-
超宽禁带半导体金刚石材料在高温、高压电路中具有重要的应用潜力. 本研究采用微波等离子体化学气相沉积生长的单晶金刚石衬底制备了原子层沉积(atomic layer deposition, ALD)的Al2O3栅介质的氢终端金刚石金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor, MOSFET)器件, 并与负载电阻互连, 成功制备了金刚石反相器. 4 μm栅长的氢终端金刚石器件实现了最大113.4 mA/mm的输出饱和漏电流, 器件开关比高达109, 并在不同负载电阻条件下均成功测得金刚石反相器的电压反转特性, 反相器的最大增益为10.Diamond has a wide band gap, high carrier mobility, and high thermal conductivity, thereby possessing great potential applications in high power, and high temperature electronics devices, and also inhigh temperature logic circuit. In this work, we fabricate a hydrogen terminated diamond metal-oxide-semiconductor field effect transistor (MOSFET) by using the atomic layer deposition grown Al2O3 as a gate dielectric and passivation layer. The device has a gate length and width of 4 μm and 50 μm, respectively. The device delivers a maximum output current of about 113.4 mA/mm at VGS of –6 V and an ultra-high on/off ratio of 109. In addition, we fabricate three resistors, respectively, with an interelectrode distance of 20, 80 and 160 μm, corresponding to the resistance value of 16.7, 69.5 and 136.4 kΩ, respectively. The logic inverter is realized by combining the MOSFET with the load resistance, and the characteristics of the logic inverter are demonstrated successfully, which indicates that the diamond MOSFET has great potential applications in future logic circuits.
-
Keywords:
- diamond /
- filed effect transistor /
- logic inverter
[1] Wort C J H, Balmer R S 2008 Mater. Today 11 22Google Scholar
[2] Baliga B J 1989 IEEE Electr. Device Lett. 10 455Google Scholar
[3] Achard J, Silva F, Tallaire A, Bonnin X, Lombardi G, Hassouni K, Gicquel A 2007 J. Phys. D:Appl. Phys. 40 6175Google Scholar
[4] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diam. Relat. Mater. 15 783Google Scholar
[5] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electr. Device Lett. 33 1111Google Scholar
[6] Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 4Google Scholar
[7] Liu J, Yu H, Shao S, Tu J, Zhu X, Yuan X, Wei J, Chen L, Ye H, Li C 2020 Diam. Relat. Mater. 104 107750Google Scholar
[8] Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electr. Device Lett. 39 1373Google Scholar
[9] Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electr. Device Lett. 27 570Google Scholar
[10] Kitabayashi Y, Kudo T, Tsuboi H, Yamada T, Xu D, Shibata M, Matsumura D, Hayashi Y, Syamsul M, Inaba M, Hiraiwa A, Kawarada H 2017 IEEE Electr. Device Lett. 38 363Google Scholar
[11] Imanishi S, Horikawa K, Oi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2019 IEEE Electr. Device Lett. 40 279Google Scholar
[12] Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electr. Device Lett. 33 1471Google Scholar
[13] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 IEEE Electr. Device Lett. 41 1249Google Scholar
[14] Ren Z Y, Yuan G S, Zhang J F, Xu L, Zhang J C, Chen W J, Hao Y 2018 Aip. Adv. 8 6Google Scholar
[15] Daicho A, Saito T, Kurihara S, Hiraiwa A, Kawarada H 2014 J. Appl. Phys. 115 4Google Scholar
[16] Wang Y F, Chang X, Zhang X, Fu J, Fan S, Bu R, Zhang J, Wang W, Wang H X, Wang J 2018 Diam. Relat. Mater. 81 113Google Scholar
[17] Ren Z, Lv D, Xu J, Zhang J, Zhang J, Su K, Zhang C, Hao Y 2020 Appl. Phys. Lett. 116 013503Google Scholar
[18] Liu J W, Liao M Y, Imura M, Watanabe E, Oosato H, Koide Y 2014 Appl. Phys. Lett. 105 082110Google Scholar
[19] Liu J W, Oosato H, Liao M Y, Imura M, Watanabe E, Koide Y 2018 Appl. Phys. Lett. 112 153501Google Scholar
[20] Liu J, Ohsato H, Liao M, Imura M, Watanabe E, Koide Y 2017 IEEE Electr. Device. Lett. 38 922Google Scholar
[21] Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diam. Relat. Mater. 43 43Google Scholar
[22] Ren Z, Zhang J, Zhang J, Zhang C, Xu S, Li Y, Hao Y 2017 IEEE Electr. Device Lett. 38 786Google Scholar
[23] Yamaguchi T, Umezawa H, Ohmagari S, Koizumi H, Kaneko J H 2021 Appl. Phys. Lett. 118 162105Google Scholar
[24] Inaba M, Muta T, Kobayashi M, Saito T, Shibata M, Matsumura D, Kudo T, Hiraiwa A, Kawarada H 2016 Appl. Phys. Lett. 109 033503Google Scholar
[25] Kawarada H, Yamada T, Xu D, Kitabayashi Y, Shibata M, Matsumura D, Kobayashi M, Saito T, Kudo T, Inaba M, Hiraiwa A, Ieee. 2016 Diamond MOSFETs using 2D Hole Gas with 1700 V Breakdown Voltage. (New York: Ieee) p483
[26] Syamsul M, Kitabayashi Y, Kudo T, Matsumura D, Kawarada H 2017 IEEE Electr. Device. Lett. 38 607Google Scholar
-
表 1 不同条件沉积的Al2O3介质的氢终端金刚石MOSFET器件的最大输出电流密度
Table 1. Summarization of the characterization of the H-diamond MOSFETs with the different temperatures grown Al2O3 as gate dielectrics.
