搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“十”字形自驱单元形成寡聚体的动力学行为

何景熙 秦超然 许天亮 陈康 田文得

引用本文:
Citation:

“十”字形自驱单元形成寡聚体的动力学行为

何景熙, 秦超然, 许天亮, 陈康, 田文得

Dynamic behavior of oligomers formed by “十” shaped self-propelling agents

He Jing-Xi, Qin Chao-Ran, Xu Tian-Liang, Chen Kang, Tian Wen-De
PDF
HTML
导出引用
  • 探索自驱粒子形状对自组装结构和动力学的影响是软物质研究的前沿课题. 组装基元形成的寡聚体及其动力学是大量粒子形成组装结构的基础. 本文设计了一种“十”字形自驱粒子, 发现其可以形成数种不同构型的寡聚体, 计算了寡聚体(二、三、四聚体)的均方位移、角速度、角速度分布概率、轨迹曲率分布概率等. 寡聚体的运动行为可分为两类: 一类是合力为零但力矩不为零, 寡聚体进行小半径的偏心旋转; 另一类是合力不为零力矩也不为零, 寡聚体呈现大半径的偏心旋转. 寡聚体的平动动力学在短时间尺度(大致约为1—2 s, 与其角速度有关)都呈现超扩散现象, 但转动速度受寡聚体结构影响; 力矩越大, 转动惯量越小, 角速度越大. 对于三聚体, 轨迹曲率与角速度有关, 角速度越大, 曲率也越大.
    In recent years, active matter has attracted tremendous research interest. Active matter displays many phenomena, such as super-diffusion, huge fluctuation and collective motion. The shape of active agent plays a critical role in the self-assembly of active matter. Understanding the oligomers’ dynamics of active agents is the first step to study the self-assembly of massive agents. Here, we design a self-properlling particle with the “十” shape using the Hexbug robot and investigate the dynamics of oligomers composed of these particles. To track the position of particles, the top of the particles is marked by black cards with white dots in the center. We find that these particles can agglomerate together to form stable oligomers consisting of two, three, or four particles. We study the dynamics by analyzing the trajectory, mean-square displacement, angular velocity, angular velocity distribution and the curvature distribution. We find that the dynamics can be divided into two types. One is the combination of eccentric rotation with small circular radius and irregular translation, which occurs in the system with the zero resultant force and nonzero torque. The other is the eccentric rotation with a large circular radius, which appears in the system in which both the resultant force and torque are not zero. In addition, we find that the translational dynamics of oligomers displays a super diffusion on a short time scale, influenced by the confirguration of oligomers. Further, the larger torque and the smaller moment of inertia result in the bigger angle speed of oligomers. Moreover, we investigate the curvature distribution of the trimer and find that the faster the angle speed of the trimer, the bigger its curvature is.
      通信作者: 陈康, kangchen@suda.edu.cn ; 田文得, tianwende@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21674078, 21774091, 21574096)资助的课题.
      Corresponding author: Chen Kang, kangchen@suda.edu.cn ; Tian Wen-De, tianwende@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21674078, 21774091, 21574096).
    [1]

    Jana A D, Manna S C, Rosair G M, Drew M G B, Mostafa G, Ray Chaudhuri N 2007 Cryst. Growth Des. 7 1365Google Scholar

    [2]

    Janiak C 2000 J. Chem. Soc. , Dalton Trans. 2000 3885Google Scholar

    [3]

    Schottel B L 2006 J. Am. Chem. Soc. 128 5895Google Scholar

    [4]

    Nishio M 2004 CrystEngComm 6 130Google Scholar

    [5]

    Singh N J, Min S K, Kim D Y, Kim K S 2009 J. Chem. Theory Comput. 5 515Google Scholar

    [6]

    Biswas D, Chakrabarty P P, Saha S, Jana A D, Schollmeyer D, García-Granda S 2013 Inorg. Chim. Acta 408 172Google Scholar

    [7]

