搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米成核点辅助结晶对钙钛矿光电探测器性能的影响

孙雪 黄锋 刘桂雄 苏子生

引用本文:
Citation:

纳米成核点辅助结晶对钙钛矿光电探测器性能的影响

孙雪, 黄锋, 刘桂雄, 苏子生

Effect of nano-nucleation sites assisted crystallization on performance of perovskite photodetector

Sun Xue, Huang Feng, Liu Gui-Xiong, Su Zi-Sheng
PDF
HTML
导出引用
  • 有机无机杂化钙钛矿材料因具有可调节的带隙宽度、优异的载流子传输性能、可低温溶液法制备等优点, 近年来在光电器件的应用研究上受到了广泛的关注. 对于平面光电导型探测器, 电荷在两电极之间需横穿钙钛矿层, 由于钙钛矿晶体的形成能较低, 在晶界和薄膜表面易产生缺陷, 光生载流子被缺陷阻挡而加剧激子的非辐射复合, 造成器件光电性能下降. 本文通过在钙钛矿界面层下方引入微量的氧化石墨烯纳米片作为钙钛矿晶体的有效成核点, 使得钙钛矿晶体可依附于氧化石墨烯形核, 降低钙钛矿晶体成核势垒的同时与钙钛矿形成铅-氧键, 最终获得晶体颗粒增大、晶界数量减少、薄膜致密的钙钛矿层. 由于氧化石墨烯在玻璃基底上的含量极低, 大片玻璃基底裸露并与钙钛矿直接接触, 因此钙钛矿层应视为制备在玻璃基底上. 在氧化石墨烯纳米片的影响下钙钛矿与玻璃基底的接触更为紧密, 有效降低界面间的激子非辐射复合概率, 提高了界面间电荷传输性能. 最终, 在氧化石墨烯纳米片最优制备参数的影响下, 钙钛矿光电探测器光电流相比空白对照器件提高了1个数量级, 在3 V偏压下的开关电流比为5.22 × 103, 并且最优的光电探测器的光响应速度明显提高, 上升时间为9.6 ms, 下降时间为6.6 ms.
    Photodetector occupies an important position in the sensor family, but most of the photoelectric conversion materials of photodetectors are inorganic semiconductors, such as GaAs, GaN, Ge and Si, these inorganic semiconductors are usually prepared by complicated methods and high cost, and furthermore, they have poor mechanical flexibility. Organic-inorganic hybrid perovskite materials serving as visible-light sensitizers have the advantages of balanced electron and hole mobilities, adjustable bandgaps, high absorption coefficients, low temperature solution preparation, which make the materials a suitable candidate for inorganic semiconductors.For planar photodetectors, carriers have greater probabilities to be trapped by the defects in the perovskite films, therefore it is important to fabricate a high-quality perovskite film. However, owing to the low formation energy of perovskite crystals, defects prove to occur on the film surface and grain boundaries, which aggravate the performance of perovskite optoelectronic devices. In this work, we introduce a small quantity of graphene oxide nanosheets (GOSs) on bare glass substrate as effective nucleation sites of perovskite crystals. Owing to the extremely low density of GOSs and large exposed glass basement, the GOSs cannot be regarded as an interface layer. The existence of GOSs on smooth substance reduces the perovskite nucleation barrier, leading to a more preferential crystal growth in these locations, and binds tightly with glass substrate, which passivates the defects efficiently. Meanwhile, the element of O in the GOSs can create Pb–O bond with Pb in the CH3NH3PbI3, further improving the crystal of perovskite. On this basis, planner perovskite photodetector with a structure of glass/GOSs/CH3NH3PbI3/MoO3/Au is fabricated. By adjusting the concentration of GOSs deionized water dispersion under the same spin-coating condition, the photoelectric conversion performance of perovskite photodetector is enhanced. Under the influence of the optimal concentration of GOSs, photocurrent of the champion photodetector (1.15 × 10–6 A) is an order of magnitude higher than that of reference device without GOSs modified (3.58 × 10–7 A) at 3 V bias, leading to a high ON/OFF current ratio of 5.22 × 103. Besides, improved photoresponse speed is also found in the champion device, with a rise time of 9.6 ms and a decay time of 6.6 ms, respectively. The enhanced performance of GOSs modified perovskite photodetector can be attributed to the significantly reduced defects bringing about an enhanced charge separation and collection performance in the CH3NH3PbI3 films.By introducing extremely low quantity GOSs as the effective perovskite crystal nucleation sites, the perovskite crystallization and thin film can be effectively improved, leading to a positive effect on the performance of perovskite photodetector. This method has a certain universality, and therefore it has a reference value for other structures of perovskite photoelectric devices.
      通信作者: 苏子生, suzs@qztc.edu.cn
    • 基金项目: 福建省自然科学基金(批准号: 2020J01778)资助的课题.
      Corresponding author: Su Zi-Sheng, suzs@qztc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01778).
    [1]

