搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维材料物性的非均匀应变调控

王娅巽 郭迪 李建高 张东波

引用本文:
Citation:

低维材料物性的非均匀应变调控

王娅巽, 郭迪, 李建高, 张东波

Engineering of properties of low-dimensional materials via inhomogeneous strain

Wang Ya-Xun, Guo Di, Li Jian-Gao, Zhang Dong-Bo
PDF
HTML
导出引用
  • 探索低维材料的新奇物性是当前凝聚态物理和材料科学基础研究的一个重要前沿. 应变是调控低维材料物性的一个重要手段. 相比于块体材料, 低维材料通常具有良好的力学柔韧性, 并表现出敏锐的结构-电子响应关系, 因此可以通过结构变形对材料电子性质进行有效调控. 本文主要目的是介绍二维材料中通过非均匀应变获得新奇物性的研究进展. 主要讨论两个效应, 即赝磁场效应和挠曲电效应. 具体来说, 通过解析理论、实验进展、计算模拟以及围绕这些效应的应用等方面介绍相关研究进展. 从计算模拟的角度看, 由于非均匀应变破坏了晶体的平移对称性, 基于周期性边界条件的量子力学计算方法如第一性原理不再适用. 本文将介绍一个专门用来模拟非均匀应变的原子级计算方法, 即广义布洛赫方法, 并简要介绍该方法的一些具体应用.
    Low-dimensional material represents a special structure of matter. The exploring of its novel properties is an important frontier subject in the fundamental research of condensed matter physics and material science. Owing to its small length scale in one or two dimensions, low-dimensional materials are usually flexible in structure. This feature together with the prompt electronic response to structural deformations enable us to modulate the material properties via a strain way. The main purpose of this paper is to introduce the recent research progress of obtaining novel physical properties by inhomogeneously straining two-dimensional materials, with focusing on two effects, i.e., pseudomagnetic field effect and the flexoelectric effect. Of course, the influence of inhomogeneous strains on electrons is not limited to these two effects. Fundamentally, an inhomogeneous deformation breaks the symmetry of crystalline structure. This may serve as a start point to delineate the structural-properties relation. First, the symmetry breaking can eliminate the degeneracy of energy levels. Second, the symmetry breaking will also cause the heterogeneity of electronic and phonon properties in different parts of the material.In the paper, we also introduce a special method named the generalized Bloch theorem that is suitable for dealing with the inhomogeneous strain patterns at an atomistic level. From the perspective of atomistic simulation, due to the breaking of translational symmetry, the standard quantum mechanical calculations encounter fundamental difficulties in dealing with an inhomogeneous strain, e.g., bending and torsion. The generalized Bloch method overcomes such an obstacle by considering rotational and/or screw symmetries given by bending and/or torsion in solving the eigenvalue problem. As such, quantum mechanical calculations can be still conducted with a relatively small number of atoms.
      通信作者: 张东波, dbzhang@bnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303400)、国家自然科学基金(批准号: 11674022, 11874088)和中央高校基本科研业务费专项资金(批准号: 12000-310432101)资助的课题.
      Corresponding author: Zhang Dong-Bo, dbzhang@bnu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the National Natural Science Foundation of China (Grant Nos. 11674022, 11874088), and the Fundamental Research Funds for the Central Universities of China (Grant No. 12000-310432101).
    [1]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim1 A K 2007 Science 315 1379Google Scholar

    [2]

    Zhao L Y, He R, Rim K T, et al. 2011 Science 333 999Google Scholar

    [3]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [4]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193Google Scholar

    [5]

    Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R, Sasaki T 2003 Nature 422 53Google Scholar

    [6]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar

    [7]

    Pacilé D, Meyer J C, Girit Ç Ö, Zettl A 2008 Appl. Phys. Lett. 92 133107Google Scholar

    [8]

    Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y H, Yu X, Duan X D, Ji X D, Duan W, Xiang f 2021 Nat. Mater. 20 818Google Scholar

    [9]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [10]

    Guo H W, Hu Z, Liu Z B, Tian J G 2021 Adv. Funct. Mater. 31 2007810Google Scholar

    [11]

    Tong Q J, Yu H Y, Zhu Q Z, Wang Y, Xu X D, Yao W 2017 Nat. Phys. 13 356Google Scholar

    [12]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [13]

    Zhao X J, Yang Y, Zhang D B, Wei S H 2020 Phys. Rev. Lett. 124 086401Google Scholar

    [14]

    Liu C S, Yan X, Song X F, Ding S J, Zhang D W, Zhou P 2018 Nat. Nanotechnol. 13 404Google Scholar

    [15]

    Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S Q, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X F, Zhang X, Lindenberg A M 2020 Nat. Phys. 16 1028Google Scholar

    [16]

    Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P, Mitra S 2017 Nature 547 74Google Scholar

    [17]

    Nicholas R G, Christopher M, Michael S 2020 Oxford Open Mater. Sci. 1 itaa002Google Scholar

    [18]

    San-Jose P, González J, Guinea F 2011 Phys. Rev. Lett. 106 045502Google Scholar

    [19]

    Wang Z L 2007 MRS Bull. 32 109Google Scholar

    [20]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [21]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [22]

    Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801Google Scholar

    [23]

    Maiti A 2003 Nat. Mater. 2 440Google Scholar

    [24]

    Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar

    [25]

    Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020 Nano Lett. 20 8250Google Scholar

    [26]