    Packer M J, Dauncey M P, Hunter C A 2000 J. Mol. Biol. 295 71Google Scholar

    [8]

    de Oliveira B G 2013 Phys. Chem. Chem. Phys. 15 37Google Scholar

    [9]

    Lee E C, Kim D, Jurečka P, Tarakeshwar P, Hobza P, Kim K S 2007 J. Phys. Chem. A 111 3446Google Scholar

    [10]

    Yang Z 2021 Cells 10 934Google Scholar

    [11]

    Ginot F, Theurkauff I, Detcheverry F, Ybert C, Cottin-Bizonne C 2018 Nat. Commun. 9 696Google Scholar

    [12]

    Mauleon-Amieva A, Allen M P, Royall C P 2021 arXiv: 2107.07934 [cond-mat]

    [13]

    Wensink H H, Löwen H 2008 Phys. Rev. E 78 031409Google Scholar

    [14]

    Grossmann R, Aranson I S, Peruani F 2020 Nat. Commun. 11 5365Google Scholar

    [15]

    Fily Y, Marchetti M C 2012 Phys. Rev. Lett. 108 235702Google Scholar

    [16]

    Deseigne J, Dauchot O, Chaté H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [17]

    Wensink H H, Kantsler V, Goldstein R E, Dunkel J 2014 Phys. Rev. E 89 010302Google Scholar

    [18]

    Prymidis V, Samin S, Filion L 2016 Soft Matter 12 4309Google Scholar

    [19]

    Redner G S, Hagan M F, Baskaran A 2013 Phys. Rev. Lett. 110 055701Google Scholar

    [20]

    Andréen D, Jenning P, Napp N, Petersen K 2020 Soft Matter 16 9436Google Scholar

  • 图 1  实验材料与场地 (a) hexbug马达; (b) 识别卡片, 白点用于提取坐标, 数字代表对应部分的尺寸; (c) hexbug马达与“十”字形结构复合体; (d) 实验场地, 数字表示对应尺寸, 白色表示梅花边界; (e)—(g) 二聚体、三聚体、四聚体的初始结构

    Fig. 1.  Experimental setup: (a) Hexbug motor; (b) identification card, white dots used to extract the coordinate; (c) complex of hexbug motor and “十” structure; (d) experiment field (the white color denotes the plum flower border); (e)–(g) the initial structure of dimer, trimer and tetramer.

    图 2  二聚体构型及运动轨迹 (a) 2-1, 2-2, 2-3为三种构型, 黄色箭头为自驱力方向, 在每个构型右上角标明了旋转方向, $\otimes $表示顺时针旋转, $\odot $表示逆时针旋转; (b) 2-1寡聚体的运动轨迹; (c) 寡聚体2-2的运动轨迹; (d) 2-3寡聚体的运动轨迹

    Fig. 2.  Structures and trajectories of three dimers. (a) 2-1, 2-2, 2-3 denote three kinds of arrangements. Yellow arrow is the self-propelled orientation. $\otimes $ means clockwise rotation, $\odot $ counterclockwise. (b) 2-1 trajectory; (c) 2-2 trajectory; (d) 2-3 trajectory.

    图 3  (a) 三种构型的均方位移; (b) 三种构型的角均方位移, 插图为角平均位移; (c) 三种构型的角速度概率分布, 其中点代表实验数据, 线条为高斯拟合

    Fig. 3.  (a) MSDs for 2-1, 2-2, 2-3 configurations and their MSADs (b), the inset is mean angle displacement (MAD); (c) angular velocity distribution, where points are the experimental data, lines correspond to Gaussian fitting.

    图 4  三粒子寡聚体构型及运动轨迹 (a) 四种构型, 黄色箭头为自推进力方向, 在每个构型旁边标明了旋转方向, $\otimes$表示顺时针旋转, $\odot $表示逆时针旋转; (b) 3-1的运动轨迹; (c) 3-2的运动轨迹; (d) 3-3的运动轨迹; (e) 3-4的运动轨迹

    Fig. 4.  Structures and trajectories of three trimers. (a) 3-1, 3-2, 3-3, 3-4 denote four kinds of arrangements. Yellow arrow is the self-propelled orientation. $\otimes $ means clockwise rotation, $\odot $ counterclockwise. (b) 3-1 trajectory; (c) 3-2 trajectory; (d) 3-3 trajectory; (e) 3-4 trajectory.