-
[1] Wort C J H, Balmer R S 2008 Mater. Today 11 22Google Scholar
[2] Baliga B J 1989 IEEE Electr. Device Lett. 10 455Google Scholar
[3] Achard J, Silva F, Tallaire A, Bonnin X, Lombardi G, Hassouni K, Gicquel A 2007 J. Phys. D:Appl. Phys. 40 6175Google Scholar
[4] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diam. Relat. Mater. 15 783Google Scholar
[5] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electr. Device Lett. 33 1111Google Scholar
[6] Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 4Google Scholar
[7] Liu J, Yu H, Shao S, Tu J, Zhu X, Yuan X, Wei J, Chen L, Ye H, Li C 2020 Diam. Relat. Mater. 104 107750Google Scholar
[8] Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electr. Device Lett. 39 1373Google Scholar
[9] Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electr. Device Lett. 27 570Google Scholar
[10] Kitabayashi Y, Kudo T, Tsuboi H, Yamada T, Xu D, Shibata M, Matsumura D, Hayashi Y, Syamsul M, Inaba M, Hiraiwa A, Kawarada H 2017 IEEE Electr. Device Lett. 38 363Google Scholar
[11] Imanishi S, Horikawa K, Oi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2019 IEEE Electr. Device Lett. 40 279Google Scholar
[12] Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electr. Device Lett. 33 1471Google Scholar
[13] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 IEEE Electr. Device Lett. 41 1249Google Scholar
[14] Ren Z Y, Yuan G S, Zhang J F, Xu L, Zhang J C, Chen W J, Hao Y 2018 Aip. Adv. 8 6Google Scholar
[15] Daicho A, Saito T, Kurihara S, Hiraiwa A, Kawarada H 2014 J. Appl. Phys. 115 4Google Scholar
[16] Wang Y F, Chang X, Zhang X, Fu J, Fan S, Bu R, Zhang J, Wang W, Wang H X, Wang J 2018 Diam. Relat. Mater. 81 113Google Scholar
[17] Ren Z, Lv D, Xu J, Zhang J, Zhang J, Su K, Zhang C, Hao Y 2020 Appl. Phys. Lett. 116 013503Google Scholar
[18] Liu J W, Liao M Y, Imura M, Watanabe E, Oosato H, Koide Y 2014 Appl. Phys. Lett. 105 082110Google Scholar
[19] Liu J W, Oosato H, Liao M Y, Imura M, Watanabe E, Koide Y 2018 Appl. Phys. Lett. 112 153501Google Scholar
[20] Liu J, Ohsato H, Liao M, Imura M, Watanabe E, Koide Y 2017 IEEE Electr. Device. Lett. 38 922Google Scholar
[21] Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diam. Relat. Mater. 43 43Google Scholar
[22] Ren Z, Zhang J, Zhang J, Zhang C, Xu S, Li Y, Hao Y 2017 IEEE Electr. Device Lett. 38 786Google Scholar
[23] Yamaguchi T, Umezawa H, Ohmagari S, Koizumi H, Kaneko J H 2021 Appl. Phys. Lett. 118 162105Google Scholar
[24] Inaba M, Muta T, Kobayashi M, Saito T, Shibata M, Matsumura D, Kudo T, Hiraiwa A, Kawarada H 2016 Appl. Phys. Lett. 109 033503Google Scholar
[25] Kawarada H, Yamada T, Xu D, Kitabayashi Y, Shibata M, Matsumura D, Kobayashi M, Saito T, Kudo T, Inaba M, Hiraiwa A, Ieee. 2016 Diamond MOSFETs using 2D Hole Gas with 1700 V Breakdown Voltage. (New York: Ieee) p483
[26] Syamsul M, Kitabayashi Y, Kudo T, Matsumura D, Kawarada H 2017 IEEE Electr. Device. Lett. 38 607Google Scholar
计量
- 文章访问数: 4858
- PDF下载量: 115
- 被引次数: 0