搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于前摄效应的不耐烦行为建模与双向行人流动态

张琦 渠静

引用本文:
Citation:

基于前摄效应的不耐烦行为建模与双向行人流动态

张琦, 渠静

Impatient behavior modelling and simulation of bidirectional pedestrian flow dynamics based on proactive effect

Zhang Qi, Qu Jing
PDF
HTML
导出引用
  • 不耐烦情绪是一种因人而异的心理因素, 且随环境实时变化. 本研究构建了基于元胞自动机的行人微观模型, 并用其研究了双向行人流在不耐烦行为决策影响下的动态特征. 模型定义了潜在势能场表达行人对可用空间的占用倾向, 合理体现双向流行人决策的前摄效应. 提出在行人运动过程中, 根据瞬时状态测量、记录和更新行人个体不耐烦水平的方法, 并以此触发个性化行为. 对比研究了3种不同的不耐烦行为模式的作用效果. 仿真试验结果显示, 与不考虑不耐烦行为相比, 当不耐烦水平用于触发横跨行为时, 双向流在速度、流率和等待时间方面的表现均有改善; 当不耐烦用于直接计算行人对有限空间的竞争力时, 这3项指标则在大部分密度水平下均呈恶化. 针对不耐烦作用强度与决策阈值的参数灵敏度分析显示了模型在不耐烦作用表现方面的灵活性. 同时, 分场景的仿真试验还揭示了低比例慢速行人、步道宽度及混合行为模式等对双向流效率的作用.
    Impatience is a psychological factor that varies from person to person and constantly changes with the environment in real time. In this paper, a model based on cellular automaton is presented to investigate the dynamics of bi-directional flow, with considering individual impatient behaviors. Potential field is defined to represent pedestrian’s interest in available space, which provides an approach to the description of proactive mechanism in bi-directional flow. By formulating the dynamics with controllable parameters, individual impatience level is measured, recorded and updated to trigger off the personalized behaviors. Three different patterns of impatient behaviors are modeled and compared with each other. Simulation results demonstrate the different performances of impatient behavior patterns. Comparing with the situation without considering impatience, bidirectional flow is improved in terms of speed, flow rate and waiting time when impatience level is used to triggers off the sidestep behavior. However, the collective performance shows a deterioration at a most density level when impatience is regarded as a direct parameter to estimate the priority to a target cell among several competitors. The parameter sensitivity analysis of impatience intensity and decision threshold shows the flexibility of the model to present the impatience effect. Simulation experiments under different scenarios also reveal the effects of low proportion of slower pedestrians, walkway width and mixed behavior mode on the efficiency of pedestrian counter flow.
      通信作者: 张琦, qzhang6@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62003027)、北京市自然科学基金(批准号: L201013)、同济大学道路与交通工程教育部重点实验室开放基金(批准号: K201904)和中央高校基本科研业务费重大项目(批准号: 2020JBZD007)资助的课题
      Corresponding author: Zhang Qi, qzhang6@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62003027), the Natural Science Foundation of Beijing, China (Grant No. L201013), the Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, China (Grant No. K201904), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020JBZD007)
    [1]

    Lam W H K, Cheung C Y 2000 Journal of Transportation Engineering-asce 126 343Google Scholar

    [2]

    Lam W H K, Lee J Y S, Cheung C Y 2002 Transportation 29 169Google Scholar

    [3]

    Corbetta A, Meeusen J, Lee C M, Toschi F 2016 In Pedestrian and Evacuation Dynamics (He Fei: University of Science and Technology of China Press) pp18–24

    [4]

    Kretz T, Gr A, Kaufman M, Mazur F, Schreckenberg M 2006 J. Stat. Mech:Theory Exp. 10 10001Google Scholar

    [5]

    Helbing D, Buzna L, Johansson A, Werner T 2005 Transp. Sci. 39 1Google Scholar

    [6]

    Zhang J, Klingsch W, Schadschneider A, Seyfried A 2012 J. Stat. Mech:Theory Exp. 2 P02002Google Scholar

    [7]

    Xue S Q, Jiang R, Jia B, Wang Z Y, Zhang X 2019 Transp. B Transp. Dyn. 7 169Google Scholar