    图 5  (a) 四种构型的均方位移; (b) 四种构型的角均方位移, 插图为角平均位移; (c) 四种构型的角速度概率分布及高斯拟合; (d) 四种构型的曲率概率分布及高斯拟合

    Fig. 5.  (a) MSDs for 4-1, 4-2, 4-3, 4-4 configurations; (b) MSADs for four configurations, where the inset is mean angle displacement; (c) angular velocity probability distributions and their Gaussian fittings; (d) curvature probability distributions and their Gaussian fittings.

    图 6  四粒子寡聚体构型及运动轨迹 (a) 4-1, 4-2, 4-3, 4-4, 4-5为五种构型, 黄色箭头为自推进力方向, 在每个构型旁边标明了旋转方向. $\otimes $表示顺时针旋转, $\odot $表示逆时针旋转. (b) 4-1的运动轨迹; (c) 4-2的运动轨迹; (d) 4-3的运动轨迹; (e) 4-4的运动轨迹; (f) 4-5的运动轨迹

    Fig. 6.  Structures and trajectories of five tetramers: (a) 4-1, 4-2, 4-3, 4-4, 4-5 denote five kinds of arrangements. Yellow arrow is the self-propelled orientation. $\otimes $ means clockwise rotation, $\odot $ counterclockwise. (b) 4-1 trajectory; (c) 4-2 trajectory; (d) 4-3 trajectory; (e) 4-4 trajectory; (f) 4-5 trajectory.

    图 7  (a) 五种构型的均方位移; (b) 五种构型的角均方位移, 插图为角平均位移; (c) 五种构型的角速度概率分布

    Fig. 7.  (a) MSDs for five structures and (b) their MSADs. The inset is mean angle displacement. (c) Angular velocity distributions for five structures.

    图 8  两种不稳定的四聚体构型

    Fig. 8.  Two different structures of four polymers which are instable.

    表 1  角速度的高斯拟合参数值

    Table 1.  Gaussian fitting parameter value of angular velocity.

    参数2-1构型2-2构型2-3构型
    均值$ {x}_{\mathrm{c}} $2.603.480.94
    σ0.260.310.18
    下载: 导出CSV

    表 2  角速度的高斯拟合参数值

    Table 2.  Gaussian fitting parameter value of angular velocity.

    参数3-1构型3-3构型3-4构型
    中心$ {x}_{\mathrm{c}} $1.010.681.96
    方差0.280.160.24
    下载: 导出CSV

    表 3  转动圆周曲率的高斯拟合参数值

    Table 3.  Gaussian fitting value of curvature.

    参数3-1构型3-2构型3-3构型3-4构型
    中心$ {x}_{\mathrm{c}} $1.031.600.692.01
    方差0.440.500.200.44
    下载: 导出CSV
    Baidu
  • [1]

    Jana A D, Manna S C, Rosair G M, Drew M G B, Mostafa G, Ray Chaudhuri N 2007 Cryst. Growth Des. 7 1365Google Scholar

    [2]

    Janiak C 2000 J. Chem. Soc. , Dalton Trans. 2000 3885Google Scholar

    [3]

    Schottel B L 2006 J. Am. Chem. Soc. 128 5895Google Scholar

    [4]

    Nishio M 2004 CrystEngComm 6 130Google Scholar

    [5]

    Singh N J, Min S K, Kim D Y, Kim K S 2009 J. Chem. Theory Comput. 5 515Google Scholar

    [6]

    Biswas D, Chakrabarty P P, Saha S, Jana A D, Schollmeyer D, García-Granda S 2013 Inorg. Chim. Acta 408 172Google Scholar