    Šagátová A, Zaťko B, Nečas V, Dubecký F, Anh T L, Sedlačková K, Boháček P, Zápražný Z 2018 Appl. Surf. Sci. 461 3Google Scholar

    [2]

    Tian H J, Hu A Q, Liu Q L, He X Y, Guo X 2020 Adv. Opt. Mater. 8 1901741Google Scholar

    [3]

    Wu J H, Yang Z W, Qiu C Y, Zhang Y J, Wu Z Q, Yang J L, Lu Y H, Li J F, Yang D X, Hao R, Li E P, Yu G L, Lin S S 2018 Nanoscale 10 8023Google Scholar

    [4]

    Gundimeda A, Krishna S, Aggarwal N, Sharma A, Sharma N D, Maurya K K, Husale S, Gupta G 2017 Appl. Phys. Lett. 110 103507Google Scholar

    [5]

    Liu L, Yang C, Patanè A, Yu Z, Yan F G, Wang K Y, Lu H X, Li J M, Zhao L X 2017 Nanoscale 9 8142Google Scholar

    [6]

    Takenaka M, Morii K, Sugiyama M, Nakano Y, Takagi S 2012 Opt. Express 20 8718Google Scholar

    [7]

    Hössbacher C, Salamin Y, Fedoryshyn Y, et al. 2017 IEEE Photonics Technol. Lett. 29 1760Google Scholar

    [8]

    Berencén Y, Prucnal S, Liu F, Skorupa I, Hübner R, Rebohle L, Zhou S Q, Schneider H, Helm M, Skorupa W 2017 Sci. Rep. 7 1Google Scholar

    [9]

    Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat P, Cassan E, Kopp C, Zimmermann H, Fédéli J M 2012 Opt. Express 20 1096Google Scholar

    [10]

    Yang J, Pi M Y, Zhang D K, Tang X S, Du J 2021 Chin. J. Lumin. 42 755Google Scholar

    [11]

    Gayen R N, Paul R, Biswas S 2020 Appl. Surf. Sci. 533 147149Google Scholar

    [12]

    Ozel K, Yildiz A 2021 Phys. Status. Solidi RRL 15 2100085Google Scholar

    [13]

    Chen W, Tang H, Chen Y, Heger J E, Li N, Kreuzer L P, Xie Y, Li D P, Anthony C, Pikramenou Z, Ng W K, Sun X W, Wang K, Müller-Buschbaum, P 2020 Nano Energy 78 105254Google Scholar

    [14]

    Wang Y D, Liu Y L, Cao S K, Wang J Z 2021 J. Mater. Chem. C 9 5302Google Scholar

    [15]

    柴磊, 钟敏 2016 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [16]

    Qu Z H, Ma F, Zhao Y, Chu X B, Yu S Q, You J B 2021 Chin. Phys. Lett. 38 107801Google Scholar

    [17]

    Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar

    [18]

    张钰, 周欢萍 2019 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [19]

    Zhu H L, Liang Z, Huo Z, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H 2018 Adv. Funct. Mater. 28 1706068Google Scholar

    [20]

    Li Y, Li Y, Shi J, Zhang H Y, Wu J H, Li D M, Luo Y H, Wu H J, Meng Q B 2018 Adv. Funct. Mater. 28 1705220Google Scholar

    [21]

    Wang T, Lian G, Huang L P, Zhu F, Cui D L, Wang Q L, Meng Q B, Jiang H H, Zhou G J, Wong C P 2019 Nano Energy 64 103914Google Scholar

