-
Effective thermal control technologies are increasingly demanded in various application scenarios like spacecraft systems. Thermal conductivities of materials play a key role in thermal control systems, and one of the basic requirements for the materials is their reversibly tunable thermal properties. In this paper, we briefly review the recent research progress of the thermal smart materials in the respects of fundamental physical mechanisms, thermal switching ratio, and application value. We focus on the following typical thermal smart materials: nanoparticle suspensions, phase change materials, soft materials, layered materials tuned by electrochemistry, and materials tuned by specific external field. After surveying the fundamental mechanisms of thermal smart devices, we present their applications in spacecraft and other fields. Finally, we discuss the difficulties and challenges in studying the thermal smart materials, and also point out an outlook on their future development.
-
Keywords:
- thermal smart material /
- thermal conductivity /
- space thermal control /
- smart tuning
[1] Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 41304
Google Scholar
[2] Moore A L, Shi L 2014 Mater. Today 17 163
Google Scholar
[3] Zhu W, Deng Y, Wang Y, Shen S, Gulfam R 2016 Energy 100 91
Google Scholar
[4] 侯增棋, 胡金刚 2007 航天器热控制技术 (第 2 版) (北京: 中国科学技术出版社) 第1−11页
Hou Z Q, Hu J G 2007 Thermal Control Technology of Spacecraft (2nd Ed.) (Beijing: Science and technology of China press) pp1−11 (in Chinese)
[5] Baughman R H 2002 Science 297 787
Google Scholar
[6] Geim A K 2009 Science 324 1530
Google Scholar
[7] Kleinstreuer C, Feng Y 2011 Nanoscale Res. Lett. 6 229
Google Scholar
[8] Pil Jang S, Choi S U S 2007 J Heat Trans. 129 617
Google Scholar
[9] Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617
Google Scholar
[10] Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120
Google Scholar
[11] Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 034703
Google Scholar
[12] 董若宇, 曹鹏, 曹桂兴, 胡帼 杰, 曹炳阳 2017 66 014702
Google Scholar
[13] Zhang Z T, Dong R Y, Qiao D S, Cao B Y 2020 Nanotechnology 31 465403
Google Scholar
[14] Philip J, Shima P D, Raj B 2007 Appl. Phys. Lett. 91 203108
Google Scholar
[15] Philip J, Shima P D, Raj B 2008 Appl. Phys. Lett. 92 043108
Google Scholar
[16] Shima P D, Philip J, Raj B 2009 Appl. Phys. Lett. 95 133112
Google Scholar
[17] Sun P C, Huang Y, Zheng R T, Cheng G A, Wan Q M, Ding Y L 2015 Mater. Lett. 149 92
Google Scholar
[18] Sharma A, Shukla A, Chen C R, Wu T N 2014 Sustainable Energy Technol. Assess. 7 17
Google Scholar
[19] Berglund C N, Guggenheim H J 1969 Phys. Rev. 185 1022
Google Scholar
[20] Kizuka H, Yagi T, Jia J, Yamashita Y, Nakamura S, Taketoshi N, Shigesato Y 2015 Jpn. J. Appl. Phys. 54 053201
Google Scholar
[21] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, Wu J 2017 Science 355 371
Google Scholar
[22] Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904
Google Scholar
[23] Reifenberg J P, Panzer M A, Kim S, Gibby A M, Zhang Y, Wong S, Wong H S P, Pop E, Goodson K E 2007 Appl. Phys. Lett. 91 111904
