-
传统高分子聚合物是良好的电绝缘体和热绝缘体. 高分子聚合物具备质量轻、耐腐蚀、可加工、可穿戴、电绝缘、低成本等优异特性. 高分子聚合物被广泛应用于各种器件. 由于高分子材料的热导率比较低(0.1—0.5 W·m–1·K–1), 热管理(散热)面临严峻的挑战. 理论及实验工作表明, 先进高分子材料可以具有比传统传热材料(金属和陶瓷)更高热导率. Fermi-Pasta-Ulam (FPU)理论结果发现低维度原子链具有非常高的热导率. 广泛使用的聚乙烯热绝缘体可以被转变为热导体: 拉伸聚乙烯纳米纤维的热导率大约为104 W·m–1·K–1, 拉伸的聚乙烯薄膜热导率大约为62 W·m–1·K–1. 首先, 本文通过理论和实验结果总结导热高分子材料的传热机理研究进展, 并讨论了导热高分子聚合物的制备策略; 然后, 讨论了在传热机制及宏量制备方面, 高分子聚合物研究领域所面临的新挑战; 最后, 对导热高分子的热管理应用前景进行了展望. 例如, 导热高分子聚合物在耐腐蚀散热片、低成本太阳能热水收集器、可穿戴智能冷却服饰、电子绝缘却高导热的电子封装材料等领域具有不可替代的热管理应用前景.
Developing thermally conductive polymers is of fundamental interest and technological importance. Common polymers have low thermal conductivities on the order of 0.1 W·m–1·K–1 and thus are regarded as thermal insulators. Compared with the traditional heat conductors (metals and ceramics), polymers have unparalleled combined properties such as light weight, corrosion resistance, electrical insulation and low cost. Turning polymer insulators into heat conductors will provide new opportunities for future thermal management applications. Polymers may replace many metals and ceramics, serving as lightweight heat dissipators in electronics, refrigerators, and electrical vehicles. In this review and perspectives, we discuss the research progress of thermal transport mechanisms in polymers and reveal the relations between thermal conductivity and polymer structural parameters such as bond strength, crystallinity, crystallite size, chain orientation, radius of gyration, and molecular weight. We discuss the advanced strategies for developing thermally conductive polymers by both bottom-up and top-down approaches. We highlight how thermally conductive polymers provide new opportunities for thermal management applications. Finally, we emphasize the future challenges to and opportunities for designing and synthesizing polymers with metal-like thermal conductivity and exploring the thermal transport physics in polymers. We believe that the thermally conductive polymers with their unparalleled combination of characteristics (light weight, electrical insulation, easy processability, corrosion resistance, etc.) promise to possess many existing and unforeseen thermal management applications. -
Keywords:
- thermally conductive polymers /
- thermal conductivity /
- thermal transport mechanisms in polymers /
- thermal management applications
[1] Moore A L, Shi L 2014 Mater. Today 17 163
Google Scholar
[2] Schelling P K, Shi L, Goodson K E 2005 Mater. Today 8 30
[3] Pop E, Goodson K E 2006 J. Electron. Packag. 128 102
Google Scholar
[4] Chen G 2005 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (New York: Oxford University Press)
[5] Li Y, Li W, Han T, Zheng X, Li J, Li B, Fan S, Qiu C W 2021 Nat. Rev. Mater. 6 488
Google Scholar
[6] Hao M, Li J, Park S, Moura S, Dames C 2018 Nat. Energy 3 899
Google Scholar
[7] Xia G, Cao L, Bi G 2017 J. Power Sources 367 90
Google Scholar
[8] Feng C P, Yang L Y, Yang J, Bai L, Bao R Y, Liu Z Y, Yang M B, Lan H B, Yang W 2020 Compos. Commun. 22 100528
Google Scholar
[9] Huaiyu Y, Koh S, van Zeijl H, Gielen A, Guoqi Z 2011 J. Semicond. 32 014008
Google Scholar
[10] Siricharoenpanich A, Wiriyasart S, Srichat A, Naphon P 2019 Case Stud. Therm. Eng. 15 100545
Google Scholar
[11] Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617
Google Scholar
[12] Chen M, Dongxu O, Liu J, Wang J 2019 Appl. Therm. Eng. 157 113750
Google Scholar
[13] Sklan S R, Li B 2018 Natl. Sci. Rev. 5 138
Google Scholar
