搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑在能见度受限下行人跟随行为特性的建模与模拟

杨灿 陈群 陈璐

引用本文:
Citation:

考虑在能见度受限下行人跟随行为特性的建模与模拟

杨灿, 陈群, 陈璐

Modeling and simulation of following behaviors of pedestrians under limited visibility

Yang Can, Chen Qun, Chen Lu
PDF
HTML
导出引用
  • 研究了行人在能见度受限情况下的疏散行为, 考虑行人对环境的熟悉程度, 将行人分为熟悉环境人群和不熟悉环境人群. 对于房间内熟悉环境的行人, 改进势函数元胞自动机模型来模拟其疏散行为. 对于不熟悉环境人群, 分析其在视野范围内的跟随行为, 并制定了不同跟随行为策略, 来研究其跟随行为特性. 仿真模拟了房间内熟悉环境人群的人数占比、房间内的视野半径大小以及行人密度等参数, 研究其对行人疏散的影响, 比较不熟悉环境人群采取的跟随策略的优劣. 发现疏散时间的大小与房间内视野半径的大小和房间内熟悉环境者密度的大小有关. 其次, 跟随策略的有效性与视野半径的大小和熟悉环境者密度有关. 而且在单一策略环境下, 有着同样的规律. 这些发现能对大型公共场所如超市、体育馆的应急疏散情况提供一些启示, 有助于在视野受限情况下制定一些有效的指导策略.
    In order to investigate the following behaviors of pedestrians under limited visibility, pedestrian evacuation is simulated by an improved cellular automata model. Considering the familiarity of pedestrians with the environment, pedestrians are divided into two types: Informed type and uninformed type. For the informed pedestrians, an extended cost potential field cellular automata model is proposed. For the uninformed pedestrians, some following behavior strategies are suggested to study their evacuation behaviors. These following behaviors include following a pedestrian in the visibility (S1), following the most people’s position in the visibility (S2), following the most movement direction in the visibility (S3), and walking along the wall (S4). To investigate the evacuation efficiency of these different following strategies, we compare the performances of different densities of informed pedestrians, different visibility and different pedestrian proportions. As demonstrated by the simulation results, evacuation efficiency and the effectiveness of the following strategies are related to the visibility and density of informed pedestrians. The simulation results show that when the density of informed pedestrians is constant, S4 is more efficient at very poor visibility (R = 1), strategy S3 and S4 are more efficient at poor visibility (1 < R < 7), and the four strategies are equally efficient at good visibility (R > 6). In addition, when the visibility is constant, the density of informed pedestrians is less than 0.5, strategy S3 is the most efficient strategy. When the visibility is constant, the density of informed pedestrians is more than 0.5, the four strategies have a better performance. Moreover, it is noted that the same regular changes also exist in a single strategy environment. These findings can provide some insights into the emergency evacuation of large public places such as supermarkets and stadiums, and help develop effective guidance strategies under limited visibility.
      通信作者: 陈群, chenqun631@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 50908235)资助的课题
      Corresponding author: Chen Qun, chenqun631@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50908235)
    [1]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar

    [2]

    Helbing D, Farkas I J, Vicsek T 2000 Nature 407 487Google Scholar

    [3]

    Helbing D, Farkas I J, Vicsek T 2000 Phys. Rev. Lett. 84 1240Google Scholar

    [4]

    Helbing D, Isobe M, Nagatani T, Takimoto K 2003 Phys. Rev. E 67 067101Google Scholar

    [5]

    Parisi D, Dorso C 2007 Physica A 385 343Google Scholar

    [6]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487Google Scholar

    [7]

    Tajima Y, Nagatani T 2001 Physica A 292 545Google Scholar

    [8]

    Nagai R, Fukamachi M, Nagatani T 2006 Physica A 367 449Google Scholar

    [9]

    Blue V J, Adler J L 2001 Transl. Res. B 35 293Google Scholar

    [10]

    Tajima Y, Takimoto K, Nagatani T 2002 Physica A 313 709Google Scholar

    [11]

    Blue V, Embrechts M, Adler J 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation Orlando, USA, October 12−15, 1997 p2320

    [12]

    Burstedde C, Klauck K, Schadschneider A, Zittartzet J 2001 Physica A 295 507Google Scholar

    [13]

    周金旺, 邝华, 刘慕仁, 孔令江 2009 58 3001Google Scholar

    Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001Google Scholar

    [14]

    永贵, 黄海军, 许岩 2013 62 010506Google Scholar

    Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506Google Scholar

    [15]

    岳昊, 邵春福, 姚智胜 2009 58 4523Google Scholar

    Yue H, Shao C F, Yao Z S 2009 Acta Phys. Sin. 58 4523Google Scholar

    [16]

    Zhang P, Jian X X, Wong S, Choi K 2012 Phys. Rev. E 85 021119Google Scholar

    [17]