Google Scholar
[24] Yang L, Cao B Y 2021 J. Phys. D:Appl. Phys. 54 505302
Google Scholar
[25] Batdalov A B, Aliev A M, Khanov L N, Buchel’nikov v d, Sokolovskii V V, Koledov V V, Shavrov V G, Mashirov A V, Dil’mieva E T 2016 J. Exp. Theor. Phys. 122 874
Google Scholar
[26] Zheng Q, Zhu G, Diao Z, Banerjee D, Cahill D G 2019 Adv. Eng. Mater. 21 1801342
Google Scholar
[27] Zheng R, Gao J, Wang J, Chen G 2011 Nat. Commun. 2 550
Google Scholar
[28] Angayarkanni S A, Philip J 2014 J. Phys. Chem. C 118 13972
Google Scholar
[29] Angayarkanni S A, Philip J 2015 J. Appl. Phys. 118 094306
Google Scholar
[30] Harish S, Ishikawa K, Chiashi S, Shiomi J, Maruyama S 2013 J. Phys. Chem. C 117 15409
Google Scholar
[31] Sun P C, Wu Y L, Gao J W, Cheng G A, Chen G, Zheng R T 2013 Adv. Mater. 25 4938
Google Scholar
[32] Warzoha R J, Weigand R M, Fleischer A S 2015 Appl. Energy 137 716
Google Scholar
[33] Wu Y, Yan X, Meng P, Sun P, Cheng G, Zheng R 2015 Carbon 94 417
Google Scholar
[34] Issi J P, Heremans J, Dresselhaus M S 1983 Phys. Rev. B 27 1333
Google Scholar
[35] Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D, Cahill D G 2016 Nat. Commun. 7 13211
Google Scholar
[36] Qian X, Gu X, Dresselhaus M S, Yang R 2016 J. Phys. Chem. Lett. 7 4744
Google Scholar
[37] Sood A, Xiong F, Chen S, Wang H, Selli D, Zhang J, McClellan C J, Sun J, Donadio D, Cui Y, Pop E, Goodson K E 2018 Nat. Commun. 9 1267
Google Scholar
[38] Cho J, Losego M D, Zhang H G, Kim H, Zuo J, Petrov I, Cahill D G, Braun P V 2014 Nat. Commun. 5 4035
Google Scholar
[39] Kang J S, Ke M, Hu Y 2017 Nano Lett. 17 1431
Google Scholar
[40] Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G, Yildiz B 2020 Nat. Mater. 19 655
Google Scholar
[41] Barnes H A 2000 Chem. Eng. J. 79 84
Google Scholar
[42] Hu H Q, Gopinadhan M, Osuji C O 2014 Soft Matter 10 3867
Google Scholar
[43] Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V, Cahill D G 2019 Proc. Natl. Acad. Sci. 116 5973
Google Scholar
[44] Li C, Ma Y, Tian Z 2018 ACS Macro Lett. 7 53
Google Scholar
[45] Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777
Google Scholar
[46] Zhang T, Luo T 2013 ACS Nano 7 7592
Google Scholar
[47] Shin J, Kang M, Tsai T, Leal C, Braun P V, Cahill D G 2016 ACS Macro Lett. 5 955
Google Scholar
[48] Tomko J A, Pena-Francesch A, Jung H, Tyagi M, Allen B D, Demirel M C, Hopkins P E 2018 Nat. Nanotechnol. 13 959
Google Scholar
[49] Feng H, Tang N, An M, Guo R L, Ma D K, Yu X X, Zang J F, Yang N 2019 J. Phys. Chem. C. 123 31003
Google Scholar
[50] Hopkins P E, Adamo C, Ye L H, Huey B D, Lee S R, Schlom D G, Ihlefeld J F 2013 Appl. Phys. Lett. 102 121903
Google Scholar
[51] Ihlefeld J F, Foley B M, Scrymgeour D A, Michael J R, McKenzie B B, Medlin D L, Wallace M, Trolier-McKinstry S, Hopkins P E 2015 Nano Lett. 15 1791
Google Scholar
[52] Chynoweth A G 1956 J. Appl. Phys. 27 78
Google Scholar
[53] Kalaidjiev K N, Mikhailov M P, Bozhanov G I, St. Stoyanov R 1982 Phys. Status Solidi A 69 K163
Google Scholar
[54] Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N 2021 Nano Energy 82 105749