    Fu X W, Liao Z M, Liu R, Xu J, Yu D 2013 ACS Nano 7 8891Google Scholar

    [27]

    Cong L, Yuan Z, Bai Z, Wang X, Zhao W, Gao X, Hu X, Liu P, Guo W, Li Q, Fan S, Jiang K 2021 Sci. Adv. 7 2358Google Scholar

    [28]

    Xie S, Tu L, Han Y, Huang L, Kang K, Lao K U, Poddar P, Park C, Muller D A, DiStasio J A R, Park J 2018 Science 359 1131Google Scholar

    [29]

    Lewis R B, Corfdir P, Kupers H, Flissikowski T, Brandt O, Geelhaar L 2018 Nano Lett. 18 2343Google Scholar

    [30]

    Mañes J L 2007 Phys. Rev. B 76 045430Google Scholar

    [31]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60Google Scholar

    [32]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Obergfell D, Roth S, Girit C, Zettl A 2007 Solid State Commun. 143 101Google Scholar

    [33]

    Fasolino A, Los J H, Katsnelson M I. 2007 Nat. Mater. 6 858Google Scholar

    [34]

    Nelson D R 2002 Defects and Geometry in Condensed Matter Physics (Cambridge: Cambridge University Press) pp12–17

    [35]

    Stolyarova E, Rim K T, Ryu S, Maultzsch J, Kim P, Brus L E, Heinz T F, Hybertsen M S, Flynn G W 2007 Proc. Natl. Acad. Sci. U. S. A. 104 9209Google Scholar

    [36]

    Bai K K, Zhou Y, Zheng H, Meng L, Peng H, Liu Z F, Nie J C, He L 2014 Phys. Rev. Lett. 113 086102Google Scholar

    [37]

    Kleinert H 2009 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (Singapore: World scientific) pp773–893

    [38]

    Sadoc J F 1990 Geometry in Condensed Matter Physics (Vol. 9) (Singapore: World Scientific) pp41–50

    [39]

    Katanaev M O, Volovich I V 1992 Ann. Phys. 216 1Google Scholar

    [40]

    Sasaki K, Kawazoe Y, Saito R 2005 Prog. Theor. Phys. 113 463Google Scholar

    [41]

    Morpurgo A F, Guinea F 2006 Phys. Rev. Lett. 97 196804Google Scholar

    [42]

    Georgi A, Nemes-Incze P, Carrillo-Bastos R, et al. 2017 Nano Lett. 17 2240Google Scholar

    [43]

    Kim J, Hong X, Jin C, Shi S, Chang C S, Chiu M, Li L, Wang F 2014 Science 346 1205Google Scholar

    [44]

    Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C, Xu X 2018 Nano Lett. 18 3823Google Scholar

    [45]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [46]

    Low T, Guinea F 2010 Nano Lett. 10 3551Google Scholar

    [47]

    Abedpour N, Asgari R, Guinea F 2011 Phys. Rev. B 84 115437Google Scholar

    [48]

    Zhu S, Li T 2014 J. Appl. Mech. 81 061008Google Scholar

    [49]

    Yamamoto M, Pierre-Louis O, Huang J, Fuhrer M S, Einstein T L, Cullen W G 2012 Phys. Rev. X 2 041018Google Scholar

    [50]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544Google Scholar

    [51]

    Zhu S, Stroscio J A, Li T 2015 Phys. Rev. Lett. 115 245501Google Scholar

    [52]

    Neek-Amal M, Covaci L, Peeters F M 2012 Phys. Rev. B 86 041405Google Scholar

    [53]

    Qi Z, Kitt A L, Park H S, Pereira V M, Canpbell D K, Castro Neto A H 2014 Phys. Rev. B 90 125419Google Scholar

    [54]

    Jiang Y, Mao J, Duan J, Lai X, Watanabe K, Taniguchi T, Andrei E Y 2017 Nano Lett. 17 2839Google Scholar

    [55]

    Hsu C C, Teague M L, Wang J Q, Yeh N C 2020 Sci. Adv. 6 9488Google Scholar

    [56]

    Kun P, Kukucska G, Dobrik G, Koltai J, Kürti J, Biró L P 2019 npj 2D Mater. Appl. 3 11Google Scholar

    [57]

    倪光炯, 陈苏卿 2003 高等量子力学 (上海: 复旦大学出版社) 第228—229页

    Ni G J, Chen S Q 2003 Advanced Quantum Mechanics (Shanghai: Fudan University Press) pp228–229 (in Chinese)

    [58]

    张礼, 葛墨林 2000 量子力学的前沿问题 (北京: 清华大学出版社) 第53—57页

    Zhan L, Ge M L 2000 Frontier Problems of Quantum Mechanics (Beijing: Tsinghua Univerdity press) pp53–57 (in Chinese)

    [59]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485Google Scholar

    [60]

    Batelaan H, Tonomura A 2009 Phys. Today 62 38Google Scholar

    [61]

    马丽, 谭振兵, 谭长玲, 杨海方, 刘广同, 杨昌黎, 吕力 2011 中国科学 41 1249Google Scholar

    Ma L, Tan Z B, Tan C L, Yan H F, Liu G T, Yang C L, Lǚ L 2011 Sci. China 41 1249Google Scholar

    [62]

    Cano A, Paul I 2009 Phys. Rev. B 80 153401Google Scholar

    [63]

    de Juna F, Cortijo A, Vozmediano M H, Cano A 2011 Nat. Phys. 7 810Google Scholar

    [64]

