搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢终端单晶金刚石反相器特性

邢雨菲 任泽阳 张金风 苏凯 丁森川 何琦 张进成 张春福 郝跃

引用本文:
Citation:

氢终端单晶金刚石反相器特性

邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃

Characteristics of hydrogen terminated single crystalline diamond logic inverter

Xing Yu-Fei, Ren Ze-Yang, Zhang Jin-Feng, Su Kai, Ding Sen-Chuan, He Qi, Zhang Jin-Cheng, Zhang Chun-Fu, Hao Yue
PDF
HTML
导出引用
  • 超宽禁带半导体金刚石材料在高温、高压电路中具有重要的应用潜力. 本研究采用微波等离子体化学气相沉积生长的单晶金刚石衬底制备了原子层沉积(atomic layer deposition, ALD)的Al2O3栅介质的氢终端金刚石金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor, MOSFET)器件, 并与负载电阻互连, 成功制备了金刚石反相器. 4 μm栅长的氢终端金刚石器件实现了最大113.4 mA/mm的输出饱和漏电流, 器件开关比高达109, 并在不同负载电阻条件下均成功测得金刚石反相器的电压反转特性, 反相器的最大增益为10.
    Diamond has a wide band gap, high carrier mobility, and high thermal conductivity, thereby possessing great potential applications in high power, and high temperature electronics devices, and also inhigh temperature logic circuit. In this work, we fabricate a hydrogen terminated diamond metal-oxide-semiconductor field effect transistor (MOSFET) by using the atomic layer deposition grown Al2O3 as a gate dielectric and passivation layer. The device has a gate length and width of 4 μm and 50 μm, respectively. The device delivers a maximum output current of about 113.4 mA/mm at VGS of –6 V and an ultra-high on/off ratio of 109. In addition, we fabricate three resistors, respectively, with an interelectrode distance of 20, 80 and 160 μm, corresponding to the resistance value of 16.7, 69.5 and 136.4 kΩ, respectively. The logic inverter is realized by combining the MOSFET with the load resistance, and the characteristics of the logic inverter are demonstrated successfully, which indicates that the diamond MOSFET has great potential applications in future logic circuits.
      通信作者: 任泽阳, zeyangren@xidian.edu.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项基金(批准号: 2019YFE03100200)、国家自然科学基金(批准号: 62127812, 62004148, 61874080)、国家科技重大专项(批准号: 2009ZYHW0015)、陕西省自然科学基础研究计划(批准号: 2020JQ-315, 2018ZDCXL-GY-01-01-02, 2019ZDLGY16-02)和中国博士后科学基金(批准号: 2021TQ0256)资助的课题.
      Corresponding author: Ren Ze-Yang, zeyangren@xidian.edu.cn
    • Funds: Project supported by the National Special Fund for Magnetic Confinement Nuclear Fusion Energy R&D Program (Grant No. 2019YFE03100200), the National Natural Science Foundation of China (Grant Nos. 62127812, 62004148, 61874080), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZYHW0015), the Natural Science Basic Research Program of Shanxi Province, China (Grant Nos. 2020JQ-315, 2018ZDCXL-GY-01-01-02, 2019ZDLGY16-02), and the China Postdoctoral Science Foundation (Grant No. 2021TQ0256).
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22Google Scholar

    [2]

    Baliga B J 1989 IEEE Electr. Device Lett. 10 455Google Scholar

    [3]

    Achard J, Silva F, Tallaire A, Bonnin X, Lombardi G, Hassouni K, Gicquel A 2007 J. Phys. D:Appl. Phys. 40 6175Google Scholar

    [4]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diam. Relat. Mater. 15 783Google Scholar

    [5]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electr. Device Lett. 33 1111Google Scholar

    [6]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 4Google Scholar

    [7]

    Liu J, Yu H, Shao S, Tu J, Zhu X, Yuan X, Wei J, Chen L, Ye H, Li C 2020 Diam. Relat. Mater. 104 107750Google Scholar

    [8]

    Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electr. Device Lett. 39 1373Google Scholar

    [9]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electr. Device Lett. 27 570Google Scholar

    [10]

    Kitabayashi Y, Kudo T, Tsuboi H, Yamada T, Xu D, Shibata M, Matsumura D, Hayashi Y, Syamsul M, Inaba M, Hiraiwa A, Kawarada H 2017 IEEE Electr. Device Lett. 38 363Google Scholar

    [11]

    Imanishi S, Horikawa K, Oi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2019 IEEE Electr. Device Lett. 40 279Google Scholar

    [12]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electr. Device Lett. 33 1471Google Scholar

    [13]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 IEEE Electr. Device Lett. 41 1249Google Scholar

    [14]

    Ren Z Y, Yuan G S, Zhang J F, Xu L, Zhang J C, Chen W J, Hao Y 2018 Aip. Adv. 8 6Google Scholar