    [22]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [23]

    Yang X, Qiu L, Cheng C, Wu Y Z, Ma Z F, Li D 2011 Angew. Chem. Int. Ed. 50 7325Google Scholar

    [24]

    Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R 2016 Chem. Rev. 116 5464Google Scholar

    [25]

    Ye S Y, Rao H X, Yan W B, Li Y H, Sun W H, Peng H T, Liu Z W, Bian Z Q, Li Y F, Huang C H 2016 Adv. Mater. 28 9648Google Scholar

    [26]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seol S I 2014 Nat. Mater. 13 897Google Scholar

    [27]

    Wang Z K, Li M, Yuan D X, Shi X B, Ma H, Liao L S 2015 ACS Appl. Mater. Interfaces 7 9645Google Scholar

    [28]

    Liu L, Xi Q Y, Gao G, Yang W, Zhou H, Zhao Y X, Wu C Q, Wang L D, Xu J W 2016 Sol. Energy Mater. Sol. Cells 157 937Google Scholar

    [29]

    Li W Z, Dong H P, Guo X D, Li N, Li J W, Niu G D, Wang L D 2014 J. Mater. Chem. A 2 20105Google Scholar

    [30]

    Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A 2009 Appl. Phys. Lett. 95 251

    [31]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nat. Mater. 11 76Google Scholar

    [32]

    Wang Y, Song Q G, Lin T, Fu Y, Sun X, Chu B, Jin F M, Zhao H F, Li W L, Su Z S, Li Y T 2017 Org. Electron. 49 355Google Scholar

    [33]

    Afzal A M, Bae I G, Aggarwal Y, Park J, Jeong H R, Choi E H, Park B 2021 Sci. Rep. 11 1Google Scholar

    [34]

    Hamilton M C, Martin S, Kanicki J 2004 IEEE Trans. Electron. Devices 51 887

    [35]

    Khan A A, Azam M, Eric D, Liang G X, Yu Z N 2020 J. Mater. Chem. C 8 2880Google Scholar

    [36]

    Wei Y Z, Feng G T, Mao P, Luan Y G, Zhuang J, Chen N L, Yang H X, Li W W, Yang S Y, Wang J Z 2020 ACS Appl. Mater. Interfaces 12 8826Google Scholar

    [37]

    Shan C W, Meng F, Yu J H, Wang Z X, Li W H, Fan D Y, Chen R, Ma H B, Li G Q, Kyaw A K K 2021 J. Mater. Chem. C 9 7632Google Scholar

    [38]

    Srivastava A, Jit S, Tripathi S 2021 IEEE Trans. Electron. Devices 68 IEEE Trans. Electron. Devices

    [39]

    Reddy K C S, Selamneni V, Rao M G S, Meza-Arroyo J, Sahatiya P, Ramirez-Bon R 2021 Appl. Surf. Sci. 568 150944Google Scholar

    [40]

    Dutta A, Medda A, Bera R, Sarkar K, Sain S, Kumar P, Patra A 2020 ACS Appl. Nano Mater. 3 4717

    [41]

    Bristow H, Jacoutot P, Scaccabarozzi A D, et al. 2020 ACS Appl. Mater. Interfaces 12 48836Google Scholar

  • 图 1  (a) 空白硅片以及 (b) 0.025, (c) 0.050, (d) 0.100 mg/mL GOSs分散液沉积在硅片表面的形貌

    Fig. 1.  The morphology of (a) bare silicon wafer and (b) 0.025, (c) 0.050, (d) 0.100 mg/ mL GOSs dispersion deposited on the surface of silicon wafer.

    图 2  (a) G0, (b) G0.025, (c) G0.05和(d) G0.1上生长的钙钛矿薄膜的平面扫描SEM照片

    Fig. 2.  Top-view SEM images of the CH3NH3PbI3 films on (a) G0, (b) G0.025, (c) G0.05 and (d) G0.1

    图 3  (a) G0和(b) G0.05上生长的钙钛矿薄膜的断面扫描SEM照片

    Fig. 3.  Cross-sectional SEM images of the CH3NH3PbI3 films on (a) G0 and (b) G0.05

    图 4  (a) 钙钛矿薄膜在G0, G0.025, G0.05以及G0.1上的XRD图谱; (b) 相应样品在14.2°和28.5°位置衍射峰放大图

    Fig. 4.  (a) XRD patterns of the CH3NH3PbI3 films on G0, G0.025, G0.05 and G0.1; (b) enlarged diffraction peaks at 14.2° and 28.5° of the corresponding samples.