    Mao J, Milovanović S P, Anđelković M, Lai X, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y, Andrei E Y 2020 Nature 584 215Google Scholar

    [65]

    Kopnin N B, Heikkilä T T, Volovik G E 2011 Phys. Rev. B 83 220503Google Scholar

    [66]

    Kauppila V J, Aikebaier F, Heikkilä T T 2016 Phys. Rev. B 93 214505Google Scholar

    [67]

    Tang E, Fu L 2014 Nat. Phys. 10 964Google Scholar

    [68]

    Naumov I, Bratkovsky A M, Ranjan V 2009 Phys. Rev. Lett. 102 217601Google Scholar

    [69]

    Hong J, Vanderbilt D 2013 Phys. Rev. B 88 174107Google Scholar

    [70]

    Wang B, Gu Y, Zhang S, Chen L Q 2019 Prog. Mater. Sci. 106 100570Google Scholar

    [71]

    Ahmadpoor F, Sharma P 2015 Nanoscale 7 16555Google Scholar

    [72]

    Yang M M, Kim D J, Alexe M 2018 Science 360 904Google Scholar

    [73]

    Kumar M, Lim J, Park J Y, Seo H 2021 Small Methods 5 2100342Google Scholar

    [74]

    Jiang X, Huang W, Zhang S 2013 Nano Energy 2 1079Google Scholar

    [75]

    Kogan Sh M 1964 Sov. Phys. Solid State 5 2069

    [76]

    Meyer R B 1969 Phys. Rev. Lett. 22 918Google Scholar

    [77]

    Zubko P, Catalan G, Tagantsev A K 2013 Annu. Rev. Mater. Res. 43 387Google Scholar

    [78]

    Wen X, Li D, Tan K, Deng Q, Shen S 2019 Phys. Rev. Lett. 122 148001Google Scholar

    [79]

    Chu B, Salem D R 2012 Appl. Phys. Lett. 101 103905Google Scholar

    [80]

    Yudin P V, Tagantsev A K 2013 Nanotechnology 24 432001Google Scholar

    [81]

    Nguyen T D, Mao Sh, Yeh Y W, Purohit P K, McAlpine M C 2013 Adv. Mater. 25 946Google Scholar

    [82]

    舒龙龙, 梁任宏, 喻彦卓, 黄文彬, 魏晓勇, 李飞, 江小宁, 姚熹, 王雨 2018 现代技术陶瓷 39 223Google Scholar

    Shu L L, Liang R H, Yu Y Z, Huang W B, Wei X Y, Li F, Jiang X N, Yao X, Wang Y 2018 Adv. Ceram. 39 223Google Scholar

    [83]

    Tagantsev A K 1986 Phys. Rev. B 34 5883Google Scholar

    [84]

    Tagantsev A K 1991 Phase Transitions 35 119Google Scholar

    [85]

    Resta R 2010 Phys. Rev. Lett. 105 127601Google Scholar

    [86]

    Resta R 2010 Phys. Condens. Matter 22 123201Google Scholar

    [87]

    Tagantsev A K 1985 Zh. Eksp. Teor. Fiz. 88 2108

    [88]

    Zubko P, Catalan G, Buckley A, Welche P R L, Scott J F 2007 Phys. Rev. Lett. 99 167601Google Scholar

    [89]

    Stengel M 2013 Phys. Rev. B 88 174106Google Scholar

    [90]

    Zhang X, Pan Q, Tian D, Zhou W, Chen P, Zhang H, Chu B 2018 Phys. Rev. Lett. 121 057602Google Scholar

    [91]

    Maranganti R, Sharma P 2009 Phys. Rev. B 80 054109Google Scholar

    [92]

    Hong J, Catalan G, Scott J F, Artacho E 2010 J. Phys. Condens. Matter 22 112201Google Scholar

    [93]

    Hong J, Vanderbilt D 2011 Phys. Rev. B 84 180101Google Scholar

    [94]

    Bennett D 2021 Electron. Struct. 3 015001Google Scholar

    [95]

    Codony D, Arias I, Suryanarayana P 2021 Phys. Rev. Mater. 5 L030801Google Scholar

    [96]

    Springolo M, Royo M, Stengel M 2021 Phys. Rev. Lett. 127 216801Google Scholar

    [97]

    Kalinin S V, Meunier V 2008 Phys. Rev. B 77 033403Google Scholar

    [98]

    Zhuang X, He B, Javvaji B, Park H S 2019 Phys. Rev. B 99 054105Google Scholar

    [99]

    Kumar S, Codony D, Arias I, Suryanarayana P 2021 Nanoscale 13 1600Google Scholar

    [100]

    Abdollahi A, Vásquez-Sancho F, Catalan G 2018 Phys. Rev. Lett. 121 205502Google Scholar

    [101]

    McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E, Pasupathy A N 2020 Nat. Nanotechnol. 15 580Google Scholar

    [102]

    Li Y, Wang X, Tang D, Wang X, Watanabe K, Taniguchi T, Gamelin D R, Cobden D H, Yankowitz M, Xu X, Li J 2021 Adv. Mater. 33 2105879Google Scholar

    [103]

    Kwon S R, Huang W B, Zhang S J, Yuan F G, Jiang X N 2013 Smart Mater. Struct. 22 115017Google Scholar

    [104]

    Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233Google Scholar

    [105]