    [15]

    Daicho A, Saito T, Kurihara S, Hiraiwa A, Kawarada H 2014 J. Appl. Phys. 115 4Google Scholar

    [16]

    Wang Y F, Chang X, Zhang X, Fu J, Fan S, Bu R, Zhang J, Wang W, Wang H X, Wang J 2018 Diam. Relat. Mater. 81 113Google Scholar

    [17]

    Ren Z, Lv D, Xu J, Zhang J, Zhang J, Su K, Zhang C, Hao Y 2020 Appl. Phys. Lett. 116 013503Google Scholar

    [18]

    Liu J W, Liao M Y, Imura M, Watanabe E, Oosato H, Koide Y 2014 Appl. Phys. Lett. 105 082110Google Scholar

    [19]

    Liu J W, Oosato H, Liao M Y, Imura M, Watanabe E, Koide Y 2018 Appl. Phys. Lett. 112 153501Google Scholar

    [20]

    Liu J, Ohsato H, Liao M, Imura M, Watanabe E, Koide Y 2017 IEEE Electr. Device. Lett. 38 922Google Scholar

    [21]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diam. Relat. Mater. 43 43Google Scholar

    [22]

    Ren Z, Zhang J, Zhang J, Zhang C, Xu S, Li Y, Hao Y 2017 IEEE Electr. Device Lett. 38 786Google Scholar

    [23]

    Yamaguchi T, Umezawa H, Ohmagari S, Koizumi H, Kaneko J H 2021 Appl. Phys. Lett. 118 162105Google Scholar

    [24]

    Inaba M, Muta T, Kobayashi M, Saito T, Shibata M, Matsumura D, Kudo T, Hiraiwa A, Kawarada H 2016 Appl. Phys. Lett. 109 033503Google Scholar

    [25]

    Kawarada H, Yamada T, Xu D, Kitabayashi Y, Shibata M, Matsumura D, Kobayashi M, Saito T, Kudo T, Inaba M, Hiraiwa A, Ieee. 2016 Diamond MOSFETs using 2D Hole Gas with 1700 V Breakdown Voltage. (New York: Ieee) p483

    [26]

    Syamsul M, Kitabayashi Y, Kudo T, Matsumura D, Kawarada H 2017 IEEE Electr. Device. Lett. 38 607Google Scholar

  • 图 1  实验制备器件的原理图 (a) 剖面图; (b) 俯视图

    Fig. 1.  Schematic diagram of the device structure: (a) Sectional view; (b) top view.

    图 2  器件负载电阻 (a) I-V特性; (b) R1, R2, R3电阻阻值

    Fig. 2.  The load resistance of device: (a) I-V relationships; (b) resistance values for the R1, R2 and R3 resistors.

    图 3  氢终端金刚石MOSFET器件输出特性

    Fig. 3.  Output characteristics of the hydrogen-terminated diamond (H-diamond) MOSFET.

    图 4  氢终端金刚石MOSFET器件传输特性

    Fig. 4.  Transfer characteristics of the H-diamond MOSFET.

    图 5  不同负载电阻的逻辑反相器的电压传输特性

    Fig. 5.  The voltage transfer characteristics of the logic inverter with the various load resistors.

    图 6  反相器不同负载电阻情况下增益与输入电压的关系

    Fig. 6.  Relationship between Vin and the gain of the inverter under different load resistances.

    图 7  (a)恒流区器件输出电压变化; (b)可变电阻区器件输出电压变化

    Fig. 7.  (a) Output voltage variation in saturation area; (b) output voltage variation in variable resistance area.

    表 1  不同条件沉积的Al2O3介质的氢终端金刚石MOSFET器件的最大输出电流密度

    Table 1.  Summarization of the characterization of the H-diamond MOSFETs with the different temperatures grown Al2O3 as gate dielectrics.

    Al2O3
    厚度/nm
    生长
    温度/℃
    LG/μmLGD/μm电流密度
    /(mA·mm–1)
    参考
    文献
    6800.1585.0[8]
    202002.02339.0[14]
    203002.0285.0[14]
    253002.02339.0[17]
    834505.02012.0[23]
    20045020.01018.2[24]
    2004502.017120.0[25]
    2004506.0612.0[6]
    20045015.0245.2[10]
    4004502.01759.0[26]
    153004.02113.4本工作
    下载: 导出CSV
    Baidu
  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22Google Scholar

    [2]

    Baliga B J 1989 IEEE Electr. Device Lett. 10 455Google Scholar

    [3]

    Achard J, Silva F, Tallaire A, Bonnin X, Lombardi G, Hassouni K, Gicquel A 2007 J. Phys. D:Appl. Phys. 40 6175Google Scholar

    [4]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diam. Relat. Mater. 15 783Google Scholar

    [5]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electr. Device Lett. 33 1111Google Scholar