[14] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203
Google Scholar
[15] Balandin A A 2011 Nat. Mater. 10 569
Google Scholar
[16] Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273
Google Scholar
[17] Chen K, Song B, Ravichandran N K, Zheng Q, Chen X, Lee H, Sun H, Li S, Gamage G A G U, Tian F 2020 Science 367 555
Google Scholar
[18] Tian F, Song B, Chen X, Ravichandran N K, Lü Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H 2018 Science 361 582
Google Scholar
[19] Kang J S, Li M, Wu H, Nguyen H, Hu Y 2018 Science 361 575
Google Scholar
[20] Li S, Zheng Q, Lü Y, Liu X, Wang X, Huang P Y, Cahill D G, Lü B 2018 Science 361 579
Google Scholar
[21] Shen S, Henry A, Tong J, Zheng R, Chen G 2010 Nat. Nanotechnol. 5 251
Google Scholar
[22] Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188
Google Scholar
[23] Lienhard J H, IV, Lienhard, John H, V 2019 A Heat Transfer Textbook (5th Ed.) (New York: Dover Publications)
[24] Henry A 2014 Annu. Rev. Heat Transfer 17 485
Google Scholar
[25] Chen H, Ginzburg V V, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B 2016 Prog. Polym. Sci. 59 41
Google Scholar
[26] Anderson D 1966 Chem. Rev. 66 677
Google Scholar
[27] Guo Y, Ruan K, Shi X, Yang X, Gu J 2020 Compos. Sci. Technol. 193 108134
Google Scholar
[28] Choy C 1977 Polymer 18 984
Google Scholar
[29] Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92
Google Scholar
[30] Chen G 2014 Annu. Rev. Heat Transfer 17 1
Google Scholar
[31] Guo Y, Zhou Y, Xu Y 2021 Polymer 233 124168
Google Scholar
[32] Wei X, Wang Z, Tian Z, Luo T 2021 J. Heat Transfer 143 072101
Google Scholar
[33] Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. , R 132 1
Google Scholar
[34] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704
Google Scholar
[35] Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502
Google Scholar
[36] Chen G 2021 Nat. Rev. Phys. 3 555
Google Scholar
[37] Fermi E, Pasta P, Ulam S, Tsingou M 1955 Report No. LA-1940 (New Mexico, United States: Los Alamos Scientific Lab.)
[38] Choy C, Wong Y, Yang G, Kanamoto T 1999 J. Polym. Sci., Part B:Polym. Phys. 37 3359
Google Scholar
[39] Xu Y, Kraemer D, Song B, Jiang Z, Zhou J, Loomis J, Wang J, Li M, Ghasemi H, Huang X 2019 Nat. Commun. 10 1771
Google Scholar
[40] Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lü W, Resler D P, Gattuso T R 2014 Nat. Nanotechnol. 9 384
Google Scholar
[41] Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295
Google Scholar
[42] Gibson A, Greig D, Sahota M, Ward I, Choy C 1977 J. Polym. Sci., Polym. Lett. Ed. 15 183
Google Scholar
[43] Choy C, Luk W, Chen F 1978 Polymer 19 155
Google Scholar
[44] Mergenthaler D, Pietralla M, Roy S, Kilian H J M 1992 Macromolecules 25 3500
Google Scholar
[45] Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L, Cai A 2011 Polymer 52 1711
Google Scholar
[46] Ma J, Zhang Q, Mayo A, Ni Z, Yi H, Chen Y, Mu R, Bellan L M, Li D 2015 Nanoscale 7 16899
Google Scholar
[47] Ronca S, Igarashi T, Forte G, Rastogi S 2017 Polymer 123 203
Google Scholar
[48] Zhu B, Liu J, Wang T, Han M, Valloppilly S, Xu S, Wang X 2017 ACS Omega 2 3931
Google Scholar
[49] Huang Y F, Wang Z G, Yu W C, Ren Y, Lei J, Xu J Z, Li Z M 2019 Polymer 180 121760
Google Scholar
[50] Pan X, Schenning A H, Shen L, Bastiaansen C W 2020 Macromolecules 53 5599
Google Scholar
[51] Sweet J, Roth E, Moss M 1987 Int. J. Thermophys. 8 593
Google Scholar
[52] Som S 2008 Introduction to Heat transfer (New Delhi: PHI learning Pvt. Ltd.)