    Brody P S, Crowne F 1975 J. Electron. Mater. 4 955Google Scholar

    [106]

    Fridkin V M 2001 Crystallogr. Rep. 46 654Google Scholar

    [107]

    Spanier J E, Fridkin V M, Rappe A M, Akbashev A R, Polemi A, Qi Y, Gu Z, Young S M, Hawley C J, Imbrenda D, Xiao G, Bennett-Jackson A L, Johnson C L 2016 Nat. Photonics 10 611Google Scholar

    [108]

    Jiang J, Chen Z, Hu Y, Xiang Y, Zhang L, Wang Y, Wang G C, Shi J 2021 Nat. Nanotechnol. 16 894Google Scholar

    [109]

    Artyukhov V I, Gupta S, Kutana A, Yakobson B I 2020 Nano Lett. 20 3240Google Scholar

    [110]

    Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331Google Scholar

    [111]

    Wang K F, Wang B L 2016 Compos. Struct. 153 253Google Scholar

    [112]

    Wang K F, Wang B L 2017 Int. J. Eng. Sci. 116 88Google Scholar

    [113]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [114]

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Matter 21 395502Google Scholar

    [115]

    Porezag D, Frauenheim Th, Köhler Th, Seifert G, Kaschner R 1995 Phys. Rev. B 51 12947Google Scholar

    [116]

    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260Google Scholar

    [117]

    Locatelli A, Wang C, Africh C, Stojić N, Menteş T O, Comelli G, Binggeli N 2013 ACS Nano 7 6955Google Scholar

    [118]

    Yue L, Seifert G, Chang K, Zhang D B 2017 Phys. Rev. B 96 201403Google Scholar

    [119]

    White C T, Robertson D H, Mintmire J W 1993 Phys. Rev. B 47 5485Google Scholar

    [120]

    Popov V N 2004 New J. Phys. 6 17Google Scholar

    [121]

    Allen P B 2007 Nano Lett. 7 1220Google Scholar

    [122]

    张东波, 魏苏淮 2021 科学通报 66 674Google Scholar

    Zhang D B, Wei S H 2021 Chin. Sci. Bull. 66 674Google Scholar

    [123]

    Zhang D B, Wei S H 2017 npj Comput. Mater. 3 32Google Scholar

    [124]

    Rurali R, Hernández E 2003 Comput. Mater. Sci. 28 85Google Scholar

    [125]

    Aradi B, Hourahine B, Frauenheim T 2007 J. Phys. Chem. A 111 5678Google Scholar

    [126]

    Zhang D B, Seifert G, Chang K 2014 Phys. Rev. Lett. 112 096805Google Scholar

    [127]

    Guinea F, Geim A K, Katsnelson M I, Novoselov K S 2010 Phys. Rev. B 81 035408Google Scholar

    [128]

    Suzuura H, Ando T 2002 Phys. Rev. B 65 235412Google Scholar

    [129]

    Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153Google Scholar

    [130]

    Fang C M, de Wijs G A, de Groot R A 2002 J. Appl. Phys. 91 8340Google Scholar

    [131]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [132]

    Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668Google Scholar

    [133]

    Zhang D, Zhang D B, Yang F, Lin H Q, Xu H, Chang K 2015 2D Mater. 2 041001Google Scholar

    [134]

    Pruneda J M 2010 Phys. Rev. B 81 161409Google Scholar

    [135]

    Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889

    [136]

    Levendorf M, Kim C, Brown L, Huang P, Havener R W, Muller D A, Park J 2012 Nature 488 627Google Scholar

    [137]

    Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869Google Scholar

    [138]

    Sutter P, Huang Y, Sutter E 2014 Nano Lett. 14 4846Google Scholar

    [139]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119Google Scholar

    [140]

    Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163Google Scholar

    [141]

    Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Zhang Y, Liu Z 2014 Nano Lett. 14 6342Google Scholar

    [142]

    Drost R, Uppstu A, Schulz F, Hamalainen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128Google Scholar

    [143]

    Kim S W, Kim H J, Choi J H, Scheicher R H, Cho J H 2015 Phys. Rev. B 92 035443Google Scholar

    [144]

    Zeng J, Chen W, Cui P, Zhang D B, Zhang Z 2016 Phys. Rev. B 94 235425Google Scholar

    [145]

    Liu Z, Fu X, Zhang D B 2020 Nanoscale 12 19083Google Scholar

  • 图 1  最大应变为50%的应变几何示意图[46]

    Fig. 1.  Sketch of an example strain geometry with a maximum strain of 50%[46].

    图 2  在(a)实际磁场B = 9 T, (b)赝磁场Bs = 9 T情况下, 典型能量色散随动量沿输运方向的变化[46]

    Fig. 2.  Plot of typical energy dispersion as a function of momentum along the transport direction for the case of (a) real magnetic field B = 9 T, (b) pseudomagnetic field Bs = 9 T[46].

    图 3  STM干涉仪: r表示STM尖端在表面的位置, r1r2表示两个杂质[62]

    Fig. 3.  STM interferometer: r represents the position of the STM tip on the surface and r1 and r2 represent two impurities[62].

    图 4  在减去B = 0的信号后, 在Ag(111)表面上两个杂质相隔20 nm的情况下模拟得到的STM图像[62]

    Fig. 4.  Expected STM patterns for two impurities 20 nm apart on the Ag(111) surface after subtraction of the B = 0 signal[62].