[55] Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A 9 24472
Google Scholar
[56] Ziman J M 1960 Electrons and Phonons (Britain: Oxford University Press) pp483−523
[57] Yim W M, Amith A 1972 Solid-State Electron. 15 1141
Google Scholar
[58] Yang F Y 1999 Science 284 1335
Google Scholar
[59] Kimling J, Wilson R B, Rott K, Kimling J, Reiss G, Cahill D G 2015 Phys. Rev. B 91 144405
Google Scholar
[60] Ismail K, Nelson S F, Chu J O, Meyerson B S 1993 Appl. Phys. Lett. 63 660
Google Scholar
[61] Chu M, Sun Y K, Aghoram U, Thompson S E 2009 Annu. Rev. Mater. Res. 39 203
Google Scholar
[62] Vogelsang T, Hofmann K R 1993 Appl. Phys. Lett. 63 186
Google Scholar
[63] Li X, Maute K, Dunn M L, Yang R 2010 Phys. Rev. B 81 245318
Google Scholar
[64] Meng H, Ma D, Yu X, Zhang L, Sun Z, Yang N 2019 Int. J. Heat Mass Transf. 145 118719
Google Scholar
[65] Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transf. 180 121773
Google Scholar
[66] Wan X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transf. 180 121821
Google Scholar
[67] Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140
Google Scholar
[68] Yu D, Liao Y, Song Y, Wang S, Wan H, Zeng Y, Yin T, Yang W, He Z 2020 Adv. Sci. 7 2000177
Google Scholar
[69] Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A, Ruan X 2021 Nat. Commun. 12 163
Google Scholar
[70] Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju Y S, Pei Q 2017 Science 357 1130
Google Scholar
[71] Smullin S J, Wang Y, Schwartz D E 2015 Appl. Phys. Lett. 107 093903
Google Scholar
[72] McKay I S, Wang E N 2013 Energy 57 632
Google Scholar
[73] Puga J B, Bordalo B D, Silva D J, Dias M M, Belo J H, Araújo J P, Oliveira J C R E, Pereira A M, Ventura J 2017 Nano Energy 31 278
Google Scholar
[74] Yang N, Ni X X, Jiang J W, Li B W 2012 Appl. Phys. Lett. 100 093107
Google Scholar
[75] Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943
Google Scholar
[76] Cao B Y, Qiao D S 2018 ZL201810298324.6
[77] 胡帼杰, 曹桂兴, 乔德山, 曹炳阳 2019 工程热 40 1380
Hu G J, Cao G X, Qiao D S, Cao B Y 2019 J. Eng. Thermophys. 40 1380
-
-
[1] Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 41304
Google Scholar
[2] Moore A L, Shi L 2014 Mater. Today 17 163
Google Scholar
[3] Zhu W, Deng Y, Wang Y, Shen S, Gulfam R 2016 Energy 100 91
Google Scholar
[4] 侯增棋, 胡金刚 2007 航天器热控制技术 (第 2 版) (北京: 中国科学技术出版社) 第1−11页
Hou Z Q, Hu J G 2007 Thermal Control Technology of Spacecraft (2nd Ed.) (Beijing: Science and technology of China press) pp1−11 (in Chinese)
[5] Baughman R H 2002 Science 297 787
Google Scholar
[6] Geim A K 2009 Science 324 1530
Google Scholar
[7] Kleinstreuer C, Feng Y 2011 Nanoscale Res. Lett. 6 229
Google Scholar
[8] Pil Jang S, Choi S U S 2007 J Heat Trans. 129 617
Google Scholar
[9] Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617
Google Scholar
[10] Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120
Google Scholar
[11] Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 034703
Google Scholar
[12] 董若宇, 曹鹏, 曹桂兴, 胡帼 杰, 曹炳阳 2017 66 014702
Google Scholar
[13] Zhang Z T, Dong R Y, Qiao D S, Cao B Y 2020 Nanotechnology 31 465403