    [7]

    Packer M J, Dauncey M P, Hunter C A 2000 J. Mol. Biol. 295 71Google Scholar

    [8]

    de Oliveira B G 2013 Phys. Chem. Chem. Phys. 15 37Google Scholar

    [9]

    Lee E C, Kim D, Jurečka P, Tarakeshwar P, Hobza P, Kim K S 2007 J. Phys. Chem. A 111 3446Google Scholar

    [10]

    Yang Z 2021 Cells 10 934Google Scholar

    [11]

    Ginot F, Theurkauff I, Detcheverry F, Ybert C, Cottin-Bizonne C 2018 Nat. Commun. 9 696Google Scholar

    [12]

    Mauleon-Amieva A, Allen M P, Royall C P 2021 arXiv: 2107.07934 [cond-mat]

    [13]

    Wensink H H, Löwen H 2008 Phys. Rev. E 78 031409Google Scholar

    [14]

    Grossmann R, Aranson I S, Peruani F 2020 Nat. Commun. 11 5365Google Scholar

    [15]

    Fily Y, Marchetti M C 2012 Phys. Rev. Lett. 108 235702Google Scholar

    [16]

    Deseigne J, Dauchot O, Chaté H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [17]

    Wensink H H, Kantsler V, Goldstein R E, Dunkel J 2014 Phys. Rev. E 89 010302Google Scholar

    [18]

    Prymidis V, Samin S, Filion L 2016 Soft Matter 12 4309Google Scholar

    [19]

    Redner G S, Hagan M F, Baskaran A 2013 Phys. Rev. Lett. 110 055701Google Scholar

    [20]

    Andréen D, Jenning P, Napp N, Petersen K 2020 Soft Matter 16 9436Google Scholar

  • [1] 续文龙, 开玥, 张锴, 郑百林. 基于粗粒化分子动力学的自支撑石墨烯镜面屈曲研究.  , 2023, 72(24): 246801. doi: 10.7498/aps.72.20231120
    [2] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220270
    [3] 周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文. 粒径对激光驱动颗粒溅射动力学特征的影响.  , 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [4] 周英, 谢双媛, 许静平. 磁-腔量子电动力学系统中压缩驱动导致的两体与三体纠缠.  , 2020, 69(22): 220301. doi: 10.7498/aps.69.20200838
    [5] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力.  , 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [6] 华昀峰, 章林溪. 自驱动颗粒体系中的熵力.  , 2017, 66(19): 190701. doi: 10.7498/aps.66.190701
    [7] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [8] 林晨森, 陈硕, 李启良, 杨志刚. 耗散粒子动力学GPU并行计算研究.  , 2014, 63(10): 104702. doi: 10.7498/aps.63.104702
    [9] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟.  , 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [10] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [11] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质.  , 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [12] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究.  , 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [13] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析.  , 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [14] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟.  , 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [15] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟.  , 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [16] 陈 立, 毛邦宁, 王煜博, 王丽敏, 潘佰良. Sr离子自终止和复合激光交替振荡的动力学模型.  , 2007, 56(12): 6976-6981. doi: 10.7498/aps.56.6976
    [17] 马 云, 傅立斌, 杨志安, 刘 杰. 玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性.  , 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [18] 陈 波, 童培庆. 瓮模型中多粒子动力学的研究.  , 2005, 54(12): 5554-5558. doi: 10.7498/aps.54.5554
    [19] 程成, 孙威. 周期自洽的充氢溴化亚铜激光动力学模型.  , 1995, 44(11): 1734-1746. doi: 10.7498/aps.44.1734
    [20] 王顺金. 多体关联动力学中的自洽平均场.  , 1988, 37(6): 881-891. doi: 10.7498/aps.37.881
计量
  • 文章访问数:  3385
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 修回日期:  2022-03-23
  • 上网日期:  2022-07-21
  • 刊出日期:  2022-08-05

/

返回文章
返回
Baidu
map