    图 5  研究材料的结构 (a)石墨烯同素异形体; (b)氮化物XN, X = B, Al, Ga; (c) IV族元素X, X = Si, Ge, Sn的石墨烯类似物; (d)过渡金属二硫族化合物XS2, X = Cr, Mo, W. (a)—(c)中, h为屈曲高度, (d)中, h1h2为层内距离[98]

    Fig. 5.  Structures of the studied materials: (a) Graphene allotropes; (b) nitrides XN, X = B, Al, Ga; (c) graphene analogues of group-IV elements X, X = Si, Ge, Sn; (d) transition metal dichalcogenides XS2, X = Cr, Mo, W. For (a)–(c), h refers to the buckling height, while in (d), h1 and h2 refer to intralayer distances[98].

    图 6  MoS2片的(a)未形变与(b)形变下的原子构型[98]

    Fig. 6.  Atomic configurations of MoS2 sheet under (a) undeformed and (b) deformed[98].

    图 7  弯曲悬臂梁中的挠曲电极化[100]

    Fig. 7.  Flexoelectric polarization induced in a cantilever beam under bending[100].

    图 8  (a)扭曲形变下的G/hBN横向异质结与(b) 其未应变情况[118]

    Fig. 8.  The G/hBN lateral heterojunction (a) under twisting deformation and (b) its unstrained state[118].

    图 9  (a)弯曲形变下的石墨烯与(b)其未应变情况[118]

    Fig. 9.  Graphene (a) under bending deformation and (b) its unstrained state[118].

    图 10  170 nm宽zigzag型石墨烯条带在未应变(a)与0.61(°)/nm扭曲率(b)下的能带结构(上图)和态密度(下图)[126]

    Fig. 10.  Band structures (upper) and density of states (lower) of a 170 nm wide zigzag graphene nanoribbon at (a) no strain and (b) twist rate = 0.61(°)/nm[126].

    图 11  176 nm宽armchair型石墨烯条带在未应变(a)与0.66(°)/nm扭曲率(b)下的能带结构(上图)和态密度(下图)[126]

    Fig. 11.  Band structures (upper) and density of states (lower) of a 176 nm wide armchair graphene nanoribbon at (a) no strain and (b) twist rate = 0.66(°)/nm[126].

    图 12  (a)石墨烯/六方氮化硼横向异质结及其(b)面内弯曲下的结构[118]

    Fig. 12.  (a) Grapheme/hexagonal boron nitride lateral heterojunction and (b) its structure under in-plane bending[118].

    图 13  石墨烯/六方氮化硼横向异质结在(a)弯曲0°、(b)弯曲0.3°、(c)弯曲0.6°情况下的电子能带结构[118]

    Fig. 13.  Electronic band structures of the grapheme/hexagonal boron nitride lateral heterojunction with the bending angle of (a) 0°, (b) 0.3° and (c) 0.6°[118].

    表 1  IV族原子单层膜的横向挠曲电系数μT[e] [95]

    Table 1.  Transversal flexoelectric coefficient μT[e] for group IV atomic monolayers[95].

    ZigzagArmchair
    LDAPBELDAPBE
    Graphene0.220.220.220.22
    Silicene0.190.190.190.19
    Germanene0.280.280.280.27
    Stanene0.270.260.270.26
    下载: 导出CSV
    Baidu
  • [1]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim1 A K 2007 Science 315 1379Google Scholar

    [2]

    Zhao L Y, He R, Rim K T, et al. 2011 Science 333 999Google Scholar

    [3]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [4]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193Google Scholar

    [5]

    Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R, Sasaki T 2003 Nature 422 53Google Scholar

    [6]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar

    [7]

    Pacilé D, Meyer J C, Girit Ç Ö, Zettl A 2008 Appl. Phys. Lett. 92 133107Google Scholar

    [8]

    Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y H, Yu X, Duan X D, Ji X D, Duan W, Xiang f 2021 Nat. Mater. 20 818Google Scholar

    [9]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [10]

    Guo H W, Hu Z, Liu Z B, Tian J G 2021 Adv. Funct. Mater. 31 2007810Google Scholar

    [11]

    Tong Q J, Yu H Y, Zhu Q Z, Wang Y, Xu X D, Yao W 2017 Nat. Phys. 13 356Google Scholar

    [12]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [13]

    Zhao X J, Yang Y, Zhang D B, Wei S H 2020 Phys. Rev. Lett. 124 086401Google Scholar

    [14]

    Liu C S, Yan X, Song X F, Ding S J, Zhang D W, Zhou P 2018 Nat. Nanotechnol. 13 404Google Scholar

    [15]

    Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S Q, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X F, Zhang X, Lindenberg A M 2020 Nat. Phys. 16 1028Google Scholar

    [16]

    Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P, Mitra S 2017 Nature 547 74Google Scholar

    [17]

    Nicholas R G, Christopher M, Michael S 2020 Oxford Open Mater. Sci. 1 itaa002Google Scholar

    [18]

    San-Jose P, González J, Guinea F 2011 Phys. Rev. Lett. 106 045502Google Scholar

    [19]

    Wang Z L 2007 MRS Bull. 32 109Google Scholar

    [20]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [21]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [22]

    Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801Google Scholar

    [23]

    Maiti A 2003 Nat. Mater. 2 440Google Scholar

    [24]

    Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar

    [25]

    Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020 Nano Lett. 20 8250Google Scholar

    [26]