[53] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793
Google Scholar
[54] Henry A, Chen G, Plimpton S J, Thompson A 2010 Phys. Rev. B. 82 144308
Google Scholar
[55] Xiao M, Du B X 2016 High Volt. 1 34
Google Scholar
[56] Zhang T, Wu X, Luo T 2014 J. Phys. Chem. C. 118 21148
Google Scholar
[57] Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342
Google Scholar
[58] Robbins A B, Drakopoulos S X, Martin-Fabiani I, Ronca S, Minnich A J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 17163
Google Scholar
[59] Cevallos J G, Bergles A E, Bar-Cohen A, Rodgers P, Gupta S K 2012 Heat Transfer Eng. 33 1075
Google Scholar
[60] Sæther S, Falck M, Zhang Z, Lervik A, He J 2021 Macromolecules 54 6563
Google Scholar
[61] Hansen D, Bernier G 1972 Polym. Eng. Sci. 12 204
Google Scholar
[62] Liu J, Yang R 2012 Phys. Rev. B. 86 104307
Google Scholar
[63] Wei X, Luo T 2019 Phys. Chem. Chem. Phys. 21 15523
Google Scholar
[64] Zhang T, Luo T 2016 J. Phys. Chem. B 120 803
Google Scholar
[65] Subramanyan H, Zhang W, He J, Kim K, Li X, Liu J 2019 J. Appl. Phys. 125 095104
Google Scholar
[66] Zhang T, Luo T 2012 J. Appl. Phys. 112 094304
Google Scholar
[67] Wei X, Zhang T, Luo T 2016 Phys. Chem. Chem. Phys. 18 32146
Google Scholar
[68] Lin S, Cai Z, Wang Y, Zhao L, Zhai C 2019 Comput. Mater. Sci. 5 126
[69] Akatsuka M, Takezawa Y 2003 J. Appl. Polym. Sci. 89 2464
Google Scholar
[70] Ruan K, Zhong X, Shi X, Dang J, Gu J 2021 Mater. Today Phys. 20 100456
Google Scholar
[71] Wei X, Huang Z, Koch S, Zamengo M, Deng Y, Minus M L, Morikawa J, Guo R, Luo T 2021 ACS Appl. Polym. Mater. 3 2979
Google Scholar
[72] Lee J, Kim Y, Joshi S R, Kwon M S, Kim G H 2021 Polym. Chem. 12 975
Google Scholar
[73] Chen A, Wu Y, Zhou S, Xu W, Jiang W, Lü Y, Guo W, Chi K, Sun Q, Fu T 2020 Mater. Adv. 1 1996
Google Scholar
[74] Kikugawa G, Desai T G, Keblinski P, Ohara T 2013 J. Appl. Phys. 114 034302
Google Scholar
[75] Knappe W, Yamamoto O 1970 Kolloid-Zeitschrift und Zeitschrift für Polymere 240 775
[76] Toberer E S, Zevalkink A, Snyder G J 2011 J. Mater. Chem. 21 15843
Google Scholar
[77] Ma H, Ma Y, Tian Z 2019 ACS Appl. Polym. Mater. 1 2566
[78] Nomura R, Yoneyama K, Ogasawara F, Ueno M, Okuda Y, Yamanaka A 2003 Jpn. J. Appl. Phys. 42 5205
Google Scholar
[79] Hsieh W-P, Losego M D, Braun P V, Shenogin S, Keblinski P, Cahill D G 2011 Phys. Rev. B. 83 174205
Google Scholar
[80] Zhang T, Xu J, Luo T 2020 https://arxiv.org/abs/2009.13708
[81] Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A. 9 24472
Google Scholar
[82] Deng S, Yuan J, Lin Y, Yu X, Ma D, Huang Y, Ji R, Zhang G, Yang N 2021 Nano Energy 82 105749
Google Scholar
[83] Zhang Y, Zhang X, Yang L, Zhang Q, Fitzgerald M L, Ueda A, Chen Y, Mu R, Li D, Bellan L M 2018 Soft matter 14 9534
