搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外加应力作用下 UO2 中空洞演化过程的相场模拟

姜彦博 柳文波 孙志鹏 喇永孝 恽迪

引用本文:
Citation:

外加应力作用下 UO2 中空洞演化过程的相场模拟

姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪

Phase-field simulation of void evolution in UO2 under applied stress

Jiang Yan-Bo, Liu Wen-Bo, Sun Zhi-Peng, La Yong-Xiao, Yun Di
PDF
HTML
导出引用
  • 本工作建立了外加应力作用下UO2中空洞演化的相场模型. 首先, 使用摄动迭代法求解了弹性平衡方程, 对外加应力下单个空洞周围的应力分布进行了计算, 结果表明空洞边缘有应力集中现象, 模拟得到的应力分布和解析解一致. 然后, 利用相场方法模拟了不同外加应力下单个空洞的演化过程, 结果表明随着外加应力的增大, 空洞的生长速度加快. 最后, 研究了外加应力对多晶体系中晶粒长大和空洞演化的影响, 结果表明, 不同晶粒内的应力大小不同, 应力越小的晶粒越容易长大, 尺寸越大的空洞的边缘应力也越大. 晶间空洞与弯曲晶界存在相互作用, 一方面晶界附近的空洞会生长成透镜状, 另一方面空洞对晶界也有钉扎作用, 能减缓晶界的迁移. 此外, 外加应力会加速多晶系统中空洞的生长, 并且本文计算得到了外加应力与空洞半径的关系, 发现外加应力越大, 空洞的生长越快.
    Owing to the migration and aggregation of point defects produced by cascade collision, a large number of cavities form easily during irradiation of the uranium dioxide (UO2) that is an important nuclear fuel. In addition, cavities are also inevitably introduced into the ceramic fuel during sintering. Moreover, the creep strain and thermal strain, caused by the extreme environment of high temperature and strong irradiation, significantly increase the applied stress of nuclear fuel. Therefore, it is crucial to investigate the microstructure evolution of the cavities in UO2 fuel under applied stress. In this work, a phase-field model of void evolution in UO2 under applied stress is established. Firstly, the elastic equilibrium equation is solved by the perturbation-iterative method, and the stress distribution around a single void under applied stress is calculated. The results show that the stress concentration is observed at the edge of the void, and the simulated stress distribution is consistent with the theoretically analytical results. Then, the evolution processes of a single void under different applied stresses are simulated by the phase-field model. The results show that the growth rate of void increases with the augment of applied stress. Finally, the effect of applied stress on grain growth and void evolution in polycrystalline are also studied. The results show that the applied stress will accelerate the void growth. With the increase of the applied stress, the effect of the applied stress on accelerating the void evolution increases.
      通信作者: 柳文波, liuwenbo@xjtu.edu.cn
    • 基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金(NSAF联合基金)项目(批准号: U1830124, U2130105)和中国核工业集团有限公司领创科研项目资助的课题.
      Corresponding author: Liu Wen-Bo, liuwenbo@xjtu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant Nos. U1830124, U2130105) and the Innovative Scientific Program of China National Nuclear Corporation.
    [1]

    Govers K, Lemehov S, Hou M, Verwerft M 2007 J. Nucl. Mater. 366 161Google Scholar

    [2]

    杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静 2021 70 054601Google Scholar

    Yang H, Feng Z H, Wang H R, Zhang Y P, Chen Z, Xin T Y, Song X R, Wu L, Zhang J 2021 Acta Phys. Sin. 70 054601Google Scholar

    [3]

    孙正阳, 杨超, 柳文波 2020 金属学报 56 1295

    Sun Z Y, Yang C, Liu W B 2020 Acta Metall. Sin. 56 1295

    [4]

    Solomon A A 1973 J. Am. Ceram. Soc. 56 164Google Scholar

    [5]

    Brask D N 1979 J. Nucl. Mater. 83 265Google Scholar

    [6]

    Porter D L, Takata M L, Wood E L 1983 J. Nucl. Mater. 116 272Google Scholar

    [7]

    Sahu H K, Jung P 1985 J. Nucl. Mater. 136 154Google Scholar

    [8]