    [8]

    Jiang Y Q, Wong S C, Zhang P, Liu R X, Duan Y L, Choi K 2012 APPLIED MATHEMATICS AND COMPUTATION 218 6135Google Scholar

    [9]

    Hoogendoorn S P, Wageningen-Kessels F L, van Daamen W, Duives D C 2014 Physica A 416 684Google Scholar

    [10]

    Nagai R, Fukamachi M, Nagatani T 2005 Physica A 358 516Google Scholar

    [11]

    Blue V J, Adler J L 2001 Transp. Res. Part B 35 293Google Scholar

    [12]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar

    [13]

    Nagatani T 2009 Phys. Lett. A 373 2917Google Scholar

    [14]

    Nowak S, Schadschneider A 2012 Phys. Rev. E 85 066128Google Scholar

    [15]

    Nagatani T 2012 Appl. Math. Modell. 36 702Google Scholar

    [16]

    李明华, 袁振洲, 许琰, 田钧方 2015 64 018903Google Scholar

    Li M H, Yuan Z Z, Xu Y, Tian J F 2015 Acta Phys. Sin. 64 018903Google Scholar

    [17]

    Feliciani C, Nishinari K 2016 Phys. Rev. E 94 032304Google Scholar

    [18]

    Alonso-Marroquín F, Busch J, Chiew C, Lozano C, Ramírez-Gómez Á 2014 Phys. Rev. E 90 063305Google Scholar

    [19]

    Kwak J, Jo H H, Luttinen T, Kosonen I 2017 Phys. Rev. E 96 022319Google Scholar

    [20]

    Feliciani C, Nishinari K 2016 Physica A 451 135Google Scholar

    [21]

    Jin C J, Jiang R, Yin J L, Dong L Y, Li D W 2017 Physica A 482 666Google Scholar

    [22]

    Fu L B, Song W G, Lo S M 2016 Nonlinear Sci. Numer. Simul. 42 682Google Scholar

    [23]

    Haghani M, Sarvi M, Shahhoseini Z 2019 Transp. Res. Part A 122 51Google Scholar

    [24]

    Fu Z J, Zhou X D, Zhu K J, Chen Y Q, Zhuang Y F, Hu Y Q, Yang L Z, Chen C K, Li J 2015 Physica A 420 294Google Scholar

    [25]

    Weng W G, Chen T, Yuan H Y, Fan W C 2006 Phys. Rev. E 74 036102Google Scholar

    [26]

    Fu Z J, Zhou X D, Chen Y Q, Gong J H, Peng F, Yan Z D, Zhang T L, Yang L Z 2014 Commun. Nonlinear Sci. Numer. Simul. 20 832Google Scholar

    [27]

    Zhang D W, Zhu H T, Hostikka S, Qiu S 2019 Physica A 525 72Google Scholar

    [28]

    武鑫森, 岳昊, 刘秋梅, 张旭, 邵春福 2021 70 068901Google Scholar

    Wu X S, Yue H, Liu Q M, Zhang X, Shao C F 2021 Acta Phys. Sin. 70 068901Google Scholar

    [29]

    Tang T, Huang H, Shang H 2012 Nonlinear Dyn. 67 437Google Scholar

    [30]

    Lü Y X, Wu Z X, Guan J Y 2020 Phys. Rev. Res. 2 043250Google Scholar

    [31]

    杨灿, 陈群, 陈璐 2019 68 240504Google Scholar

    Yang C, Chen Q, Chen L 2019 Acta Phys. Sin. 68 240504Google Scholar

    [32]

    Kirchner A, Nishinari K, Schadschneider A 2003 Phys. Rev. E 67 056122Google Scholar

    [33]

    Hidalgo R C, Parisi D R, Zuriguel I 2017 Phys. Rev. E 95 042319Google Scholar

    [34]

    Helbing D, Farkas I J, Vicsek T 2000 Nature 407 487Google Scholar

    [35]

    Pastor J M, Garcimartín A, Gago P A, Peralta J P, Martín-Gómez C, Ferrer L M, Maza D, Parisi D R, Pugnaloni L A, Zuriguel I 2015 Phys. Rev. E 92 062817Google Scholar