    Fu X W, Liao Z M, Liu R, Xu J, Yu D 2013 ACS Nano 7 8891Google Scholar

    [27]

    Cong L, Yuan Z, Bai Z, Wang X, Zhao W, Gao X, Hu X, Liu P, Guo W, Li Q, Fan S, Jiang K 2021 Sci. Adv. 7 2358Google Scholar

    [28]

    Xie S, Tu L, Han Y, Huang L, Kang K, Lao K U, Poddar P, Park C, Muller D A, DiStasio J A R, Park J 2018 Science 359 1131Google Scholar

    [29]

    Lewis R B, Corfdir P, Kupers H, Flissikowski T, Brandt O, Geelhaar L 2018 Nano Lett. 18 2343Google Scholar

    [30]

    Mañes J L 2007 Phys. Rev. B 76 045430Google Scholar

    [31]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60Google Scholar

    [32]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Obergfell D, Roth S, Girit C, Zettl A 2007 Solid State Commun. 143 101Google Scholar

    [33]

    Fasolino A, Los J H, Katsnelson M I. 2007 Nat. Mater. 6 858Google Scholar

    [34]

    Nelson D R 2002 Defects and Geometry in Condensed Matter Physics (Cambridge: Cambridge University Press) pp12–17

    [35]

    Stolyarova E, Rim K T, Ryu S, Maultzsch J, Kim P, Brus L E, Heinz T F, Hybertsen M S, Flynn G W 2007 Proc. Natl. Acad. Sci. U. S. A. 104 9209Google Scholar

    [36]

    Bai K K, Zhou Y, Zheng H, Meng L, Peng H, Liu Z F, Nie J C, He L 2014 Phys. Rev. Lett. 113 086102Google Scholar

    [37]

    Kleinert H 2009 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (Singapore: World scientific) pp773–893

    [38]

    Sadoc J F 1990 Geometry in Condensed Matter Physics (Vol. 9) (Singapore: World Scientific) pp41–50

    [39]

    Katanaev M O, Volovich I V 1992 Ann. Phys. 216 1Google Scholar

    [40]

    Sasaki K, Kawazoe Y, Saito R 2005 Prog. Theor. Phys. 113 463Google Scholar

    [41]

    Morpurgo A F, Guinea F 2006 Phys. Rev. Lett. 97 196804Google Scholar

    [42]

    Georgi A, Nemes-Incze P, Carrillo-Bastos R, et al. 2017 Nano Lett. 17 2240Google Scholar

    [43]

    Kim J, Hong X, Jin C, Shi S, Chang C S, Chiu M, Li L, Wang F 2014 Science 346 1205Google Scholar

    [44]

    Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C, Xu X 2018 Nano Lett. 18 3823Google Scholar

    [45]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [46]

    Low T, Guinea F 2010 Nano Lett. 10 3551Google Scholar

    [47]

    Abedpour N, Asgari R, Guinea F 2011 Phys. Rev. B 84 115437Google Scholar

    [48]

    Zhu S, Li T 2014 J. Appl. Mech. 81 061008Google Scholar

    [49]

    Yamamoto M, Pierre-Louis O, Huang J, Fuhrer M S, Einstein T L, Cullen W G 2012 Phys. Rev. X 2 041018Google Scholar

    [50]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544Google Scholar

    [51]

    Zhu S, Stroscio J A, Li T 2015 Phys. Rev. Lett. 115 245501Google Scholar

    [52]

    Neek-Amal M, Covaci L, Peeters F M 2012 Phys. Rev. B 86 041405Google Scholar

    [53]

    Qi Z, Kitt A L, Park H S, Pereira V M, Canpbell D K, Castro Neto A H 2014 Phys. Rev. B 90 125419Google Scholar

    [54]

    Jiang Y, Mao J, Duan J, Lai X, Watanabe K, Taniguchi T, Andrei E Y 2017 Nano Lett. 17 2839Google Scholar

    [55]

    Hsu C C, Teague M L, Wang J Q, Yeh N C 2020 Sci. Adv. 6 9488Google Scholar

    [56]

    Kun P, Kukucska G, Dobrik G, Koltai J, Kürti J, Biró L P 2019 npj 2D Mater. Appl. 3 11Google Scholar

    [57]

    倪光炯, 陈苏卿 2003 高等量子力学 (上海: 复旦大学出版社) 第228—229页

    Ni G J, Chen S Q 2003 Advanced Quantum Mechanics (Shanghai: Fudan University Press) pp228–229 (in Chinese)

    [58]

    张礼, 葛墨林 2000 量子力学的前沿问题 (北京: 清华大学出版社) 第53—57页

    Zhan L, Ge M L 2000 Frontier Problems of Quantum Mechanics (Beijing: Tsinghua Univerdity press) pp53–57 (in Chinese)

    [59]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485Google Scholar

    [60]

    Batelaan H, Tonomura A 2009 Phys. Today 62 38Google Scholar

    [61]

    马丽, 谭振兵, 谭长玲, 杨海方, 刘广同, 杨昌黎, 吕力 2011 中国科学 41 1249Google Scholar

    Ma L, Tan Z B, Tan C L, Yan H F, Liu G T, Yang C L, Lǚ L 2011 Sci. China 41 1249Google Scholar

    [62]

    Cano A, Paul I 2009 Phys. Rev. B 80 153401Google Scholar

    [63]

    de Juna F, Cortijo A, Vozmediano M H, Cano A 2011 Nat. Phys. 7 810Google Scholar

    [64]