    Brager H R, Garner F A, Guthrie G L 1977 J. Nucl. Mater. 66 301Google Scholar

    [9]

    Jiang Y, Liu W, Li W, Sun Z, Xin Y, Chen P, Yun D 2021 Comput. Mater. Sci. 188 110176Google Scholar

    [10]

    Millett P C, Rokkam S, El-Azab A, Tonks M, Wolf D 2009 Model. Simul. Mater. Sci. Eng. 17 64003Google Scholar

    [11]

    Brailsford A D, Bullough R, Hayns M R 1976 J. Nucl. Mater. 60 246Google Scholar

    [12]

    Wiedersich H 1972 Radiat. Eff. Defect. S. 12 111Google Scholar

    [13]

    Millett P C, El-Azab A, Rokkam S, Tonks M, Wolf D 2011 Comput. Mater. Sci. 50 949Google Scholar

    [14]

    Millett P C, El-Azab A, Wolf D 2011 Comput. Mater. Sci. 50 960Google Scholar

    [15]

    Liu W B, Wang N, Ji Y Z, Song P C, Zhang C, Yang Z G, Chen L Q 2016 J. Nucl. Mater. 479 316Google Scholar

    [16]

    杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪 2021 70 116101Google Scholar

    Yang Z X, Liu W B, Zhang C Y, He X F, Sun Z Y, Jia L X, Shi T T, Yun D 2021 Acta Phys. Sin. 70 116101Google Scholar

    [17]

    Hu S Y, Chen L Q 2001 Acta Mater. 49 1879Google Scholar

    [18]

    Wang J J, Bhattacharyya S, Li Q, Heo T W, Ma X Q, Chen L 2012 Phil. Mag. Lett. 92 327

    [19]

    Kim D, Kim S G, Kim W T, Cho J, Han H N, Cha P 2011 Scr. Mater. 64 1079Google Scholar

    [20]

    Chang K, Lee G, Kwon J 2016 Radiat. Eff. Defect. S. 171 242Google Scholar

    [21]

    Salvo M, Sercombe J, Ménard J, Julien J, Helfer T, Désoyer T 2015 J. Nucl. Mater. 456 54Google Scholar

    [22]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [23]

    Tonks M R, Zhang Y, Butterfield A, Bai X 2015 Model. Simul. Mater. Sci. Eng. 23 45009Google Scholar

    [24]

    Wang Y U, Jin Y M, Khachaturyan A G 2002 J. Appl. Phys. 92 1351Google Scholar

    [25]

    Sheng G, Bhattacharyya S, Zhang H, Chang K, Shang S L, Mathaudhu S N, Liu Z K, Chen L Q 2012 Mater. Sci. Eng. A 554 67Google Scholar

    [26]

    Tonks M, Millett P 2011 Mater. Sci. Eng. A 528 4086Google Scholar

    [27]

    Yan L L, Liu C Z, Ying Y Z, Zheng C 2014 Chinese Phys. B 23 69102Google Scholar

    [28]

    Wang Y U, Jin Y M, Khachaturyan A G 2002 J. Appl. Phys. 91 6435Google Scholar

    [29]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268Google Scholar

    [30]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147Google Scholar

    [31]

    Kang K H, Ryu H J, Song K C, Yang M S 2002 J. Nucl. Mater. 301 242Google Scholar

    [32]

    Aagesen L K, Schwen D, Tonks M R, Zhang Y 2019 Comput. Mater. Sci. 161 35Google Scholar

    [33]

    Kinoshita M 1997 J. Nucl. Mater. 248 185Google Scholar

    [34]

    Freyss M, Petit T, Crocombette J 2005 J. Nucl. Mater. 347 44Google Scholar

    [35]

    Xiao H, Long C, Chen H, Tian X, Wei T, Zhao Y, Gao W 2015 Appl. Surf. Sci. 351 517Google Scholar

    [36]

    Chen T, Chen D, Sencer B H, Shao L 2014 J. Nucl. Mater. 452 364Google Scholar

    [37]

    Fritz I J 1976 J. Appl. Phys. 47 4353Google Scholar

    [38]

    Jin Y M, Wang Y U, Khachaturyan A G 2003 Philos. Mag. 83 1587Google Scholar

    [39]