Google Scholar
[84] Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031
Google Scholar
[85] Xie X, Li D, Tsai T H, Liu J, Braun P V, Cahill D G 2016 Macromolecules 49 972
Google Scholar
[86] Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phys. Lett. 38 014401
Google Scholar
[87] Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, De Boer M P 2018 Nat. Commun. 9 1664
Google Scholar
[88] Donovan B F, Warzoha R J, Cosby T, Giri A, Wilson A A, Borgdorff A J, Vu N T, Patterson E A, Gorzkowski E P 2020 Macromolecules 53 11089
Google Scholar
[89] Richard-Lacroix M, Pellerin C 2013 Macromolecules 46 9473
Google Scholar
[90] Canetta C, Guo S, Narayanaswamy A 2014 Rev. Sci. Instrum. 85 104901
Google Scholar
[91] Lu C, Chiang S W, Du H, Li J, Gan L, Zhang X, Chu X, Yao Y, Li B, Kang F 2017 Polymer 115 52
Google Scholar
[92] Laaber D, Bart H J 2015 Chem. Ing. Tech. 87 306
Google Scholar
[93] Chen X, Su Y, Reay D, Riffat S 2016 Renewable Sustainable Energy Rev. 60 1367
Google Scholar
[94] Shi A, Li Y, Liu W, Lei J, Li Z M 2019 J. Appl. Phys. 125 245110
Google Scholar
[95] Wang X, Ho V, Segalman R A, Cahill D G 2013 Macromolecules 46 4937
Google Scholar
[96] Ghasemi H, Thoppey N, Huang X, Loomis J, Li X, Tong J, Wang J, Chen G 2014 Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) Orlando Florida, USA, May 27−30, 2014 pp235−239
[97] Ma J, Zhang Q, Zhang Y, Zhou L, Yang J, Ni Z 2016 Appl. Phys. Lett. 109 033101
Google Scholar
[98] Shulumba N, Hellman O, Minnich A 2017 Phys. Rev. Lett. 119 185901
Google Scholar
[99] Roy A, Bougher T L, Geng R, Ke Y, Locklin J, Cola B A 2016 ACS Appl. Mater. Interfaces 8 25578
Google Scholar
[100] Rojo M M, Martín J, Grauby S, Borca-Tasciuc T, Dilhaire S, Martin-Gonzalez M 2014 Nanoscale 6 7858
Google Scholar
[101] Hamidnia M, Luo Y, Wang X 2018 Appl. Therm. Eng. 145 637
Google Scholar
[102] Tong J K, Huang X, Boriskina S V, Loomis J, Xu Y, Chen G 2015 ACS Photonics 2 769
Google Scholar
[103] Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y, Xie J, Fan S, Cui Y 2016 Science 353 1019
Google Scholar
[104] Peng Y, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L, Liu B, Zhu Y, Zhou G, Wu D S 2018 Nat. Sustainability 1 105
Google Scholar
[105] Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M 2021 Science 373 692
Google Scholar
[106] Yu X, Li Y, Wang X, Si Y, Yu J, Ding B 2020 ACS Appl. Mater. Interfaces 12 32078
Google Scholar
[107] Alberghini M, Hong S, Lozano L M, Korolovych V, Huang Y, Signorato F, Zandavi S H, Fucetola C, Uluturk I, Tolstorukov M Y 2021 Nat. Sustainability 4 715
Google Scholar
[108] Wang Y, Liang X, Zhu H, Xin J H, Zhang Q, Zhu S 2020 Adv. Funct. Mater. 30 1907851
Google Scholar
[109] Candadai A A, Weibel J A, Marconnet A M 2019 ACS Appl. Polym. Mater. 2 437