    [36]

    Suma Y, Yanagisawa D, Nishinari K 2012 Physica A 391 248Google Scholar

    [37]

    金辉, 郭仁拥 2019 68 020501Google Scholar

    Jin H, Guo R Y 2019 Acta Phys. Sin. 68 020501Google Scholar

    [38]

    Ma Y P, Zhang H 2020 Chin. Phys. B 29 038901Google Scholar

    [39]

    Degond P, Appert-Rolland C, Moussaïd M, Pettré J, Theraulaz G 2013 J. Stat. Phys. 152 1033Google Scholar

    [40]

    Shi M, Eric W L M, Ma Y, Cao R F 2019 Transp. B Transp. Dyn. 7 1651Google Scholar

    [41]

    Shi M, Eric W L M, Ma Y 2019 Simul. Modell. Pract. Theory 94 367Google Scholar

    [42]

    Yu Y F, Song W G 2007 Phys. Rev. E 75 046112Google Scholar

    [43]

    Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K, Nishinari K 2009 Phys. Rev. E 80 036110Google Scholar

    [44]

    Wilensky U http://ccl.northwestern.edu/netlogo/index.shtml [2021-8-20]

  • 图 1  双向行人的前摄效应

    Fig. 1.  Proactive effect of bi-directional pedestrians.

    图 2  行人移动的方位及概率

    Fig. 2.  Pedestrian movement space and tendency.

    图 3  正在占据的格子的潜在势能场值更新

    Fig. 3.  Potential field value update for occupied cells.

    图 4  倾向于占据的格子的潜在势能场值更新

    Fig. 4.  Potential field value update for interested cells.

    图 5  3种不耐烦行为模式 (a) 模式1, 不耐烦作为回避的触发因素(R不耐烦水平i > δ); (b) 模式2, 不耐烦作为估计优先权的直接参数(目标格子有4名潜在竞争者, 其中, L的不耐烦水平i 最高且大于δ); (c) 模式3, 不耐烦作为估计优先级的间接参数(Ri × Ui, j最高且不耐烦水平i大于δ)

    Fig. 5.  Three patterns of impatient behaviors: (a) Pattern 1, impatience as a trigger of sidestep (i of R > δ); (b) Pattern 2, impatience as a direct parameter to estimate priority (4 potential competitors for the target cell, L has the largest i (i of L > δ) among all of the potential competitors for the target cell); (c) Pattern 3, impatience as an indirect parameter to estimate priority (R has the largest i × Ui, j (i of R > δ) among all of the potential competitors for the target cell).

    图 6  基本规则下的步道形成

    Fig. 6.  Lane formation with Basic movement rules (ρ = 0.3).

    图 7  4种场景下形成的潜在势能场(T = 100)

    Fig. 7.  Potential field generation under 4 scenarios (T = 100).

    图 8  模式1下不同密度水平个体的不耐烦水平(T = 50)

    Fig. 8.  Individual impatient level under different density levels with Pattern 1 (T = 50).

    图 9  不同密度水平下速度和流量的差异

    Fig. 9.  Comparison of speed and flow rate under different density levels.

    图 10  不同密度水平下的等待时间差异

    Fig. 10.  Wait time under different density levels.

    图 11  不同δ情况下速度和密度的关系 (a) 模式1; (b) 模式2; (c) 模式3

    Fig. 11.  Speed vs. Density under different δ: (a) Pattern 1; (b) Pattern 2; (c) Pattern 3.

    图 12  不同 αγ 下的速度和等待时间随密度的变化趋势 (a) 模式1的速度; (b) 模式1的等待时间; (c) 模式2的速度; (d) 模式2的等待时间; (e) 模式3的速度; (f) 模式3的等待时间

    Fig. 12.  Speed and wait time vs. density under different α and γ: (a) Speed with Pattern 1; (b) wait time with Pattern 1; (c) speed with Pattern 2; (d) wait time with Pattern 2; (e) speed with Pattern 3; (f) wait time with Pattern 3

    图 13  仿真试验中正常速度行人对慢速行人的超越过程(局部图) 注: 其中三角形代表正常速度行人, 箭头形代表慢速行人

    Fig. 13.  Overtaking process between pedestrians with normal speed and slower speed (Partial screenshot) Note: the triangles represent pedestrians with normal speed and the arrows represent pedestrians with slower speed.

