-
电子器件可控性研究在日益追求器件智能化和可控化的当今社会至关重要. 基于第一性原理和量子输运计算, 本文研究了压缩应变载荷对氮化镓(GaN)隧道结基态电学性质和电流输运的影响, 在原子尺度上窥视了氮化镓隧道结的微观压电性, 验证了其内在的巨压电电阻(GPR)效应. 计算结果表明, 压缩应变载荷可以调节隧道结内氮化镓势垒层的电势能降、内建电场、电荷密度和极化强度, 进而实现对隧道结电流输运和隧穿电阻的调控. 在-1.0 V的偏置电压下, -5%的压缩应变载荷将使氮化镓隧道结的隧穿电阻增至4倍. 本研究展现了氮化镓隧道结在可控电子器件中的应用潜力, 也展现了应变工程在调控电子器件性能方面的光明前景.It is an urgent and significant issue to investigate the influence factors of functional devices and then improve, modify or control their performances, which has important significance for the practical application and electronic industry. Based on first principle and quantum transport calculations, the effects of compressive strain on the current transport and relative electrical properties (such as the electrostatic potential energy, built-in electric field, charge density and polarization, etc.) in gallium nitride (GaN) tunnel junctions are investigated. It is found that there are potential energy drop, built-in electric field and spontaneous polarization in the GaN barrier of the tunnel junction due to the non-centrosymmetric structure of GaN. Furthermore, results also show that all these electrical properties can be adjusted by compressive strain. With the increase of the applied in-plane compressive strain, the piezocharge density in the GaN barrier of the tunnel junction gradually increases. Accordingly, the potential energy drop throughout the GaN barrier gradually flattens and the built-in electric field decreases. Meanwhile, the average polarization of the barrier is weakened and even reversed. These strain-dependent evolutions of the electric properties also provide an atomic level insight into the microscopic piezoelectricity of the GaN tunnel junction. In addition, it is inspiring to see that the current transport as well as the tunneling resistance of the GaN tunnel junction can be well tuned by the compressive strain. When the applied compressive strain decreases, the tunneling current of the junction increases and the tunneling resistance decreases. This strain control ability on the tunnel junctions current and resistance becomes more powerful at large bias voltages. At a bias voltage of -1.0 V, the tunneling resistance can increase up to 4 times by a -5% compressive strain, which also reveals the intrinsic giant piezoelectric resistance effect in the GaN tunnel junction. This study exhibits the potential applications of GaN tunnel junctions in tunable electronic devices and also implies the promising prospect of strain engineering in the field of exploiting tunable devices.
-
Keywords:
- strain regulation /
- GaN tunnel junctions /
- atomic scale piezoelectricity /
- giant piezoelectric resistance effect
[1] Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237
[2] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653
[3] Liou J K, Chen C C, Chou P C, Tsai Z J, Chang Y C, Liu W C 2014 IEEE J. Quantum Elect. 50 973
[4] Zhao L X, Yu Z G, Sun B, Zhu S C, An P B, Yang C, Liu L, Wang J X, Li J M 2015 Chin. Phys. B 24 068506
[5] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Elect. Device Lett. 25 117
[6] Higashiwaki M, Mimura T, Matsui T 2008 Appl. Phys. Express 1 021103
[7] Zheng Y, Woo C H 2009 Nanotechnology 20 075401
[8] Luo X, Wang B, Zheng Y 2011 ACS Nano 5 1649
[9] Zhang G H, Luo X, Zheng Y, Wang B 2012 Phys. Chem. Chem. Phys. 14 7051
[10] Yang Y, Qi J J, Gu Y S, Wang X Q, Zhang Y 2009 Phys. Status Solidi RRL 3 269
[11] Wang Z L 2007 Adv. Mater. 19 889
[12] Zhou J, Fei P, Gu Y D, Mai W J, Gao Y F, Yang R S, Bao G, Wang Z L 2008 Nano Lett. 8 3973
[13] Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004
[14] Feng X L, Zhang Y, Wang Z L 2013 Sci. China Tech. Sci. 56 2615
[15] Liu Y, Zhang Y, Yang Q, Niu S M, Wang Z L 2015 Nano Energy 14 257
[16] Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 60 117103]
[17] Yang Z Q, Xu Z Z 1997 Acta Phys. Sin. (Overseas Edition) 6 606
[18] Hao G D, Chen Y H, Fan Y M, Huang X H, Wang H B 2010 Chin. Phys. B 19 117104
[19] Agrawal R, Espinosa H D 2011 Nano Lett. 11 786
[20] Zhang J, Wang C Y, Chowdhury R, Adhikari S 2013 Scripta Mater. 68 627
[21] Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532
[22] Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403
