搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准简谐格林-久保理论结合流体动力学外推方法的非晶二氧化铪导热机制

朱雄飞 孙健时 熊玉成 李寿航 刘向军

引用本文:
Citation:

基于准简谐格林-久保理论结合流体动力学外推方法的非晶二氧化铪导热机制

朱雄飞, 孙健时, 熊玉成, 李寿航, 刘向军

The thermal transport mechanism of amorphous hafnia based on quasi-harmonic Green-Kubo theory combined with hydrodynamic extrapolation method

ZHU Xiongfei, SUN Jianshi, XIONG Yucheng, LI Shouhang, LIU Xiangjun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 非晶态材料二氧化铪在微电子器件中具有广泛应用, 理解其微观导热机制对于提升电子器件的性能和可靠性至关重要. 以往的研究大多基于分子动力学和单一准简谐格林-久保方法, 难以准确考虑低频振动模式的导热贡献. 本文基于准简谐格林-久保理论, 结合流体动力学外推法, 对不同有序度的非晶二氧化铪结构的热输运机制进行全面研究. 该方法可有效克服单一准简谐格林-久保方法中的有限尺寸问题. 理论预测表明, 非晶二氧化铪的热导率与微观结构有序度呈现弱相关性. 基于模态分析表明, 中低频振动模式对热导率具有显著贡献, 是单一准简谐格林-久保方法低估非晶二氧化铪热导率的主要原因. 同时, 本文基于非谐动态结构因子分离了传播子和扩散子对非晶二氧化铪导热的贡献, 计算表明扩散子在所有非晶二氧化铪结构导热中均占据主导作用. 然而, 传播子的导热贡献仍不可忽略, 其占比可高达20%以上, 且随着有序度的增大而增大.
    The amorphous hafnia has a wide range of applications in microelectronic devices, and understanding its microscopic thermal transport mechanism is crucial for improving the performance and reliability of electronic devices. Most previous studies are based on molecular dynamics and the single quasi-harmonic Green-Kubo method, which makes it difficult to accurately consider the contribution of low-frequency vibrational modes to thermal conductivity. In this paper, based on the quasi-harmonic Green-Kubo method combined with hydrodynamic extrapolation, the heat transport mechanism of amorphous hafnia structures with different degrees of ordering is comprehensively investigated. The method effectively overcomes the finite size issue inherent in the single quasi-harmonic Green-Kubo method. Theoretical predictions show that the thermal conductivity of amorphous hafnia exhibits a weak correlation with the degree of microstructural ordering. Modal analysis reveals that low- and mid-frequency vibrational modes significantly contribute to thermal conductivity, which is the main reason for the underestimation of the thermal conductivity of amorphous hafnia in the single quasi-harmonic Green-Kubo method. Furthermore, this paper separates the contributions of propagons and diffusons to the thermal conductivity of amorphous hafnia using the anharmonic dynamic structure factor, revealing that diffusons dominate the thermal conductivity of all amorphous hafnia structures. However, the contribution of the propagons to thermal conductivity remains significant, reaching over 20% and increasing with the degree of ordering.
  • 图 1  生成非晶结构过程中势能和均方位移累计值随模拟时间的变化, 图中灰色虚线之前为熔融过程, 灰色虚线与黑色实线之间为在温度4000 K下的弛豫过程, 红色点划线之后为退火过程

    Fig. 1.  Variation of potential energy and accumulated mean square displacement with simulation time during the generation of amorphous structures, the melting process is before the gray dashed line, the relaxation process at 4000 K is between the gray dashed line and the black solid line, and the annealing process is after the red dotted line.

    图 2  非晶HfO2在不同淬火速度下的(a)径向分布函数和(b)环数分布

    Fig. 2.  (a) Radial distribution function and (b) ring distribution of amorphous HfO2 at different quenching rates.

    图 3  有限尺寸(2592个原子)和流体动力学外推法的非晶HfO2随温度变化的热导率, 图中图例的下标表示淬火速度, 误差棒为热导率标准差

    Fig. 3.  Thermal conductivity of amorphous HfO2 with temperature for finite size (2592 atoms) and the hydrodynamic extrapolation. The subscripts of the legend denote the quenching rate, error bar is standard deviations of thermal conductivity.

    图 4  非晶HfO2热导率随温度变化关系, 图中散点是Panzer等[37]、Lee等[38]、Scott等[4]和Chaubey等[39]报道的非晶HfO2实验数据

    Fig. 4.  Temperature-dependent thermal conductivity of amorphous HfO2, scattered points in the figure are experimental data for amorphous HfO2 reported by Panzer et al.[37], Lee et al.[38], Scott et al.[4] and Chaubey et al.[39].

