fringe fitting as a function of (a) time delay and (b) proportional element, calculated from the 1st dataset of measurement.

    图 12  第1组实测数据(a)修正前后的干涉条纹与理论拟合曲线(典型修正点用橘色圆圈标出), (b)原始残差与计算出的仅由振动导致的条纹残差

    Fig. 12.  (a) The fringe signals before and after vibration correction with the fitted curve as the reference (with the typical corrected data marked by orange circles), and (b) the fitting residual of the fringe signals, calculated from the 1st dataset of measurement.

    图 13  修正前后60组实测干涉条纹的(a)残差标准差和(b)残差标准差的衰减比

    Fig. 13.  (a) The standard deviations of the fitting residuals of 60 sets of fringe signals with and without the vibration correction, and (b) the reducing factor between them.

    图 14  由60组实测干涉条纹得到的修正前后的重力偏差

    Fig. 14.  The variation of the measured g value deduced from 60 sets of fringe signals with and without the vibration correction.

    图 15  拟合RMSE值和相关系数CR与延时系数的关系 (a) 仿真时的第1种情况; (b) 仿真时的第2种情况; (c) 实测时的第1组数据; (d) 仿真时的第4种情况

    Fig. 15.  The RMSE value of fringe fitting and the correlation value CR between the fitting residual of fringes before and after the vibration correction as a function of time delay of (a) 1st simulated dataset, (b) 2nd simulated dataset, (c) 1st measured dataset and (d) 4th simulated dataset.

    图 16  最终确定的RvRm的相关系数CR与修正前后条纹残差标准差的衰减比

    Fig. 16.  The correlation value CR between the fitting residual of fringes before and after the vibration correction, and the corresponding reducing factor of the standard deviation of the fitting residuals of fringe signals after the vibration correction.

    表 1  主要物理符号描述

    Table 1.  Description of main symbols.

    符号含义说明
    PФth)原始干涉条纹横坐标为理论原子相位ΔФth, 纵坐标为跃迁概率的实测值P
    PfitФth)理论干涉条纹横坐标仍为ΔФth, 纵坐标为对P进行余弦拟合得到的拟合值Pfit
    Us, vm地震计输出电压, 参考镜真实速度
    τ, K延时系数, 增益系数Usvm的传递函数H的简化模型中的系数
    τopt, Kopt最优延时系数, 最优增益系数振动补偿算法搜索出的最优值
    Δφvib推算出的振动相位噪声Us根据搜索出的τoptKopt以及重力仪灵敏度函数S(t)计算得到
    ΔФv推算出的仅受振动影响的原子相位
    PФv)修正干涉条纹与原始干涉条纹相比, 横坐标由ΔФth变为ΔФv
    下载: 导出CSV

    表 2  仿真运算结果

    Table 2.  Simulated results.

    序号1234
    输入参数φvib| ≤ 400 mrad, Δφothers = 0, N = 30φvib| ≤ 400 mrad, |Δφothers| ≤ 10 mrad, N = 30φvib| ≤ 4000 mrad, |Δφothers| ≤ 10 mrad, N = 30φvib| ≤ 400 mrad, |Δφothers| ≤ 10 mrad, N = 60
    设定值τset/ms5
    计算值τopt/ms5.02.74.16.8
    设定值Kset0.9
    计算值Kopt0.9000.9570.9190.876
    条纹拟合RMSE值补偿前/10–313.118.330.915.2
    补偿后/10–30.028.37.26.7
    衰减比/%99.854.676.755.9
    条纹残差
    标准差
    补偿前σm/10–312.3917.3229.2814.80
    补偿后σc/10–30.027.826.786.50
    衰减比/%99.854.876.855.7
    下载: 导出CSV

    表 3  10组数据的实际测量结果

    Table 3.  Measurement results obtained from 10 data sets.