    图 5  沉积在G0, G0.025, G0.05以及G0.1上的CH3NH3PbI3光吸收谱. 图中同时给出G0.1放大30倍的吸收光谱

    Fig. 5.  Absorbance spectra of the CH3NH3PbI3 films deposited on G0, G0.025, G0.05 and G0.1. The absorption spectrum of G0.1 amplified by 30 is also shown in the figure.

    图 6  钙钛矿光电探测器的(a)结构示意图和(b)器件实物照片

    Fig. 6.  (a) Schematic structure and (b) picture of the perovskite photodetector.

    图 7  (a)光照及(b)黑暗条件下G0, G0.025, G0.05和G0.1上制备的钙钛矿探测器的I-V曲线

    Fig. 7.  I-V curves of the photodetectors fabricated on G0, G0.025, G0.05 and G0.1 under (a) solar simulator irradiation and (b) dark, respectively.

    图 8  分别沉积在G0和G0.05上的钙钛矿光电探测器的RD*

    Fig. 8.  The R and D* of perovskite photodetectors fabricated on G0 and G0.05, respectively.

    图 9  G0和G0.05上制备的钙钛矿光电探测器的5个周期光响应行为

    Fig. 9.  Five cycles photoresponse behavious of the perovskite photodetectors fabricated on G0 and G0.05.

    表 1  不同基底上生长的钙钛矿薄膜XRD衍射峰半峰宽

    Table 1.  FWHM of the CH3NH3PbI3 XRD diffraction peaks deposited on different substrates.

    FWHM/(°)
    14.228.5
    G0/CH3NH3PbI30.1330.146
    G0.025/CH3NH3PbI30.1130.104
    G0.05/CH3NH3PbI30.1120.099
    G0.1/CH3NH3PbI30.1210.115
    下载: 导出CSV

    表 2  溶液法制备的可见光探测器性能

    Table 2.  Performance of visible light detector prepared by solution method.

    材料制备方法开关比/103响应度/(A·W–1)探测率/Jones响应时间Ref.
    Cs0.1FA0.2MA0.7Pb(I0.9Cl0.1)3-F4TCNQ旋涂6.945.4530 ms/600 ms[35]
    (BA)2(MA)n1PbnI3n+1旋涂1.3827.063.53 ms/3.78 ms[36]
    CH3NH3PbI3旋涂0.478.2 × 101218 ns[37]
    CH3NH3PbI3旋涂5.221.712.04 × 10149.6 ms/6.6 msThis work
    ZnO/pentacene旋涂0.362.17 × 1014[38]
    p-NiO/n-CdS水热法/旋涂~0.0052.60 × 10–29.21 × 1093.5 s[39]
    CdSe旋涂4.70.164 × 1011107 ms/110 ms[40]
    PTQ10∶O-IDTBR刮刀涂布0.033.3 × 101120 μs/25 μs[41]
    PTQ10∶O-FBR0.349.6 × 101212 μs/15 μs
    下载: 导出CSV
    Baidu
  • [1]

    Šagátová A, Zaťko B, Nečas V, Dubecký F, Anh T L, Sedlačková K, Boháček P, Zápražný Z 2018 Appl. Surf. Sci. 461 3Google Scholar

    [2]

    Tian H J, Hu A Q, Liu Q L, He X Y, Guo X 2020 Adv. Opt. Mater. 8 1901741Google Scholar

    [3]

    Wu J H, Yang Z W, Qiu C Y, Zhang Y J, Wu Z Q, Yang J L, Lu Y H, Li J F, Yang D X, Hao R, Li E P, Yu G L, Lin S S 2018 Nanoscale 10 8023Google Scholar

    [4]

    Gundimeda A, Krishna S, Aggarwal N, Sharma A, Sharma N D, Maurya K K, Husale S, Gupta G 2017 Appl. Phys. Lett. 110 103507Google Scholar