    Mao J, Milovanović S P, Anđelković M, Lai X, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y, Andrei E Y 2020 Nature 584 215Google Scholar

    [65]

    Kopnin N B, Heikkilä T T, Volovik G E 2011 Phys. Rev. B 83 220503Google Scholar

    [66]

    Kauppila V J, Aikebaier F, Heikkilä T T 2016 Phys. Rev. B 93 214505Google Scholar

    [67]

    Tang E, Fu L 2014 Nat. Phys. 10 964Google Scholar

    [68]

    Naumov I, Bratkovsky A M, Ranjan V 2009 Phys. Rev. Lett. 102 217601Google Scholar

    [69]

    Hong J, Vanderbilt D 2013 Phys. Rev. B 88 174107Google Scholar

    [70]

    Wang B, Gu Y, Zhang S, Chen L Q 2019 Prog. Mater. Sci. 106 100570Google Scholar

    [71]

    Ahmadpoor F, Sharma P 2015 Nanoscale 7 16555Google Scholar

    [72]

    Yang M M, Kim D J, Alexe M 2018 Science 360 904Google Scholar

    [73]

    Kumar M, Lim J, Park J Y, Seo H 2021 Small Methods 5 2100342Google Scholar

    [74]

    Jiang X, Huang W, Zhang S 2013 Nano Energy 2 1079Google Scholar

    [75]

    Kogan Sh M 1964 Sov. Phys. Solid State 5 2069

    [76]

    Meyer R B 1969 Phys. Rev. Lett. 22 918Google Scholar

    [77]

    Zubko P, Catalan G, Tagantsev A K 2013 Annu. Rev. Mater. Res. 43 387Google Scholar

    [78]

    Wen X, Li D, Tan K, Deng Q, Shen S 2019 Phys. Rev. Lett. 122 148001Google Scholar

    [79]

    Chu B, Salem D R 2012 Appl. Phys. Lett. 101 103905Google Scholar

    [80]

    Yudin P V, Tagantsev A K 2013 Nanotechnology 24 432001Google Scholar

    [81]

    Nguyen T D, Mao Sh, Yeh Y W, Purohit P K, McAlpine M C 2013 Adv. Mater. 25 946Google Scholar

    [82]

    舒龙龙, 梁任宏, 喻彦卓, 黄文彬, 魏晓勇, 李飞, 江小宁, 姚熹, 王雨 2018 现代技术陶瓷 39 223Google Scholar

    Shu L L, Liang R H, Yu Y Z, Huang W B, Wei X Y, Li F, Jiang X N, Yao X, Wang Y 2018 Adv. Ceram. 39 223Google Scholar

    [83]

    Tagantsev A K 1986 Phys. Rev. B 34 5883Google Scholar

    [84]

    Tagantsev A K 1991 Phase Transitions 35 119Google Scholar

    [85]

    Resta R 2010 Phys. Rev. Lett. 105 127601Google Scholar

    [86]

    Resta R 2010 Phys. Condens. Matter 22 123201Google Scholar

    [87]

    Tagantsev A K 1985 Zh. Eksp. Teor. Fiz. 88 2108

    [88]

    Zubko P, Catalan G, Buckley A, Welche P R L, Scott J F 2007 Phys. Rev. Lett. 99 167601Google Scholar

    [89]

    Stengel M 2013 Phys. Rev. B 88 174106Google Scholar

    [90]

    Zhang X, Pan Q, Tian D, Zhou W, Chen P, Zhang H, Chu B 2018 Phys. Rev. Lett. 121 057602Google Scholar

    [91]

    Maranganti R, Sharma P 2009 Phys. Rev. B 80 054109Google Scholar

    [92]

    Hong J, Catalan G, Scott J F, Artacho E 2010 J. Phys. Condens. Matter 22 112201Google Scholar

    [93]

    Hong J, Vanderbilt D 2011 Phys. Rev. B 84 180101Google Scholar

    [94]

    Bennett D 2021 Electron. Struct. 3 015001Google Scholar

    [95]

    Codony D, Arias I, Suryanarayana P 2021 Phys. Rev. Mater. 5 L030801Google Scholar

    [96]

    Springolo M, Royo M, Stengel M 2021 Phys. Rev. Lett. 127 216801Google Scholar

    [97]

    Kalinin S V, Meunier V 2008 Phys. Rev. B 77 033403Google Scholar

    [98]

    Zhuang X, He B, Javvaji B, Park H S 2019 Phys. Rev. B 99 054105Google Scholar

    [99]

    Kumar S, Codony D, Arias I, Suryanarayana P 2021 Nanoscale 13 1600Google Scholar

    [100]

    Abdollahi A, Vásquez-Sancho F, Catalan G 2018 Phys. Rev. Lett. 121 205502Google Scholar

    [101]

    McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E, Pasupathy A N 2020 Nat. Nanotechnol. 15 580Google Scholar

    [102]

    Li Y, Wang X, Tang D, Wang X, Watanabe K, Taniguchi T, Gamelin D R, Cobden D H, Yankowitz M, Xu X, Li J 2021 Adv. Mater. 33 2105879Google Scholar

    [103]

    Kwon S R, Huang W B, Zhang S J, Yuan F G, Jiang X N 2013 Smart Mater. Struct. 22 115017Google Scholar

    [104]

    Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233Google Scholar

    [105]

    Brody P S, Crowne F 1975 J. Electron. Mater. 4 955Google Scholar

    [106]