    图 14  不同慢速行人比例下速度和密度的关系 (a) 模式1; (b) 模式2; (c) 模式3

    Fig. 14.  Speed vs. density under different proportion of slower pedestrians: (a) Pattern 1; (b) Pattern 2; (c) Pattern 3.

    图 15  混合模式不同密度下速度、流率、等待时间的变化 (a) 速度与密度关系; (b)流率与密度关系; (c) 等待时间与密度关系

    Fig. 15.  Speed, flow rate and wait time under different density levels with mix impatience patterns: (a) Speed; (b) flow rate; (c) wait time.

    表 1  参数及其物理意义

    Table 1.  Some parameters and the corresponding physical meanings.

    符号物理意义
    $ U_{i, j}^d $行走方向为d的行人向格子(i, j)移动的转移概率, d表示“右向左”或“左向右”
    $ E_{i, j}^d $, $ E_{i, j}^{\bar d} $取决于方向d或 $ \overline {\boldsymbol{d}} $ 行人的格子(i, j)的潜在势能场值, 当d表示“右向左”, 则$ \overline {\boldsymbol{d}} $表示“左向右”, 反之亦然
    $ E_{i, j}^{\rm{l}} $, $ E_{i, j}^{\rm{r}} $取决于“右向左”或“左向右”行人的格子(i, j)的潜在势能场值, $ E_{i, j}^{\rm{l}} $表示“左向右”, $ E_{i, j}^{\rm{r}} $表示“右向左”
    T时间步
    k行人前进方向上前方k个格子(即受影响格子)
    β潜在势能场值的衰减率, 0 ≤ β ≤ 1
    i行人的不耐烦水平
    α不耐烦水平增长率, α ≥ 1
    γ不耐烦水平衰减率, 0 ≤ γ ≤ 1
    δ影响决策的不耐烦水平阈值, δ ≥ 0
    下载: 导出CSV

    表 2  不考虑不耐烦情况下“右向左”行人R的基本运动规则

    Table 2.  Basic movement rules a pedestrian of Rights without considering impatience.

    Step 1: 比较$ {U_{{{ - 1, 0}}}} $, $ {U_{{{ - 1, 1}}}} $ 和 $ {U_{{{ - 1, - 1}}}} $, 具备最大$ {U_{i, j}} $ 值的空闲格子(i, j)被选为目标格子, 转Step 2; 如果3个格子均无空闲,
        跳转至Step 4;
    Step 2: 将当前格子的$ {E^{\rm{r}}} $值$ E_{{{0, 0}}}^{\rm{r}} $ 设为 $ E_{0, 0}^{\rm{r}} $ + 1, 转Step 3;
    Step 3: 移向目标格子, 转Step 5;
    Step 4: 停留在当前格子, 将右前格子的$ E_{ - 1, 1}^{\rm{r}} $设为 $ E_{ - 1, 1}^{\rm{r}} $ + 1, 将左前格子的$ E_{ - 1, - 1}^{\rm{r}} $设为 $ E_{ - 1, - 1}^{\rm{r}} $ + 1, 转Step 6;
    Step 5: 将走行方向上前k个格子的 $ E_{ - k, 0}^{\rm{r}} $设为$ E_{ - k, 0}^{\rm{r}} $ + 1, 转 Step 6;
    Step 6: 将所有空闲格子的$ {E^{\rm{r}}} $设为$ {E^{\rm{r}}} $ × β.
    对于“左向右”行人, $ {E^{\rm{l}}} $的更新规则类似. 当多人选择同一目标格子时, 随机选择一人移动.
    下载: 导出CSV

    表 3  模式1的规则

    Table 3.  Rules of Pattern 1.