[23] Yu R M, Wang X F, Peng W B, Wu W Z, Ding Y, Li S T, Wang Z L 2015 ACS Nano 9 9822
[24] Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578
[25] Wang C H, Liao W S, Ku N J, Li Y C, Chen Y C, Tu L W, Liu C P 2014 Small 10 4718
[26] Jiao Q Q, Chen Z Z, Ma J, Wang S Y, Li Y, Jiang S, Feng Y L, Li J Z, Chen Y F, Yu T J, Wang S F, Zhang G Y, Tian P F, Xie E Y, Gong Z, Gu E D, Dawson M D 2015 Opt. Express 23 237856
[27] Hertog M D, Songmuang R, Gonzalez-Posada F, Monroy E 2013 Jpn. J. Appl. Phys. 52 11NG01
[28] Kamiya T, Tajima K, Nomura K, Yanagi H, Hosono H 2008 Phys. Status Solidi A 205 1929
[29] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[30] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Blchl P E 1994 Phys. Rev. B 50 17953
[32] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[33] Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[34] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[35] Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[36] Junquera J, Cohen M H, Rabe K M 2007 J. Phys.: Condens. Matter 19 213203
[37] Zhang G H, Zheng Y, Wang B 2013 J. Appl. Lett. 114 044111
[38] Liu W, Zhang A H, Zhang Y, Wang Z L 2015 Nano Energy 14 355
[39] Gonze X, Lee C 1997 Phys. Rev. B 55 10355
[40] Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp102-112
-
[1] Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237
[2] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653
[3] Liou J K, Chen C C, Chou P C, Tsai Z J, Chang Y C, Liu W C 2014 IEEE J. Quantum Elect. 50 973
[4] Zhao L X, Yu Z G, Sun B, Zhu S C, An P B, Yang C, Liu L, Wang J X, Li J M 2015 Chin. Phys. B 24 068506
[5] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Elect. Device Lett. 25 117
[6] Higashiwaki M, Mimura T, Matsui T 2008 Appl. Phys. Express 1 021103
[7] Zheng Y, Woo C H 2009 Nanotechnology 20 075401
[8] Luo X, Wang B, Zheng Y 2011 ACS Nano 5 1649
[9] Zhang G H, Luo X, Zheng Y, Wang B 2012 Phys. Chem. Chem. Phys. 14 7051
[10] Yang Y, Qi J J, Gu Y S, Wang X Q, Zhang Y 2009 Phys. Status Solidi RRL 3 269
[11] Wang Z L 2007 Adv. Mater. 19 889
[12] Zhou J, Fei P, Gu Y D, Mai W J, Gao Y F, Yang R S, Bao G, Wang Z L 2008 Nano Lett. 8 3973
[13] Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004
[14] Feng X L, Zhang Y, Wang Z L 2013 Sci. China Tech. Sci. 56 2615
[15] Liu Y, Zhang Y, Yang Q, Niu S M, Wang Z L 2015 Nano Energy 14 257
[16] Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 60 117103]
[17] Yang Z Q, Xu Z Z 1997 Acta Phys. Sin. (Overseas Edition) 6 606
[18] Hao G D, Chen Y H, Fan Y M, Huang X H, Wang H B 2010 Chin. Phys. B 19 117104
[19] Agrawal R, Espinosa H D 2011 Nano Lett. 11 786
[20] Zhang J, Wang C Y, Chowdhury R, Adhikari S 2013 Scripta Mater. 68 627
[21] Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532
[22] Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403
[23] Yu R M, Wang X F, Peng W B, Wu W Z, Ding Y, Li S T, Wang Z L 2015 ACS Nano 9 9822
[24] Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578
[25] Wang C H, Liao W S, Ku N J, Li Y C, Chen Y C, Tu L W, Liu C P 2014 Small 10 4718
[26] Jiao Q Q, Chen Z Z, Ma J, Wang S Y, Li Y, Jiang S, Feng Y L, Li J Z, Chen Y F, Yu T J, Wang S F, Zhang G Y, Tian P F, Xie E Y, Gong Z, Gu E D, Dawson M D 2015 Opt. Express 23 237856
[27] Hertog M D, Songmuang R, Gonzalez-Posada F, Monroy E 2013 Jpn. J. Appl. Phys. 52 11NG01
[28] Kamiya T, Tajima K, Nomura K, Yanagi H, Hosono H 2008 Phys. Status Solidi A 205 1929
[29] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[30] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Blchl P E 1994 Phys. Rev. B 50 17953
[32] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[33] Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[34] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[35] Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[36] Junquera J, Cohen M H, Rabe K M 2007 J. Phys.: Condens. Matter 19 213203
[37] Zhang G H, Zheng Y, Wang B 2013 J. Appl. Lett. 114 044111
[38] Liu W, Zhang A H, Zhang Y, Wang Z L 2015 Nano Energy 14 355
[39] Gonze X, Lee C 1997 Phys. Rev. B 55 10355
[40] Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp102-112
计量
- 文章访问数: 5876
- PDF下载量: 238
- 被引次数: 0