    [5]

    Liu L, Yang C, Patanè A, Yu Z, Yan F G, Wang K Y, Lu H X, Li J M, Zhao L X 2017 Nanoscale 9 8142Google Scholar

    [6]

    Takenaka M, Morii K, Sugiyama M, Nakano Y, Takagi S 2012 Opt. Express 20 8718Google Scholar

    [7]

    Hössbacher C, Salamin Y, Fedoryshyn Y, et al. 2017 IEEE Photonics Technol. Lett. 29 1760Google Scholar

    [8]

    Berencén Y, Prucnal S, Liu F, Skorupa I, Hübner R, Rebohle L, Zhou S Q, Schneider H, Helm M, Skorupa W 2017 Sci. Rep. 7 1Google Scholar

    [9]

    Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat P, Cassan E, Kopp C, Zimmermann H, Fédéli J M 2012 Opt. Express 20 1096Google Scholar

    [10]

    Yang J, Pi M Y, Zhang D K, Tang X S, Du J 2021 Chin. J. Lumin. 42 755Google Scholar

    [11]

    Gayen R N, Paul R, Biswas S 2020 Appl. Surf. Sci. 533 147149Google Scholar

    [12]

    Ozel K, Yildiz A 2021 Phys. Status. Solidi RRL 15 2100085Google Scholar

    [13]

    Chen W, Tang H, Chen Y, Heger J E, Li N, Kreuzer L P, Xie Y, Li D P, Anthony C, Pikramenou Z, Ng W K, Sun X W, Wang K, Müller-Buschbaum, P 2020 Nano Energy 78 105254Google Scholar

    [14]

    Wang Y D, Liu Y L, Cao S K, Wang J Z 2021 J. Mater. Chem. C 9 5302Google Scholar

    [15]

    柴磊, 钟敏 2016 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [16]

    Qu Z H, Ma F, Zhao Y, Chu X B, Yu S Q, You J B 2021 Chin. Phys. Lett. 38 107801Google Scholar

    [17]

    Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar

    [18]

    张钰, 周欢萍 2019 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [19]

    Zhu H L, Liang Z, Huo Z, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H 2018 Adv. Funct. Mater. 28 1706068Google Scholar

    [20]

    Li Y, Li Y, Shi J, Zhang H Y, Wu J H, Li D M, Luo Y H, Wu H J, Meng Q B 2018 Adv. Funct. Mater. 28 1705220Google Scholar

    [21]

    Wang T, Lian G, Huang L P, Zhu F, Cui D L, Wang Q L, Meng Q B, Jiang H H, Zhou G J, Wong C P 2019 Nano Energy 64 103914Google Scholar

    [22]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [23]

    Yang X, Qiu L, Cheng C, Wu Y Z, Ma Z F, Li D 2011 Angew. Chem. Int. Ed. 50 7325Google Scholar

    [24]

    Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R 2016 Chem. Rev. 116 5464Google Scholar

    [25]

    Ye S Y, Rao H X, Yan W B, Li Y H, Sun W H, Peng H T, Liu Z W, Bian Z Q, Li Y F, Huang C H 2016 Adv. Mater. 28 9648Google Scholar

    [26]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seol S I 2014 Nat. Mater. 13 897Google Scholar

    [27]

    Wang Z K, Li M, Yuan D X, Shi X B, Ma H, Liao L S 2015 ACS Appl. Mater. Interfaces 7 9645Google Scholar

    [28]

    Liu L, Xi Q Y, Gao G, Yang W, Zhou H, Zhao Y X, Wu C Q, Wang L D, Xu J W 2016 Sol. Energy Mater. Sol. Cells 157 937Google Scholar

    [29]

    Li W Z, Dong H P, Guo X D, Li N, Li J W, Niu G D, Wang L D 2014 J. Mater. Chem. A 2 20105Google Scholar

    [30]

    Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A 2009 Appl. Phys. Lett. 95 251

    [31]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nat. Mater. 11 76Google Scholar

    [32]

    Wang Y, Song Q G, Lin T, Fu Y, Sun X, Chu B, Jin F M, Zhao H F, Li W L, Su Z S, Li Y T 2017 Org. Electron. 49 355Google Scholar