Google Scholar
[110] Candadai A A, Nadler E J, Burke J S, Weibel J A, Marconnet A M 2021 Sci. Rep. 11 8705
Google Scholar
-
图 1 微纳尺度及原子尺度下的高分子结构. 高分子链端、无定型链、链缠结、杂质等缺陷都可能成为热载流子散射点, 导致高分子聚合物高分子的热导率比较低 (约0.1 W·m–1·K–1)[24]
Fig. 1. Polymer structures at micro-nano scale and atomic scale. Defects such as chain ends, amorphous chains, chain entanglement, impurities in polymers act as heat carrier scattering sites and hinder efficient thermal transport, result in relatively low thermal conductivity (about 0.1 W·m–1·K–1)[24].
图 2 室温下聚乙烯(PE)的热导率实验数据[21,38,39,43-50,58,83,87,94-97]及模拟值[35,54,98]; 室温下聚噻吩(PT)的热导率实验数据[39,40,99,100]及模拟值[56]
Fig. 2. Thermal conductivities of polyethylene at room temperature in experimental measurements[21,38,39,43-50,58,83,87,94-97]and simulations[35,54,98]. Thermal conductivities of polythiophene at room temperature in experimental measurements[39,40,99,100]and simulations[56].
-
[1] Moore A L, Shi L 2014 Mater. Today 17 163
Google Scholar
[2] Schelling P K, Shi L, Goodson K E 2005 Mater. Today 8 30
[3] Pop E, Goodson K E 2006 J. Electron. Packag. 128 102
Google Scholar
[4] Chen G 2005 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (New York: Oxford University Press)
[5] Li Y, Li W, Han T, Zheng X, Li J, Li B, Fan S, Qiu C W 2021 Nat. Rev. Mater. 6 488
Google Scholar
[6] Hao M, Li J, Park S, Moura S, Dames C 2018 Nat. Energy 3 899
Google Scholar
[7] Xia G, Cao L, Bi G 2017 J. Power Sources 367 90
Google Scholar
[8] Feng C P, Yang L Y, Yang J, Bai L, Bao R Y, Liu Z Y, Yang M B, Lan H B, Yang W 2020 Compos. Commun. 22 100528
Google Scholar
[9] Huaiyu Y, Koh S, van Zeijl H, Gielen A, Guoqi Z 2011 J. Semicond. 32 014008
Google Scholar
[10] Siricharoenpanich A, Wiriyasart S, Srichat A, Naphon P 2019 Case Stud. Therm. Eng. 15 100545
Google Scholar
[11] Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617
Google Scholar
[12] Chen M, Dongxu O, Liu J, Wang J 2019 Appl. Therm. Eng. 157 113750
Google Scholar
[13] Sklan S R, Li B 2018 Natl. Sci. Rev. 5 138
Google Scholar
[14] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203
Google Scholar
[15] Balandin A A 2011 Nat. Mater. 10 569
Google Scholar
[16] Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273
Google Scholar
[17] Chen K, Song B, Ravichandran N K, Zheng Q, Chen X, Lee H, Sun H, Li S, Gamage G A G U, Tian F 2020 Science 367 555
Google Scholar
[18] Tian F, Song B, Chen X, Ravichandran N K, Lü Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H 2018 Science 361 582
Google Scholar
[19] Kang J S, Li M, Wu H, Nguyen H, Hu Y 2018 Science 361 575
Google Scholar
[20] Li S, Zheng Q, Lü Y, Liu X, Wang X, Huang P Y, Cahill D G, Lü B 2018 Science 361 579
Google Scholar
[21] Shen S, Henry A, Tong J, Zheng R, Chen G 2010 Nat. Nanotechnol. 5 251