    Step 1: 比较前进方向3个格子的$ {U_{{{ - 1, 0}}}} $, $ {U_{{{ - 1, 1}}}} $ 和 $ {U_{{{ - 1, - 1}}}} $, 具备最大$ {U_{i, j}} $的空闲格子 (i, j) 被选为目标格子, 转Step 2; 如果3个格子
        均非空且i > δ, 跳转Step 7; 否则, 跳转 Step 4;
    Step 2—Step 6: 与表2规则中的Step 2—Step 6 相同;
    Step 7: 比较左右横向格子的$ {U_{{{0, 1}}}} $ 和 $ {U_{{{0, - 1}}}} $, 具备最大$ {U_{i, j}} $的空闲格子 (i, j) 被选为目标格子, 转Step 2; 如果两个格子均非空, 跳转
        Step 4.
    下载: 导出CSV

    表 4  模式2的规则

    Table 4.  Rules of Pattern 2.

    Step 1: 比较前进方向3个格子的$ {U_{{{ - 1, 0}}}} $, $ {U_{{{ - 1, 1}}}} $ 和 $ {U_{{{ - 1, - 1}}}} $, 具备最大$ {U_{i, j}} $的空闲格子 (i, j) 被选为目标格子, 判断该行人是否在竞
        争者中具备最大i (i > δ), 是转Step 2, 否跳转Step 7; 如果3个格子均非空, 跳转 Step7;
    Step 2—Step 6: 与表2规则中的 Step 2—Step 6 相同;
    Step 7: 依次针对该行人周边的空闲格子判断该行人是否在竞争者中具备最大i (i > δ), 是则对应的格子选为目标格子, 转Step 2; 否跳
        转 Step 4.
    下载: 导出CSV

    表 5  模式3的规则

    Table 5.  Rules of Pattern 3.

    Step 1: 比较前进方向3个格子的$ {U_{{{ - 1, 0}}}} $, $ {U_{{{ - 1, 1}}}} $和 $ {U_{{{ - 1, - 1}}}} $, 具备最大$ {U_{i, j}} $(iδ) 或 $ {U_{i, j}} \times i $(i > δ)的空闲格子 (i, j) 被选为目标格
        子, 判断该行人是否在竞争者中具备最大的$ {U_{i, j}} $(iδ) 或 $ {U_{i, j}} \times i $(i > δ), 是转Step 2, 否跳转Step 7; 如果3个格子均非空,
        跳转Step 7;
    Step 2—Step 6: 与表2规则中的Step 2—Step 6 相同;
    Step 7: 依次针对该行人周边的空闲格子判断该行人是否在竞争者中具备最大$ {U_{i, j}} $(iδ) 或 $ {U_{i, j}} \times i $ (i > δ), 是则对应的格子选为
        目标格子, 转Step 2; 否跳转 Step 4.
    下载: 导出CSV

    表 6  统计指标及其含义

    Table 6.  Definitions of statistic index.

    指标含义计算方法
    Speed速度每一时间步向前进方向3个邻居格子(正前、左前、右前)移动的人数比总计人数
    Flow rate流率每一时间步移动穿过右侧边界的“左向右”行人数量与移动穿过左侧边界的“右向左”行人数量之和
    Waiting time等待时间行人原地停滞等待的时间步之和比总计人数
    下载: 导出CSV
    Baidu
  • [1]

    Lam W H K, Cheung C Y 2000 Journal of Transportation Engineering-asce 126 343Google Scholar

    [2]

    Lam W H K, Lee J Y S, Cheung C Y 2002 Transportation 29 169Google Scholar

    [3]

    Corbetta A, Meeusen J, Lee C M, Toschi F 2016 In Pedestrian and Evacuation Dynamics (He Fei: University of Science and Technology of China Press) pp18–24

    [4]

    Kretz T, Gr A, Kaufman M, Mazur F, Schreckenberg M 2006 J. Stat. Mech:Theory Exp. 10 10001Google Scholar

    [5]

    Helbing D, Buzna L, Johansson A, Werner T 2005 Transp. Sci. 39 1Google Scholar

    [6]

    Zhang J, Klingsch W, Schadschneider A, Seyfried A 2012 J. Stat. Mech:Theory Exp. 2 P02002Google Scholar

    [7]

    Xue S Q, Jiang R, Jia B, Wang Z Y, Zhang X 2019 Transp. B Transp. Dyn. 7 169Google Scholar