    Jian X X, Wong S, Zhang P, Choi K, Li H, Zhang X 2014 Transl. Res. C 42 200Google Scholar

    [18]

    Hou L, Liu J G, Pan X, Wang B H 2014 Physica A 400 93Google Scholar

    [19]

    Ma Y, Yuen R K K, Lee E W M 2016 Physica A 450 333Google Scholar

    [20]

    Ma Y, Lee E W M, Shi M 2017 Phys. Lett. A 381 1837Google Scholar

    [21]

    Guo R Y, Huang H J, Wong S C 2012 Transl. Res. B 46 669Google Scholar

    [22]

    Frank G A, Dorso C O 2015 Int. J. Mod. Phys. C 26 1550005Google Scholar

    [23]

    Wang P, Cao S 2019 Phys. Lett. A 383 825Google Scholar

    [24]

    Li X, Guo F, Kuang H, Geng Z, Fan Y 2019 Physica A 515 47Google Scholar

    [25]

    Li D, Han B 2015 Saf. Sci. 80 41Google Scholar

    [26]

    Zhang Q 2015 Physica A 419 335Google Scholar

    [27]

    Guo W, Wang X L, Zheng X P 2015 Physica A 432 87Google Scholar

    [28]

    Yuan W, Tan K H 2009 Curr. Appl. Phys. 9 1014Google Scholar

    [29]

    Lu L, Chan C Y, Wang J, Wang W 2017 Trans. Res. C 81 317Google Scholar

    [30]

    Wang X, Zheng X, Cheng Y 2012 Physica A 391 2245Google Scholar

    [31]

    Fang J, El-Tawil S, Aguirre B 2016 Saf. Sci. 83 40Google Scholar

  • 图 1  行人视野图

    Fig. 1.  Visibility of pedestrian.

    图 2  其他行人对熟悉环境者行人影响图

    Fig. 2.  Influence of the moving direction for surrounding pedestrian on the desired moving direction for the center pedestrian.

    图 3  不熟悉环境人群策略图

    Fig. 3.  Diagram of uninformed pedestrian strategies.

    图 4  房间内区域分布图

    Fig. 4.  Illustration of different areas.

    图 5  策略S1跟随示意图

    Fig. 5.  Following strategy S1.

    图 6  策略S2, S3跟随示意图

    Fig. 6.  Following strategy S2 and S3.

    图 7  行人邻域及概率示意图 (a)当前元胞及8个邻居元胞图; (b)当前元胞移动概率图

    Fig. 7.  Neighboring cell and moving probabilities of pedestrian: (a) An occupied cell and its eight neighboring cells; (b) the corresponding probabilities for occupation in the next update step.

    图 8  仿真步骤

    Fig. 8.  Simulation step diagram.

    图 9  环境熟悉度与疏散时间的关系图 (a) R = 1 m; (b) R = 2 m; (c) R = 3 m; (d) R = 4 m; (e) R = 5 m

    Fig. 9.  Relationship between environmental familiarity and evacuation time: (a) R = 1 m; (b) R = 2 m; (c) R = 3 m; (d) R = 4 m; (e) R = 5 m.

    图 10  视野半径与疏散时间的关系图 (a) Ks = 0; (b) Ks = 0.1; (c) Ks = 0.2; (d) Ks = 0.3; (e) Ks = 0.4; (f) Ks = 0.5

    Fig. 10.  Relationship between different visibilities and evacuation time: (a) Ks = 0; (b) Ks = 0.1; (c) Ks = 0.2; (d) Ks = 0.3; (e) Ks = 0.4; (f) Ks = 0.5.

    图 11  行人疏散流演化过程($\rho = 0.3, Ks = 0.4, R = 3$) (a) T = 0; (b) T = 20; (c) T = 40; (d) T = 60; (e) T = 90; (f) T = 110

    Fig. 11.  Evacuation evolution ($\rho = 0.3, Ks = 0.4, R = 3$): (a) T = 0; (b) T = 20; (c) T = 40; (d) T = 60; (e) T = 90; (f) T = 110

    图 12  不同密度下各策略视野半径与疏散时间的关系 (a) $\rho = 0.1$; (b) $\rho = 0.2$; (c) $\rho = 0.3$; (d) $\rho = 0.4$

    Fig. 12.  Relationship between different visibilities and evacuation time under different density: (a) $\rho = 0.1$; (b) $\rho = 0.2$; (c) $\rho = 0.3$; (d) $\rho = 0.4$.

    图 13  不同密度下各策略环境熟悉度与疏散时间的关系 (a) $\rho = 0.1$; (b) $\rho = 0.2$; (c) $\rho = 0.3$; (d) $\rho = 0.4$

    Fig. 13.  Relationship between environmental familiarity and evacuation time under different density: (a) $\rho = 0.1$; (b) $\rho = 0.2$; (c) $\rho = 0.3$; (d) $\rho = 0.4$.