Google Scholar
[14] Philip J, Shima P D, Raj B 2007 Appl. Phys. Lett. 91 203108
Google Scholar
[15] Philip J, Shima P D, Raj B 2008 Appl. Phys. Lett. 92 043108
Google Scholar
[16] Shima P D, Philip J, Raj B 2009 Appl. Phys. Lett. 95 133112
Google Scholar
[17] Sun P C, Huang Y, Zheng R T, Cheng G A, Wan Q M, Ding Y L 2015 Mater. Lett. 149 92
Google Scholar
[18] Sharma A, Shukla A, Chen C R, Wu T N 2014 Sustainable Energy Technol. Assess. 7 17
Google Scholar
[19] Berglund C N, Guggenheim H J 1969 Phys. Rev. 185 1022
Google Scholar
[20] Kizuka H, Yagi T, Jia J, Yamashita Y, Nakamura S, Taketoshi N, Shigesato Y 2015 Jpn. J. Appl. Phys. 54 053201
Google Scholar
[21] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, Wu J 2017 Science 355 371
Google Scholar
[22] Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904
Google Scholar
[23] Reifenberg J P, Panzer M A, Kim S, Gibby A M, Zhang Y, Wong S, Wong H S P, Pop E, Goodson K E 2007 Appl. Phys. Lett. 91 111904
Google Scholar
[24] Yang L, Cao B Y 2021 J. Phys. D:Appl. Phys. 54 505302
Google Scholar
[25] Batdalov A B, Aliev A M, Khanov L N, Buchel’nikov v d, Sokolovskii V V, Koledov V V, Shavrov V G, Mashirov A V, Dil’mieva E T 2016 J. Exp. Theor. Phys. 122 874
Google Scholar
[26] Zheng Q, Zhu G, Diao Z, Banerjee D, Cahill D G 2019 Adv. Eng. Mater. 21 1801342
Google Scholar
[27] Zheng R, Gao J, Wang J, Chen G 2011 Nat. Commun. 2 550
Google Scholar
[28] Angayarkanni S A, Philip J 2014 J. Phys. Chem. C 118 13972
Google Scholar
[29] Angayarkanni S A, Philip J 2015 J. Appl. Phys. 118 094306
Google Scholar
[30] Harish S, Ishikawa K, Chiashi S, Shiomi J, Maruyama S 2013 J. Phys. Chem. C 117 15409
Google Scholar
[31] Sun P C, Wu Y L, Gao J W, Cheng G A, Chen G, Zheng R T 2013 Adv. Mater. 25 4938
Google Scholar
[32] Warzoha R J, Weigand R M, Fleischer A S 2015 Appl. Energy 137 716
Google Scholar
[33] Wu Y, Yan X, Meng P, Sun P, Cheng G, Zheng R 2015 Carbon 94 417
Google Scholar
[34] Issi J P, Heremans J, Dresselhaus M S 1983 Phys. Rev. B 27 1333
Google Scholar
[35] Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D, Cahill D G 2016 Nat. Commun. 7 13211
Google Scholar
[36] Qian X, Gu X, Dresselhaus M S, Yang R 2016 J. Phys. Chem. Lett. 7 4744
Google Scholar
[37] Sood A, Xiong F, Chen S, Wang H, Selli D, Zhang J, McClellan C J, Sun J, Donadio D, Cui Y, Pop E, Goodson K E 2018 Nat. Commun. 9 1267
Google Scholar
[38] Cho J, Losego M D, Zhang H G, Kim H, Zuo J, Petrov I, Cahill D G, Braun P V 2014 Nat. Commun. 5 4035
Google Scholar
[39] Kang J S, Ke M, Hu Y 2017 Nano Lett. 17 1431
Google Scholar
[40] Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G, Yildiz B 2020 Nat. Mater. 19 655
Google Scholar
[41] Barnes H A 2000 Chem. Eng. J. 79 84
Google Scholar
[42] Hu H Q, Gopinadhan M, Osuji C O 2014 Soft Matter 10 3867
Google Scholar
[43] Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V, Cahill D G 2019 Proc. Natl. Acad. Sci. 116 5973
Google Scholar
[44] Li C, Ma Y, Tian Z 2018 ACS Macro Lett. 7 53
Google Scholar
[45] Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777