    Fridkin V M 2001 Crystallogr. Rep. 46 654Google Scholar

    [107]

    Spanier J E, Fridkin V M, Rappe A M, Akbashev A R, Polemi A, Qi Y, Gu Z, Young S M, Hawley C J, Imbrenda D, Xiao G, Bennett-Jackson A L, Johnson C L 2016 Nat. Photonics 10 611Google Scholar

    [108]

    Jiang J, Chen Z, Hu Y, Xiang Y, Zhang L, Wang Y, Wang G C, Shi J 2021 Nat. Nanotechnol. 16 894Google Scholar

    [109]

    Artyukhov V I, Gupta S, Kutana A, Yakobson B I 2020 Nano Lett. 20 3240Google Scholar

    [110]

    Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331Google Scholar

    [111]

    Wang K F, Wang B L 2016 Compos. Struct. 153 253Google Scholar

    [112]

    Wang K F, Wang B L 2017 Int. J. Eng. Sci. 116 88Google Scholar

    [113]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [114]

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Matter 21 395502Google Scholar

    [115]

    Porezag D, Frauenheim Th, Köhler Th, Seifert G, Kaschner R 1995 Phys. Rev. B 51 12947Google Scholar

    [116]

    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260Google Scholar

    [117]

    Locatelli A, Wang C, Africh C, Stojić N, Menteş T O, Comelli G, Binggeli N 2013 ACS Nano 7 6955Google Scholar

    [118]

    Yue L, Seifert G, Chang K, Zhang D B 2017 Phys. Rev. B 96 201403Google Scholar

    [119]

    White C T, Robertson D H, Mintmire J W 1993 Phys. Rev. B 47 5485Google Scholar

    [120]

    Popov V N 2004 New J. Phys. 6 17Google Scholar

    [121]

    Allen P B 2007 Nano Lett. 7 1220Google Scholar

    [122]

    张东波, 魏苏淮 2021 科学通报 66 674Google Scholar

    Zhang D B, Wei S H 2021 Chin. Sci. Bull. 66 674Google Scholar

    [123]

    Zhang D B, Wei S H 2017 npj Comput. Mater. 3 32Google Scholar

    [124]

    Rurali R, Hernández E 2003 Comput. Mater. Sci. 28 85Google Scholar

    [125]

    Aradi B, Hourahine B, Frauenheim T 2007 J. Phys. Chem. A 111 5678Google Scholar

    [126]

    Zhang D B, Seifert G, Chang K 2014 Phys. Rev. Lett. 112 096805Google Scholar

    [127]

    Guinea F, Geim A K, Katsnelson M I, Novoselov K S 2010 Phys. Rev. B 81 035408Google Scholar

    [128]

    Suzuura H, Ando T 2002 Phys. Rev. B 65 235412Google Scholar

    [129]

    Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153Google Scholar

    [130]

    Fang C M, de Wijs G A, de Groot R A 2002 J. Appl. Phys. 91 8340Google Scholar

    [131]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [132]

    Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668Google Scholar

    [133]

    Zhang D, Zhang D B, Yang F, Lin H Q, Xu H, Chang K 2015 2D Mater. 2 041001Google Scholar

    [134]

    Pruneda J M 2010 Phys. Rev. B 81 161409Google Scholar

    [135]

    Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889

    [136]

    Levendorf M, Kim C, Brown L, Huang P, Havener R W, Muller D A, Park J 2012 Nature 488 627Google Scholar

    [137]

    Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869Google Scholar

    [138]

    Sutter P, Huang Y, Sutter E 2014 Nano Lett. 14 4846Google Scholar

    [139]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119Google Scholar

    [140]

    Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163Google Scholar

    [141]

    Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Zhang Y, Liu Z 2014 Nano Lett. 14 6342Google Scholar

    [142]

    Drost R, Uppstu A, Schulz F, Hamalainen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128Google Scholar

    [143]

    Kim S W, Kim H J, Choi J H, Scheicher R H, Cho J H 2015 Phys. Rev. B 92 035443Google Scholar

    [144]

    Zeng J, Chen W, Cui P, Zhang D B, Zhang Z 2016 Phys. Rev. B 94 235425Google Scholar

    [145]

    Liu Z, Fu X, Zhang D B 2020 Nanoscale 12 19083Google Scholar

  • [1] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控.  , 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [2] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究.  , 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] 杨玉婷, 钱欣悦, 石礼伟. 二维光子晶体中赝磁场作用下的电磁波操控.  , 2023, 72(13): 134203. doi: 10.7498/aps.72.20222242
    [4] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究.  , 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应.  , 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [6] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造.  , 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应.  , 2021, (): . doi: 10.7498/aps.70.20211748
    [9] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制.  , 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [10] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控.  , 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [11] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器.  , 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [12] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [13] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [14] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [15] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [16] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [17] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用.  , 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [18] 邓富胜, 孙勇, 刘艳红, 董丽娟, 石云龙. 光子石墨烯中赝磁场作用下的谷霍尔效应.  , 2017, 66(14): 144204. doi: 10.7498/aps.66.144204
    [19] 张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃. 压缩应变载荷下氮化镓隧道结微观压电特性及其巨压电电阻效应.  , 2016, 65(10): 107701. doi: 10.7498/aps.65.107701
    [20] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究.  , 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
计量
  • 文章访问数:  7075
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-02-10
  • 上网日期:  2022-02-28
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map