    组号延时系数τopt/ms增益系数Kopt条纹拟合RMSE值条纹残差标准差
    补偿前/10–3补偿后/10–3补偿前σm/10–3补偿后σc/10–3衰减比/%
    11.790.97011.24.810.624.5856.9
    21.171.21017.37.216.336.8358.2
    35.061.10911.47.010.826.6738.3
    45.421.35713.88.513.088.0538.5
    54.231.0379.15.68.595.3038.3
    67.291.02511.75.811.035.5250.0
    71.431.22315.19.914.319.3434.7
    84.531.11813.67.312.866.9446.0
    9-0.621.05714.08.013.197.5442.8
    105.251.07910.96.510.316.1440.4
    均值3.561.11944.4
    下载: 导出CSV

    表 4  以相关系数CR为优化目标时的仿真运算结果

    Table 4.  Simulated results with the correlation value CR as the objective of the algorithm.

    序号输入参数设定值
    τset/ms
    延时系数τopt/ms相关系数
    CR的极大值
    以RMSE值为优化目标CR为优化目标
    1φvib| ≤ 400 mrad, Δφothers = 0, N = 3055.05.00.999
    2φvib| ≤ 400 mrad, Δφothers ≤ 10 mrad, N = 302.72.70.892
    3φvib| ≤ 4000 mrad, Δφothers ≤ 10 mrad, N = 304.14.20.972
    4φvib| ≤ 400 mrad, Δφothers ≤ 10 mrad, N = 606.88.60.896
    下载: 导出CSV

    表 5  以相关系数CR为优化目标时的10组数据的实际测量结果

    Table 5.  Measurement results obtained from 10 data sets with the correlation value CR as the objective of the algorithm.

    组号计算值τopt /ms相关系数CR
    的最大值
    以RMSE值为
    优化目标
    CR为优
    化目标
    11.791.840.902
    21.17–4.380.909
    35.065.050.785
    45.425.270.785
    54.234.240.787
    67.297.290.866
    71.431.420.757
    84.534.700.841
    9–0.62–0.830.821
    105.255.250.802
    下载: 导出CSV

    表 6  以残差标准差为优化目标时的仿真及实测数据运算结果

    Table 6.  Simulated and measurement results with the standard deviation of the fitting residuals as the objective of the algorithm

    类型设定值τset /ms计算值τopt /ms设定值Kset计算值Kopt
    以RMSE值为优化目标σc为优化目标以RMSE值为优化目标σc为优化目标
    仿真数据
    第3种情况
    54.14.20.90.9190.918
    仿真数据
    第4种情况
    6.88.60.8760.865
    实测数据
    第9组
    –0.621.321.0571.033
    下载: 导出CSV
    Baidu
  • [1]

    Marson I, Faller J E 1986 J. Phys. E: Sci. Instrum. 19 22Google Scholar

    [2]

    Faller J E 2002 Metrologia 39 425Google Scholar

    [3]

    Steiner R L, Williams E R, Newell D B, Liu R 2005 Metrologia 42 431Google Scholar

    [4]

    Timmen L, Gitlein O, Klemann V, Wolf D 2011 Pure Appl. Geophys. 169 1331Google Scholar

    [5]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [6]

    D’Agostino G, Desogus S, Germak A, Origlia C, Quagliotti D, Berrino G, Corrado G, D’errico V, Ricciardi G 2008 Ann. Geophys. 51 39

    [7]

    胡华, 伍康, 申磊, 李刚, 王力军 2012 61 099101Google Scholar

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101Google Scholar

    [8]

    吴书清, 李春剑, 徐进义, 粟多武, 冯金扬, 吉望西 2017 计量学报 38 127Google Scholar

    Wu S Q, Li C J, Xu J Y, Su D W, Feng J Y, Ji W X 2017 Acta Metrol. Sin. 38 127Google Scholar

    [9]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181Google Scholar

    [10]

    Peters A, Chung K Y, Chu S 1999 Nature 400 6747Google Scholar

    [11]

    Le Gouët J, Mehlstäubler T, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [12]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [13]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [14]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [15]