Google Scholar
[22] Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188
Google Scholar
[23] Lienhard J H, IV, Lienhard, John H, V 2019 A Heat Transfer Textbook (5th Ed.) (New York: Dover Publications)
[24] Henry A 2014 Annu. Rev. Heat Transfer 17 485
Google Scholar
[25] Chen H, Ginzburg V V, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B 2016 Prog. Polym. Sci. 59 41
Google Scholar
[26] Anderson D 1966 Chem. Rev. 66 677
Google Scholar
[27] Guo Y, Ruan K, Shi X, Yang X, Gu J 2020 Compos. Sci. Technol. 193 108134
Google Scholar
[28] Choy C 1977 Polymer 18 984
Google Scholar
[29] Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92
Google Scholar
[30] Chen G 2014 Annu. Rev. Heat Transfer 17 1
Google Scholar
[31] Guo Y, Zhou Y, Xu Y 2021 Polymer 233 124168
Google Scholar
[32] Wei X, Wang Z, Tian Z, Luo T 2021 J. Heat Transfer 143 072101
Google Scholar
[33] Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. , R 132 1
Google Scholar
[34] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704
Google Scholar
[35] Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502
Google Scholar
[36] Chen G 2021 Nat. Rev. Phys. 3 555
Google Scholar
[37] Fermi E, Pasta P, Ulam S, Tsingou M 1955 Report No. LA-1940 (New Mexico, United States: Los Alamos Scientific Lab.)
[38] Choy C, Wong Y, Yang G, Kanamoto T 1999 J. Polym. Sci., Part B:Polym. Phys. 37 3359
Google Scholar
[39] Xu Y, Kraemer D, Song B, Jiang Z, Zhou J, Loomis J, Wang J, Li M, Ghasemi H, Huang X 2019 Nat. Commun. 10 1771
Google Scholar
[40] Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lü W, Resler D P, Gattuso T R 2014 Nat. Nanotechnol. 9 384
Google Scholar
[41] Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295
Google Scholar
[42] Gibson A, Greig D, Sahota M, Ward I, Choy C 1977 J. Polym. Sci., Polym. Lett. Ed. 15 183
Google Scholar
[43] Choy C, Luk W, Chen F 1978 Polymer 19 155
Google Scholar
[44] Mergenthaler D, Pietralla M, Roy S, Kilian H J M 1992 Macromolecules 25 3500
Google Scholar
[45] Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L, Cai A 2011 Polymer 52 1711
Google Scholar
[46] Ma J, Zhang Q, Mayo A, Ni Z, Yi H, Chen Y, Mu R, Bellan L M, Li D 2015 Nanoscale 7 16899
Google Scholar
[47] Ronca S, Igarashi T, Forte G, Rastogi S 2017 Polymer 123 203
Google Scholar
[48] Zhu B, Liu J, Wang T, Han M, Valloppilly S, Xu S, Wang X 2017 ACS Omega 2 3931
Google Scholar
[49] Huang Y F, Wang Z G, Yu W C, Ren Y, Lei J, Xu J Z, Li Z M 2019 Polymer 180 121760
Google Scholar
[50] Pan X, Schenning A H, Shen L, Bastiaansen C W 2020 Macromolecules 53 5599
Google Scholar
[51] Sweet J, Roth E, Moss M 1987 Int. J. Thermophys. 8 593
Google Scholar
[52] Som S 2008 Introduction to Heat transfer (New Delhi: PHI learning Pvt. Ltd.)