    图 5  300 K温度下不同淬火速度非晶HfO2 (a) 热容量; (b) 弛豫时间; (c) 模态扩散率; (d) 参与比

    Fig. 5.  (a) Heat capacity; (b) lifetime; (c) modal diffusivity; (d) participation ratio of amorphous HfO2 with different quenching rates at 300 K.

    图 6  (a)—(e) 淬火速度分别为5×1012, 1×1012, 5×1011, 1×1011, 5×1010 K/s的非晶HfO2的纵向非谐动态结构因子; (f)—(j) 为对应淬火速度下的横向非谐动态结构因子; 图中颜色条是根据(8)式计算的非谐动态结构因子强度, 蓝色直线是非谐动态结构因子在低频部分的线性拟合, 红色虚线是选取的截止频率

    Fig. 6.  (a)–(e) Longitudinal anharmonic dynamic structure factors of amorphous HfO2 with different quenching rates of 5×1012, 1×1012, 5×1011, 1×1011, and 5×1010 K/s; (f)–(j) transverse anharmonic dynamic structure factors at corresponding quenching rates. The colorbar indicates the strength of the anharmonic dynamic structure factor calculated by Eq. (8), the blue straight line is a linear fit of the anharmonic dynamic structure factor in the low frequency part, and the red dashed line is the selected cut-off frequency.

    图 7  300 K温度下不同淬火速度非晶HfO2的传播子和扩散子对热导率的贡献, 图中的蓝色文字代表传播子对总热导率的贡献百分比

    Fig. 7.  Contributions of propagon and diffuson to thermal conductivity of amorphous HfO2 with different quenching rates at 300 K, the blue text in the figure represents the percentage contribution of propagon to the total thermal conductivity.

    Baidu
  • [1]

    Wilk G D, Wallace R M, Anthony J 2001 J. Appl. Phys. 89 5243Google Scholar

    [2]

    Wang Y, Zahid F, Wang J, Guo H 2012 Phys. Rev. B 85 224110Google Scholar

    [3]

    McKenna K, Shluger A, Iglesias V, Porti M, Nafría M, Lanza M, Bersuker G 2011 Microelectron. Eng. 88 1272Google Scholar

    [4]

    Scott E A, Gaskins J T, King S W, Hopkins P E 2018 APL Mater. 6 058302Google Scholar

    [5]

    Lu S X, Cebe P 1996 Polymer 37 4857Google Scholar

    [6]

    何宇亮, 周衡南, 刘湘娜, 程光煦 1990 39 1796Google Scholar

    He Y L, Zhou H N, Liu X N, Cheng G X, Yu S D 1990 Acta Phys. Sin. 39 1796Google Scholar

    [7]

    Wang S, Wang C, Li M, Huang L, Ott R, Kramer M, Sordelet D, Ho K 2008 Phys. Rev. B 78 184204Google Scholar

    [8]

    Wang Y, Fan Z, Qian P, Caro M A, Ala-Nissila T 2023 Phys. Rev. B 107 054303

    [9]

    Kittel C 1949 Phys. Rev. 75 972Google Scholar

    [10]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62 645Google Scholar

    [11]

    Zhu X, Shao C 2022 Phys. Rev. B 106 014305

    [12]

    Qiu R, Zeng Q Y, Han J S, Chen K, Kang D D, Yu X X, Dai J Y 2025 Phys. Rev. B 111 064103Google Scholar

    [13]

    Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495Google Scholar

    [14]

    Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [15]

    Prasai K, Biswas P, Drabold D 2016 Semicond. Sci. Techn. 31 073002Google Scholar

    [16]

    朱美芳 1996 45 499Google Scholar

    Zhu M F 1996 Acta Phys. Sin. 45 499Google Scholar

    [17]

    Mu X, Wu X, Zhang T, Go D B, Luo T 2014 Sci. Rep. 4 3909Google Scholar

    [18]

    王学智, 汤雨婷, 车军伟, 令狐佳珺, 侯兆阳 2023 72 056101Google Scholar

    Wang X Z, Tang Y T, Che J W, Linghu J J, Hou Z Y 2023 Acta Physica Sinica 72 056101Google Scholar

    [19]

    Yang F H, Zeng Q Y, Chen B, Kang D D, Zhang S, Wu J H, Yu X X, Dai J Y 2022 Chin. Phys. Lett. 39 116301Google Scholar

    [20]

    鲍华 2013 62 1Google Scholar

    Bao H 2013 Acta Phys. Sin. 62 1Google Scholar

    [21]

    Qiu R, Zeng Q Y, Wang H, Kang D D, Yu X X, Dai J Y 2023 Chin. Phys. Lett. 40 116301Google Scholar

    [22]