    [33]

    Afzal A M, Bae I G, Aggarwal Y, Park J, Jeong H R, Choi E H, Park B 2021 Sci. Rep. 11 1Google Scholar

    [34]

    Hamilton M C, Martin S, Kanicki J 2004 IEEE Trans. Electron. Devices 51 887

    [35]

    Khan A A, Azam M, Eric D, Liang G X, Yu Z N 2020 J. Mater. Chem. C 8 2880Google Scholar

    [36]

    Wei Y Z, Feng G T, Mao P, Luan Y G, Zhuang J, Chen N L, Yang H X, Li W W, Yang S Y, Wang J Z 2020 ACS Appl. Mater. Interfaces 12 8826Google Scholar

    [37]

    Shan C W, Meng F, Yu J H, Wang Z X, Li W H, Fan D Y, Chen R, Ma H B, Li G Q, Kyaw A K K 2021 J. Mater. Chem. C 9 7632Google Scholar

    [38]

    Srivastava A, Jit S, Tripathi S 2021 IEEE Trans. Electron. Devices 68 IEEE Trans. Electron. Devices

    [39]

    Reddy K C S, Selamneni V, Rao M G S, Meza-Arroyo J, Sahatiya P, Ramirez-Bon R 2021 Appl. Surf. Sci. 568 150944Google Scholar

    [40]

    Dutta A, Medda A, Bera R, Sarkar K, Sain S, Kumar P, Patra A 2020 ACS Appl. Nano Mater. 3 4717

    [41]

    Bristow H, Jacoutot P, Scaccabarozzi A D, et al. 2020 ACS Appl. Mater. Interfaces 12 48836Google Scholar

  • [1] 杨迎国, 冯尚蕾, 李丽娜. 溶液法原位大面积制备钙钛矿光电薄膜成膜的同步辐射可视化结晶过程研究.  , 2024, 73(6): 063201. doi: 10.7498/aps.73.20231847
    [2] 张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞. 动态热风辅助再结晶策略改善CsPbI2Br钙钛矿在大气环境下的结晶及其光电性能.  , 2024, 73(9): 098803. doi: 10.7498/aps.73.20240153
    [3] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器.  , 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [4] 孙涛, 袁健美. 基于迁移学习的钙钛矿材料带隙预测.  , 2023, 72(21): 218901. doi: 10.7498/aps.72.20231027
    [5] 王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁. 苯基硫脲调控CsPbIBr2钙钛矿结晶及其光电性能.  , 2023, 72(15): 158801. doi: 10.7498/aps.72.20230593
    [6] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿.  , 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [7] 黎宇坤, 董建军, 陈韬, 宋仔锋, 王强强, 邓克立, 邓博, 曹柱荣, 王峰. 对钙钛矿CsPbX3的X光波段外光电效应的研究.  , 2021, 70(19): 197901. doi: 10.7498/aps.70.20210651
    [8] 石文奇, 田宏, 陆玉新, 朱虹, 李芬, 王小霞, 刘燕文. 金属卤化物钙钛矿纳米光电材料的研究进展.  , 2021, 70(8): 087303. doi: 10.7498/aps.70.20201842
    [9] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性.  , 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [10] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算.  , 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [11] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响.  , 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [12] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军. 钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性.  , 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [13] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展.  , 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [14] 刘晓敏, 李亦回, 王兴涛, 赵一新. 有机铵盐表面稳定化CsPbI2Br全无机钙钛矿.  , 2019, 68(15): 158805. doi: 10.7498/aps.68.20190303
    [15] 张翱, 陈云琳, 闫君, 张春秀. 有机阳离子对卤素钙钛矿太阳能电池性能的影响.  , 2018, 67(10): 106701. doi: 10.7498/aps.67.20180236
    [16] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性.  , 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [17] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [18] 刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云. 钙钛矿APbI3结构稳定性及光电性质的理论研究.  , 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [19] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文. 多种有序钙钛矿结构的高压制备与特殊物性.  , 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [20] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究.  , 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
计量
  • 文章访问数:  4074
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 修回日期:  2022-04-13
  • 上网日期:  2022-08-18
  • 刊出日期:  2022-09-05

/

返回文章
返回
Baidu
map