    图 14  单一策略下不同密度的视野半径与疏散时间的关系 (a)策略S1; (b)策略S2; (c)策略S3; (d)策略S4

    Fig. 14.  Relationship between different visibilities and evacuation time at different densities under a single strategy: (a) Strategy S1; (b) strategy S2; (c) strategy S3; (d) strategy S4.

    图 15  不同密度下各策略的视野半径与疏散时间的关系 (a) $\rho = 0.1$; (b) $\rho = 0.2$; (c) $\rho = 0.3$; (d) $\rho = 0.4$

    Fig. 15.  Relationship of different strategy between different visibilities and evacuation time at different densities: (a) $\rho = 0.1$; (b) $\rho = 0.2$; (c) $\rho = 0.3$; (d) $\rho = 0.4$.

    表 1  参数说明

    Table 1.  Parameters description.

    变量名称名称物理意义名称物理意义
    L房间长度ρ行人密度${\rm{S1}}, {\rm{S2}}, {\rm{S3}}, {\rm{S4}}$行人移动策略
    W出口宽度Ks熟悉环境者密度TS1, TS2, TS3, TS4策略疏散时间
    N行人总人数R行人视野半径T行人疏散总时间
    下载: 导出CSV
    Baidu
  • [1]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar

    [2]

    Helbing D, Farkas I J, Vicsek T 2000 Nature 407 487Google Scholar

    [3]

    Helbing D, Farkas I J, Vicsek T 2000 Phys. Rev. Lett. 84 1240Google Scholar

    [4]

    Helbing D, Isobe M, Nagatani T, Takimoto K 2003 Phys. Rev. E 67 067101Google Scholar

    [5]

    Parisi D, Dorso C 2007 Physica A 385 343Google Scholar

    [6]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487Google Scholar

    [7]

    Tajima Y, Nagatani T 2001 Physica A 292 545Google Scholar

    [8]

    Nagai R, Fukamachi M, Nagatani T 2006 Physica A 367 449Google Scholar

    [9]

    Blue V J, Adler J L 2001 Transl. Res. B 35 293Google Scholar

    [10]

    Tajima Y, Takimoto K, Nagatani T 2002 Physica A 313 709Google Scholar

    [11]

    Blue V, Embrechts M, Adler J 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation Orlando, USA, October 12−15, 1997 p2320

    [12]

    Burstedde C, Klauck K, Schadschneider A, Zittartzet J 2001 Physica A 295 507Google Scholar

    [13]

    周金旺, 邝华, 刘慕仁, 孔令江 2009 58 3001Google Scholar

    Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001Google Scholar

    [14]

    永贵, 黄海军, 许岩 2013 62 010506Google Scholar

    Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506Google Scholar

    [15]

    岳昊, 邵春福, 姚智胜 2009 58 4523Google Scholar

    Yue H, Shao C F, Yao Z S 2009 Acta Phys. Sin. 58 4523Google Scholar

    [16]

    Zhang P, Jian X X, Wong S, Choi K 2012 Phys. Rev. E 85 021119Google Scholar

    [17]

    Jian X X, Wong S, Zhang P, Choi K, Li H, Zhang X 2014 Transl. Res. C 42 200Google Scholar

    [18]

    Hou L, Liu J G, Pan X, Wang B H 2014 Physica A 400 93Google Scholar

    [19]

    Ma Y, Yuen R K K, Lee E W M 2016 Physica A 450 333Google Scholar

    [20]

    Ma Y, Lee E W M, Shi M 2017 Phys. Lett. A 381 1837Google Scholar

    [21]

    Guo R Y, Huang H J, Wong S C 2012 Transl. Res. B 46 669Google Scholar

    [22]

    Frank G A, Dorso C O 2015 Int. J. Mod. Phys. C 26 1550005Google Scholar

    [23]

    Wang P, Cao S 2019 Phys. Lett. A 383 825Google Scholar

    [24]

    Li X, Guo F, Kuang H, Geng Z, Fan Y 2019 Physica A 515 47Google Scholar

    [25]

    Li D, Han B 2015 Saf. Sci. 80 41Google Scholar

    [26]

    Zhang Q 2015 Physica A 419 335Google Scholar

    [27]

    Guo W, Wang X L, Zheng X P 2015 Physica A 432 87Google Scholar

    [28]

    Yuan W, Tan K H 2009 Curr. Appl. Phys. 9 1014Google Scholar

    [29]

    Lu L, Chan C Y, Wang J, Wang W 2017 Trans. Res. C 81 317Google Scholar

    [30]

    Wang X, Zheng X, Cheng Y 2012 Physica A 391 2245Google Scholar

    [31]

    Fang J, El-Tawil S, Aguirre B 2016 Saf. Sci. 83 40Google Scholar

计量
  • 文章访问数:  8780
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 修回日期:  2019-09-15
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回
Baidu
map