    Isaeva L, Barbalinardo G, Donadio D, Baroni S 2019 Nat. Commun. 10 3853Google Scholar

    [23]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [24]

    Harper A F, Iwanowski K, Witt W C, Payne M C, Simoncelli M 2024 Phys. Rev. Mater. 8 043601Google Scholar

    [25]

    Fiorentino A, Pegolo P, Baroni S 2023 npj Comput. Mater. 9 157Google Scholar

    [26]

    Barbalinardo G, Chen Z, Lundgren N W, Donadio D 2020 J. Appl. Phys. 128 135104Google Scholar

    [27]

    Fan Z Y, Wang Y Z, Ying P H, Song K K, Wang J J, Wang Y, Zeng Z Z, Xu K, Lindgren E, Rahm J M, Gabourie A J, Liu J H, Dong H K, Wu J Y, Chen Y, Zhong Z, Sun J, Erhart P, Su Y J, Ala-Nissila T 2022 J. Chem. Phys. 157 114801Google Scholar

    [28]

    Fan Z Y, Zeng Z Z, Zhang C Z, Wang Y Z, Song K K, Dong H K, Chen Y, Ala-Nissila T 2021 Phys. Rev. B 104 104309Google Scholar

    [29]

    Zhang H, Gu X, Fan Z, Bao H 2023 Phys. Rev. B 108 045422Google Scholar

    [30]

    Sivaraman G, Krishnamoorthy A N, Baur M, Holm C, Stan M, Csányi G, Benmore C, Vázquez-Mayagoitia Á 2020 npj Comput. Mater. 6 104Google Scholar

    [31]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [32]

    Zeng Q Y, Yu X X, Yao Y P, Gao T Y, Chen B, Zhang S, Kang D D, Wang H, Dai J Y 2021 Phys. Rev. Res. 3 033116Google Scholar

    [33]

    Franzblau D 1991 Phys. Rev. B 44 4925Google Scholar

    [34]

    Le Roux S, Petkov V 2010 J. Appl. Crystallogr. 43 181Google Scholar

    [35]

    Xiang X, Fan H, Zhou Y G 2024 J. Appl. Phys. 135 125102Google Scholar

    [36]

    Zhang S L, Yi S L, Yang J Y, Liu J, Liu L H 2023 Int. J. Heat Mass Tran. 207 123971Google Scholar

    [37]

    Panzer M A, Shandalov M, Rowlette J A, Oshima Y, Chen Y W, McIntyre P C, Goodson K E 2009 IEEE Electron Dev. Lett. 30 1269Google Scholar

    [38]

    Lee S M, Cahill D G, Allen T H 1995 Phys. Rev. B 52 253Google Scholar

    [39]

    Chaubey G S, Yao Y, Makongo J P, Sahoo P, Misra D, Poudeu P F, Wiley J B 2012 RSC Adv. 2 9207Google Scholar

    [40]

    Tritt T M 2005 Thermal Conductivity: Theory, Properties, and Applications (Springer Science & Business Media

    [41]

    Shenogin S, Bodapati A, Keblinski P, McGaughey A J 2009 J. Appl. Phys. 105 034906Google Scholar

    [42]

    Seyf H R, Henry A 2016 J. Appl. Phys. 120 025101Google Scholar

  • [1] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , doi: 10.7498/aps.72.20222270
    [2] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , doi: 10.7498/aps.71.20211857
    [3] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , doi: 10.7498/aps.70.20211857
    [4] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究.  , doi: 10.7498/aps.70.20201611
    [5] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率.  , doi: 10.7498/aps.70.20211015
    [6] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟.  , doi: 10.7498/aps.69.20200737
    [7] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响.  , doi: 10.7498/aps.65.104401
    [8] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率.  , doi: 10.7498/aps.63.136502
    [9] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , doi: 10.7498/aps.63.236601
    [10] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟.  , doi: 10.7498/aps.63.074401
    [11] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法.  , doi: 10.7498/aps.63.076501
    [12] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , doi: 10.7498/aps.62.186501
    [13] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , doi: 10.7498/aps.62.026501
    [14] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算.  , doi: 10.7498/aps.62.186302
    [15] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟.  , doi: 10.7498/aps.61.076501
    [16] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究.  , doi: 10.7498/aps.61.154402
    [17] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , doi: 10.7498/aps.60.066601
    [18] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运.  , doi: 10.7498/aps.58.7809
    [19] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究.  , doi: 10.7498/aps.57.3126
    [20] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟.  , doi: 10.7498/aps.55.1
计量
  • 文章访问数:  46
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-17
  • 修回日期:  2025-04-07
  • 上网日期:  2025-04-14

/

返回文章
返回
Baidu
map