    [8]

    Jiang Y Q, Wong S C, Zhang P, Liu R X, Duan Y L, Choi K 2012 APPLIED MATHEMATICS AND COMPUTATION 218 6135Google Scholar

    [9]

    Hoogendoorn S P, Wageningen-Kessels F L, van Daamen W, Duives D C 2014 Physica A 416 684Google Scholar

    [10]

    Nagai R, Fukamachi M, Nagatani T 2005 Physica A 358 516Google Scholar

    [11]

    Blue V J, Adler J L 2001 Transp. Res. Part B 35 293Google Scholar

    [12]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar

    [13]

    Nagatani T 2009 Phys. Lett. A 373 2917Google Scholar

    [14]

    Nowak S, Schadschneider A 2012 Phys. Rev. E 85 066128Google Scholar

    [15]

    Nagatani T 2012 Appl. Math. Modell. 36 702Google Scholar

    [16]

    李明华, 袁振洲, 许琰, 田钧方 2015 64 018903Google Scholar

    Li M H, Yuan Z Z, Xu Y, Tian J F 2015 Acta Phys. Sin. 64 018903Google Scholar

    [17]

    Feliciani C, Nishinari K 2016 Phys. Rev. E 94 032304Google Scholar

    [18]

    Alonso-Marroquín F, Busch J, Chiew C, Lozano C, Ramírez-Gómez Á 2014 Phys. Rev. E 90 063305Google Scholar

    [19]

    Kwak J, Jo H H, Luttinen T, Kosonen I 2017 Phys. Rev. E 96 022319Google Scholar

    [20]

    Feliciani C, Nishinari K 2016 Physica A 451 135Google Scholar

    [21]

    Jin C J, Jiang R, Yin J L, Dong L Y, Li D W 2017 Physica A 482 666Google Scholar

    [22]

    Fu L B, Song W G, Lo S M 2016 Nonlinear Sci. Numer. Simul. 42 682Google Scholar

    [23]

    Haghani M, Sarvi M, Shahhoseini Z 2019 Transp. Res. Part A 122 51Google Scholar

    [24]

    Fu Z J, Zhou X D, Zhu K J, Chen Y Q, Zhuang Y F, Hu Y Q, Yang L Z, Chen C K, Li J 2015 Physica A 420 294Google Scholar

    [25]

    Weng W G, Chen T, Yuan H Y, Fan W C 2006 Phys. Rev. E 74 036102Google Scholar

    [26]

    Fu Z J, Zhou X D, Chen Y Q, Gong J H, Peng F, Yan Z D, Zhang T L, Yang L Z 2014 Commun. Nonlinear Sci. Numer. Simul. 20 832Google Scholar

    [27]

    Zhang D W, Zhu H T, Hostikka S, Qiu S 2019 Physica A 525 72Google Scholar

    [28]

    武鑫森, 岳昊, 刘秋梅, 张旭, 邵春福 2021 70 068901Google Scholar

    Wu X S, Yue H, Liu Q M, Zhang X, Shao C F 2021 Acta Phys. Sin. 70 068901Google Scholar

    [29]

    Tang T, Huang H, Shang H 2012 Nonlinear Dyn. 67 437Google Scholar

    [30]

    Lü Y X, Wu Z X, Guan J Y 2020 Phys. Rev. Res. 2 043250Google Scholar

    [31]

    杨灿, 陈群, 陈璐 2019 68 240504Google Scholar

    Yang C, Chen Q, Chen L 2019 Acta Phys. Sin. 68 240504Google Scholar

    [32]

    Kirchner A, Nishinari K, Schadschneider A 2003 Phys. Rev. E 67 056122Google Scholar

    [33]

    Hidalgo R C, Parisi D R, Zuriguel I 2017 Phys. Rev. E 95 042319Google Scholar

    [34]

    Helbing D, Farkas I J, Vicsek T 2000 Nature 407 487Google Scholar

    [35]

    Pastor J M, Garcimartín A, Gago P A, Peralta J P, Martín-Gómez C, Ferrer L M, Maza D, Parisi D R, Pugnaloni L A, Zuriguel I 2015 Phys. Rev. E 92 062817Google Scholar