[53] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793
Google Scholar
[54] Henry A, Chen G, Plimpton S J, Thompson A 2010 Phys. Rev. B. 82 144308
Google Scholar
[55] Xiao M, Du B X 2016 High Volt. 1 34
Google Scholar
[56] Zhang T, Wu X, Luo T 2014 J. Phys. Chem. C. 118 21148
Google Scholar
[57] Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342
Google Scholar
[58] Robbins A B, Drakopoulos S X, Martin-Fabiani I, Ronca S, Minnich A J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 17163
Google Scholar
[59] Cevallos J G, Bergles A E, Bar-Cohen A, Rodgers P, Gupta S K 2012 Heat Transfer Eng. 33 1075
Google Scholar
[60] Sæther S, Falck M, Zhang Z, Lervik A, He J 2021 Macromolecules 54 6563
Google Scholar
[61] Hansen D, Bernier G 1972 Polym. Eng. Sci. 12 204
Google Scholar
[62] Liu J, Yang R 2012 Phys. Rev. B. 86 104307
Google Scholar
[63] Wei X, Luo T 2019 Phys. Chem. Chem. Phys. 21 15523
Google Scholar
[64] Zhang T, Luo T 2016 J. Phys. Chem. B 120 803
Google Scholar
[65] Subramanyan H, Zhang W, He J, Kim K, Li X, Liu J 2019 J. Appl. Phys. 125 095104
Google Scholar
[66] Zhang T, Luo T 2012 J. Appl. Phys. 112 094304
Google Scholar
[67] Wei X, Zhang T, Luo T 2016 Phys. Chem. Chem. Phys. 18 32146
Google Scholar
[68] Lin S, Cai Z, Wang Y, Zhao L, Zhai C 2019 Comput. Mater. Sci. 5 126
[69] Akatsuka M, Takezawa Y 2003 J. Appl. Polym. Sci. 89 2464
Google Scholar
[70] Ruan K, Zhong X, Shi X, Dang J, Gu J 2021 Mater. Today Phys. 20 100456
Google Scholar
[71] Wei X, Huang Z, Koch S, Zamengo M, Deng Y, Minus M L, Morikawa J, Guo R, Luo T 2021 ACS Appl. Polym. Mater. 3 2979
Google Scholar
[72] Lee J, Kim Y, Joshi S R, Kwon M S, Kim G H 2021 Polym. Chem. 12 975
Google Scholar
[73] Chen A, Wu Y, Zhou S, Xu W, Jiang W, Lü Y, Guo W, Chi K, Sun Q, Fu T 2020 Mater. Adv. 1 1996
Google Scholar
[74] Kikugawa G, Desai T G, Keblinski P, Ohara T 2013 J. Appl. Phys. 114 034302
Google Scholar
[75] Knappe W, Yamamoto O 1970 Kolloid-Zeitschrift und Zeitschrift für Polymere 240 775
[76] Toberer E S, Zevalkink A, Snyder G J 2011 J. Mater. Chem. 21 15843
Google Scholar
[77] Ma H, Ma Y, Tian Z 2019 ACS Appl. Polym. Mater. 1 2566
[78] Nomura R, Yoneyama K, Ogasawara F, Ueno M, Okuda Y, Yamanaka A 2003 Jpn. J. Appl. Phys. 42 5205
Google Scholar
[79] Hsieh W-P, Losego M D, Braun P V, Shenogin S, Keblinski P, Cahill D G 2011 Phys. Rev. B. 83 174205
Google Scholar
[80] Zhang T, Xu J, Luo T 2020 https://arxiv.org/abs/2009.13708
[81] Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A. 9 24472
Google Scholar
[82] Deng S, Yuan J, Lin Y, Yu X, Ma D, Huang Y, Ji R, Zhang G, Yang N 2021 Nano Energy 82 105749
Google Scholar
[83] Zhang Y, Zhang X, Yang L, Zhang Q, Fitzgerald M L, Ueda A, Chen Y, Mu R, Li D, Bellan L M 2018 Soft matter 14 9534
Google Scholar
[84] Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031
Google Scholar