Google Scholar
[46] Zhang T, Luo T 2013 ACS Nano 7 7592
Google Scholar
[47] Shin J, Kang M, Tsai T, Leal C, Braun P V, Cahill D G 2016 ACS Macro Lett. 5 955
Google Scholar
[48] Tomko J A, Pena-Francesch A, Jung H, Tyagi M, Allen B D, Demirel M C, Hopkins P E 2018 Nat. Nanotechnol. 13 959
Google Scholar
[49] Feng H, Tang N, An M, Guo R L, Ma D K, Yu X X, Zang J F, Yang N 2019 J. Phys. Chem. C. 123 31003
Google Scholar
[50] Hopkins P E, Adamo C, Ye L H, Huey B D, Lee S R, Schlom D G, Ihlefeld J F 2013 Appl. Phys. Lett. 102 121903
Google Scholar
[51] Ihlefeld J F, Foley B M, Scrymgeour D A, Michael J R, McKenzie B B, Medlin D L, Wallace M, Trolier-McKinstry S, Hopkins P E 2015 Nano Lett. 15 1791
Google Scholar
[52] Chynoweth A G 1956 J. Appl. Phys. 27 78
Google Scholar
[53] Kalaidjiev K N, Mikhailov M P, Bozhanov G I, St. Stoyanov R 1982 Phys. Status Solidi A 69 K163
Google Scholar
[54] Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N 2021 Nano Energy 82 105749
[55] Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A 9 24472
Google Scholar
[56] Ziman J M 1960 Electrons and Phonons (Britain: Oxford University Press) pp483−523
[57] Yim W M, Amith A 1972 Solid-State Electron. 15 1141
Google Scholar
[58] Yang F Y 1999 Science 284 1335
Google Scholar
[59] Kimling J, Wilson R B, Rott K, Kimling J, Reiss G, Cahill D G 2015 Phys. Rev. B 91 144405
Google Scholar
[60] Ismail K, Nelson S F, Chu J O, Meyerson B S 1993 Appl. Phys. Lett. 63 660
Google Scholar
[61] Chu M, Sun Y K, Aghoram U, Thompson S E 2009 Annu. Rev. Mater. Res. 39 203
Google Scholar
[62] Vogelsang T, Hofmann K R 1993 Appl. Phys. Lett. 63 186
Google Scholar
[63] Li X, Maute K, Dunn M L, Yang R 2010 Phys. Rev. B 81 245318
Google Scholar
[64] Meng H, Ma D, Yu X, Zhang L, Sun Z, Yang N 2019 Int. J. Heat Mass Transf. 145 118719
Google Scholar
[65] Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transf. 180 121773
Google Scholar
[66] Wan X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transf. 180 121821
Google Scholar
[67] Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140
Google Scholar
[68] Yu D, Liao Y, Song Y, Wang S, Wan H, Zeng Y, Yin T, Yang W, He Z 2020 Adv. Sci. 7 2000177
Google Scholar
[69] Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A, Ruan X 2021 Nat. Commun. 12 163
Google Scholar
[70] Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju Y S, Pei Q 2017 Science 357 1130
Google Scholar
[71] Smullin S J, Wang Y, Schwartz D E 2015 Appl. Phys. Lett. 107 093903
Google Scholar
[72] McKay I S, Wang E N 2013 Energy 57 632
Google Scholar
[73] Puga J B, Bordalo B D, Silva D J, Dias M M, Belo J H, Araújo J P, Oliveira J C R E, Pereira A M, Ventura J 2017 Nano Energy 31 278
Google Scholar
[74] Yang N, Ni X X, Jiang J W, Li B W 2012 Appl. Phys. Lett. 100 093107
Google Scholar
[75] Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943
Google Scholar
[76] Cao B Y, Qiao D S 2018 ZL201810298324.6
[77] 胡帼杰, 曹桂兴, 乔德山, 曹炳阳 2019 工程热 40 1380
Hu G J, Cao G X, Qiao D S, Cao B Y 2019 J. Eng. Thermophys. 40 1380
计量
- 文章访问数: 10170
- PDF下载量: 506
- 被引次数: 0