    [36]

    Suma Y, Yanagisawa D, Nishinari K 2012 Physica A 391 248Google Scholar

    [37]

    金辉, 郭仁拥 2019 68 020501Google Scholar

    Jin H, Guo R Y 2019 Acta Phys. Sin. 68 020501Google Scholar

    [38]

    Ma Y P, Zhang H 2020 Chin. Phys. B 29 038901Google Scholar

    [39]

    Degond P, Appert-Rolland C, Moussaïd M, Pettré J, Theraulaz G 2013 J. Stat. Phys. 152 1033Google Scholar

    [40]

    Shi M, Eric W L M, Ma Y, Cao R F 2019 Transp. B Transp. Dyn. 7 1651Google Scholar

    [41]

    Shi M, Eric W L M, Ma Y 2019 Simul. Modell. Pract. Theory 94 367Google Scholar

    [42]

    Yu Y F, Song W G 2007 Phys. Rev. E 75 046112Google Scholar

    [43]

    Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K, Nishinari K 2009 Phys. Rev. E 80 036110Google Scholar

    [44]

    Wilensky U http://ccl.northwestern.edu/netlogo/index.shtml [2021-8-20]

  • [1] 张士杰, 王颖明, 王琦, 李晨宇, 李日. 基于元胞自动机-格子玻尔兹曼模型的枝晶碰撞行为模拟.  , 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [2] 杨灿, 陈群, 陈璐. 考虑在能见度受限下行人跟随行为特性的建模与模拟.  , 2019, 68(24): 240504. doi: 10.7498/aps.68.20190707
    [3] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型.  , 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [4] 秦严严, 王昊, 王炜, 万千. 混有协同自适应巡航控制车辆的异质交通流稳定性解析与基本图模型.  , 2017, 66(9): 094502. doi: 10.7498/aps.66.094502
    [5] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型.  , 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [6] 敬明, 邓卫, 王昊, 季彦婕. 基于跟车行为的双车道交通流元胞自动机模型.  , 2012, 61(24): 244502. doi: 10.7498/aps.61.244502
    [7] 孙泽, 贾斌, 李新刚. 基于元胞自动机的行人和机动车相互干扰机理研究.  , 2012, 61(10): 100508. doi: 10.7498/aps.61.100508
    [8] 任刚, 陆丽丽, 王炜. 基于元胞自动机和复杂网络理论的双向行人流建模.  , 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [9] 杨凌霄, 赵小梅, 高自友, 郑建风. 考虑交通出行惯例的双向行人流模型研究.  , 2011, 60(10): 100501. doi: 10.7498/aps.60.100501
    [10] 贾宁, 马寿峰. 最优速度模型与元胞自动机模型的比较研究.  , 2010, 59(2): 832-841. doi: 10.7498/aps.59.832
    [11] 郑亮, 马寿峰, 贾宁. 基于驾驶员行为的元胞自动机模型研究.  , 2010, 59(7): 4490-4498. doi: 10.7498/aps.59.4490
    [12] 岳昊, 邵春福, 关宏志, 段龙梅. 基于元胞自动机的行人视线受影响的疏散流仿真研究.  , 2010, 59(7): 4499-4507. doi: 10.7498/aps.59.4499
    [13] 周金旺, 邝华, 刘慕仁, 孔令江. 成对行为对行人疏散动力学的影响研究.  , 2009, 58(5): 3001-3007. doi: 10.7498/aps.58.3001
    [14] 岳昊, 邵春福, 姚智胜. 基于元胞自动机的行人疏散流仿真研究.  , 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [15] 周金旺, 陈秀丽, 孔令江, 刘慕仁, 谭惠丽, 周建槐. 一种改进的多速双向行人流元胞自动机模型.  , 2009, 58(4): 2281-2285. doi: 10.7498/aps.58.2281
    [16] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究.  , 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] 岳 昊, 邵春福, 陈晓明, 郝合瑞. 基于元胞自动机的对向行人交通流仿真研究.  , 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [18] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究.  , 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型.  , 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型.  , 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
计量
  • 文章访问数:  4226
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 修回日期:  2021-12-17
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回
Baidu
map