[85] Xie X, Li D, Tsai T H, Liu J, Braun P V, Cahill D G 2016 Macromolecules 49 972
Google Scholar
[86] Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phys. Lett. 38 014401
Google Scholar
[87] Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, De Boer M P 2018 Nat. Commun. 9 1664
Google Scholar
[88] Donovan B F, Warzoha R J, Cosby T, Giri A, Wilson A A, Borgdorff A J, Vu N T, Patterson E A, Gorzkowski E P 2020 Macromolecules 53 11089
Google Scholar
[89] Richard-Lacroix M, Pellerin C 2013 Macromolecules 46 9473
Google Scholar
[90] Canetta C, Guo S, Narayanaswamy A 2014 Rev. Sci. Instrum. 85 104901
Google Scholar
[91] Lu C, Chiang S W, Du H, Li J, Gan L, Zhang X, Chu X, Yao Y, Li B, Kang F 2017 Polymer 115 52
Google Scholar
[92] Laaber D, Bart H J 2015 Chem. Ing. Tech. 87 306
Google Scholar
[93] Chen X, Su Y, Reay D, Riffat S 2016 Renewable Sustainable Energy Rev. 60 1367
Google Scholar
[94] Shi A, Li Y, Liu W, Lei J, Li Z M 2019 J. Appl. Phys. 125 245110
Google Scholar
[95] Wang X, Ho V, Segalman R A, Cahill D G 2013 Macromolecules 46 4937
Google Scholar
[96] Ghasemi H, Thoppey N, Huang X, Loomis J, Li X, Tong J, Wang J, Chen G 2014 Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) Orlando Florida, USA, May 27−30, 2014 pp235−239
[97] Ma J, Zhang Q, Zhang Y, Zhou L, Yang J, Ni Z 2016 Appl. Phys. Lett. 109 033101
Google Scholar
[98] Shulumba N, Hellman O, Minnich A 2017 Phys. Rev. Lett. 119 185901
Google Scholar
[99] Roy A, Bougher T L, Geng R, Ke Y, Locklin J, Cola B A 2016 ACS Appl. Mater. Interfaces 8 25578
Google Scholar
[100] Rojo M M, Martín J, Grauby S, Borca-Tasciuc T, Dilhaire S, Martin-Gonzalez M 2014 Nanoscale 6 7858
Google Scholar
[101] Hamidnia M, Luo Y, Wang X 2018 Appl. Therm. Eng. 145 637
Google Scholar
[102] Tong J K, Huang X, Boriskina S V, Loomis J, Xu Y, Chen G 2015 ACS Photonics 2 769
Google Scholar
[103] Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y, Xie J, Fan S, Cui Y 2016 Science 353 1019
Google Scholar
[104] Peng Y, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L, Liu B, Zhu Y, Zhou G, Wu D S 2018 Nat. Sustainability 1 105
Google Scholar
[105] Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M 2021 Science 373 692
Google Scholar
[106] Yu X, Li Y, Wang X, Si Y, Yu J, Ding B 2020 ACS Appl. Mater. Interfaces 12 32078
Google Scholar
[107] Alberghini M, Hong S, Lozano L M, Korolovych V, Huang Y, Signorato F, Zandavi S H, Fucetola C, Uluturk I, Tolstorukov M Y 2021 Nat. Sustainability 4 715
Google Scholar
[108] Wang Y, Liang X, Zhu H, Xin J H, Zhang Q, Zhu S 2020 Adv. Funct. Mater. 30 1907851
Google Scholar
[109] Candadai A A, Weibel J A, Marconnet A M 2019 ACS Appl. Polym. Mater. 2 437
Google Scholar
[110] Candadai A A, Nadler E J, Burke J S, Weibel J A, Marconnet A M 2021 Sci. Rep. 11 8705
Google Scholar
计量
- 文章访问数: 12095
- PDF下载量: 462
- 被引次数: 0