    Observations and modeling of seismic background noise, Peterson J https://pubs.er.usgs.gov/publication/ofr93322 [2021-03-29]

    [16]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908Google Scholar

    [17]

    Cessaro R K, Chan W 1989 J. Geophys. Res.-Solid Earth 94 15555Google Scholar

    [18]

    Richardson L L 2019 Ph. D. Dissertation (Hannover: Institutionelles Repositorium der Leibniz Universität Hannover)

    [19]

    许翱鹏 2016 博士学位论文 (杭州: 浙江大学)

    Xu A P 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [20]

    张旭 2019 硕士学位论文 (长沙: 国防科技大学)

    Zhang X 2019 Master Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [21]

    王吉鹏, 胡栋, 白金海, 贡昊 2020 计测技术 40 26Google Scholar

    Wang J P, Hu D, Bai J H, Gong H 2020 Metrology & Measurement Technology 40 26Google Scholar

    [22]

    Tang B, Zhou L, Xiong Z, Wang J, Zhan M 2014 Rev. Sci. Instrum. 85 093109Google Scholar

    [23]

    陈斌 2020 博士学位论文 (合肥: 中国科技大学)

    Chen B 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    胡青青 2017 博士学位论文(长沙: 国防科技大学)

    Hu Q Q 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [25]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735Google Scholar

    [26]

    Freier C 2010 Ph. D. Dissertation (Berlin: University of Humboldt)

    [27]

    Wang G, Hu H, Wu K, Wang L J 2017 Meas. Sci. Technol. 28 3Google Scholar

    [28]

    Qian J, Wang G, Wu K, Wang L J 2018 Meas. Sci. Technol. 29 2Google Scholar

    [29]

    Guo M, Wu K, Yao J, Wen Y, Wang L 2021 IEEE Trans. Instrum. Meas. 70 1004310Google Scholar

    [30]

    吴书清, 李天初 2021 光学学报 41 44Google Scholar

    Wu S, Li T 2021 Acta. Optica. Sinica. 41 44Google Scholar

    [31]

    CMG-3 ESP Operator’s Guide, Guralp Systems Limited, https://www.guralp.com/documents/MAN-ESP-0001.pdf [2021-11-25]

    [32]

    Device Specifications NI 6361, National Instruments, https://www.ni.com/pdf/manuals/374650 c.pdf [2021-11-25]

    [33]

    伯特瑟卡斯 D P, 齐齐克利斯 J N 著 (郑忠国, 童行伟 译) 2016 概率导论 (北京: 人民邮电出版社) 第190—194页

    Bertsekas D P, Tsitsiklis J N (translated by Zheng Z G, Tong X W) 2016 Introduction to Probability (Beijing: POSTS & TELECOM PRESS) pp190–194 (in Chinese)

  • [1] 叶留贤, 许云鹏, 王巧薇, 程冰, 吴彬, 王河林, 林强. 基于激光双边带抑制的冷原子干涉相移优化与控制.  , 2023, 72(2): 024204. doi: 10.7498/aps.72.20221711
    [2] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析.  , 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [3] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验.  , 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [4] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究.  , 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [5] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究.  , 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [6] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析.  , 2021, (): . doi: 10.7498/aps.70.20211686
    [7] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量.  , 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [8] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究.  , 2021, (): . doi: 10.7498/aps.70.20211449
    [9] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 固定相位振动噪声对绝对重力测量的影响.  , 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [10] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量.  , 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [11] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响.  , 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [12] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用.  , 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [13] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [14] 王建波, 钱进, 刘忠有, 陆祖良, 黄璐, 杨雁, 殷聪, 李同保. 计算电容中Fabry-Perot干涉仪测量位移的相位修正方法.  , 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [15] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理.  , 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [16] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪.  , 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [17] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响.  , 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] 徐信业, 王育竹. 多普勒型原子干涉仪的理论探讨.  , 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
计量
  • 文章访问数:  5047
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-02-07
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回
Baidu
map