    [6]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 4Google Scholar

    [7]

    Liu J, Yu H, Shao S, Tu J, Zhu X, Yuan X, Wei J, Chen L, Ye H, Li C 2020 Diam. Relat. Mater. 104 107750Google Scholar

    [8]

    Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electr. Device Lett. 39 1373Google Scholar

    [9]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electr. Device Lett. 27 570Google Scholar

    [10]

    Kitabayashi Y, Kudo T, Tsuboi H, Yamada T, Xu D, Shibata M, Matsumura D, Hayashi Y, Syamsul M, Inaba M, Hiraiwa A, Kawarada H 2017 IEEE Electr. Device Lett. 38 363Google Scholar

    [11]

    Imanishi S, Horikawa K, Oi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2019 IEEE Electr. Device Lett. 40 279Google Scholar

    [12]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electr. Device Lett. 33 1471Google Scholar

    [13]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 IEEE Electr. Device Lett. 41 1249Google Scholar

    [14]

    Ren Z Y, Yuan G S, Zhang J F, Xu L, Zhang J C, Chen W J, Hao Y 2018 Aip. Adv. 8 6Google Scholar

    [15]

    Daicho A, Saito T, Kurihara S, Hiraiwa A, Kawarada H 2014 J. Appl. Phys. 115 4Google Scholar

    [16]

    Wang Y F, Chang X, Zhang X, Fu J, Fan S, Bu R, Zhang J, Wang W, Wang H X, Wang J 2018 Diam. Relat. Mater. 81 113Google Scholar

    [17]

    Ren Z, Lv D, Xu J, Zhang J, Zhang J, Su K, Zhang C, Hao Y 2020 Appl. Phys. Lett. 116 013503Google Scholar

    [18]

    Liu J W, Liao M Y, Imura M, Watanabe E, Oosato H, Koide Y 2014 Appl. Phys. Lett. 105 082110Google Scholar

    [19]

    Liu J W, Oosato H, Liao M Y, Imura M, Watanabe E, Koide Y 2018 Appl. Phys. Lett. 112 153501Google Scholar

    [20]

    Liu J, Ohsato H, Liao M, Imura M, Watanabe E, Koide Y 2017 IEEE Electr. Device. Lett. 38 922Google Scholar

    [21]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diam. Relat. Mater. 43 43Google Scholar

    [22]

    Ren Z, Zhang J, Zhang J, Zhang C, Xu S, Li Y, Hao Y 2017 IEEE Electr. Device Lett. 38 786Google Scholar

    [23]

    Yamaguchi T, Umezawa H, Ohmagari S, Koizumi H, Kaneko J H 2021 Appl. Phys. Lett. 118 162105Google Scholar

    [24]

    Inaba M, Muta T, Kobayashi M, Saito T, Shibata M, Matsumura D, Kudo T, Hiraiwa A, Kawarada H 2016 Appl. Phys. Lett. 109 033503Google Scholar

    [25]

    Kawarada H, Yamada T, Xu D, Kitabayashi Y, Shibata M, Matsumura D, Kobayashi M, Saito T, Kudo T, Inaba M, Hiraiwa A, Ieee. 2016 Diamond MOSFETs using 2D Hole Gas with 1700 V Breakdown Voltage. (New York: Ieee) p483

    [26]

    Syamsul M, Kitabayashi Y, Kudo T, Matsumura D, Kawarada H 2017 IEEE Electr. Device. Lett. 38 607Google Scholar

  • [1] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制.  , 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [3] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究.  , 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [4] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性.  , 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [5] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用.  , 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [6] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响.  , 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质.  , 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [8] 刘燕文, 王小霞, 朱虹, 韩勇, 谷兵, 陆玉新, 方荣. 金刚石材料对螺旋线慢波组件散热性能的影响.  , 2013, 62(23): 234402. doi: 10.7498/aps.62.234402
    [9] 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 国产六面顶压机多晶种法合成宝石级金刚石单晶.  , 2013, 62(18): 188103. doi: 10.7498/aps.62.188103
    [10] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究.  , 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [11] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征.  , 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [12] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征.  , 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [13] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构.  , 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [14] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究.  , 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [15] 梁中翥, 梁静秋, 郑娜, 姜志刚, 王维彪, 方伟. 吸收辐射复合金刚石膜的制备及光学研究.  , 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [16] 张 威, 李梦轲, 魏 强, 曹 璐, 杨 志, 乔双双. ZnO纳米线场效应管的制备及I-V特性研究.  , 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [17] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路.  , 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [18] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响.  , 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [19] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究.  , 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [20] 李荣斌, 戴永兵, 胡晓君, 沈荷生, 何贤昶. 能量粒子轰击金刚石的计算机模拟.  , 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
计量
  • 文章访问数:  4858
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 修回日期:  2021-11-04
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map