    徐芝纶 1982 弹性力学(上卷) (北京: 高等教育出版社) 第89页

    Xu Z L 1982 Elasticity (Vol. 1) (Beijing: Higher Education Press) p89 (in Chinese)

    [40]

    Wang H, Biswas S, Han Y, Tomar V 2018 Comput. Mater. Sci. 150 169Google Scholar

    [41]

    Heo T W, Bhattacharyya S, Chen L 2013 Philos. Mag. 93 1468Google Scholar

    [42]

    Aagesen L K, Gao Y, Schwen D, Ahmed K 2018 Phys. Rev. E 98 23309Google Scholar

    [43]

    孙正阳, 王昱天, 柳文波 2020 金属学报 56 1643Google Scholar

    Sun Z Y, Wang L T, Liu W B 2020 Acta Metall. Sin. 56 1643Google Scholar

    [44]

    Liu W B, Ji Y Z, Tan P K, Zang H, He C H, Yun D, Zhang C, Yang Z G 2016 Materials 9 105Google Scholar

  • 图 1  (a) 初始空洞示意图; (b) 空洞周围应力分布

    Fig. 1.  (a) Schematic diagram of the initial void; (b) stress distribution with the void.

    图 2  三个典型截面上的应力分布

    Fig. 2.  Stress distribution along three typical cross sections.

    图 3  模拟结果与解析解的应力分布比较

    Fig. 3.  Comparison of stress distribution between simulation results and analytical solutions.

    图 4  (a)−(c)无应力下空洞演化; (d)−(f) 100 MPa附加应力下空洞演化; (g)−(i)应力分布随时间演化

    Fig. 4.  (a)−(c) The evolution of void without stress; (d)−(f) the evolution of void with 100 MPa applied stress; (g)−(i) the distribution of stress during the evolution.

    图 5  不同应力下空洞半径随时间变化

    Fig. 5.  The change of void radius with time under different stresses.

    图 6  (a)中线应力分布; (b)中线弹性能密度分布

    Fig. 6.  (a) Stress distribution in the center line; (b) elastic energy density distribution in the center line.

    图 7  (a)初始结构示意图; (b)模拟区域的水平中线上的弹性模量分布

    Fig. 7.  (a) Schematic of initial structure; (b) elastic constants distribution in the center line.

    图 8  (a)−(c)晶粒和空洞随时间演化; (d)−(f)演化过程中的应力分布

    Fig. 8.  (a)−(c) Evolution of grains and void with time; (d)−(f) the distribution of stress during the evolution.

    图 9  晶间空洞演化中三个典型截面上应力分布

    Fig. 9.  Stress distribution along three typical cross sections during intergranular void evolution.

    图 10  无外加应力下的双晶组织

    Fig. 10.  The twin-crystal microstructure without applied stress.

    图 11  不同外加应力下的双晶组织((a)—(c))及对应的应力分布((d)—(f)) (a), (d) 50 MPa; (b), (e) 100 MPa; (c), (f) 150 MPa

    Fig. 11.  The twin-crystal microstructure ((a)–(c)) and the corresponding stress distribution with different applied stresses ((d)–(f)): (a), (d) 50 MPa; (b), (e) 100 MPa; (c), (f) 150 MPa.

    图 12  无外加应力下的多晶组织

    Fig. 12.  The polycrystal microstructure without applied stress.

    图 13  不同外加应力下的多晶组织((a)—(c))和对应的应力分布((d)—(f)) (a), (d) 50 MPa; (b), (e) 100 MPa; (c), (f) 150 MPa

    Fig. 13.  The polycrystal microstructure ((a)–(c)) and the corresponding stress distribution with different applied stresses ((d)–(f)): (a), (d) 50 MPa; (b), (e) 100 MPa; (c), (f) 150 MPa.

    图 14  平均空洞半径随外加应力变化

    Fig. 14.  The change of applied stress on average void radius

    表 1  模拟中使用的UO2参数

    Table 1.  Parameters of UO2 used in the simulation

    参量符号取值参考文献
    绝对温度T1173 K
    玻尔兹曼常数kB1.381 × 10–23 J/K
    晶格常数a0.552 nm[31]
    迁移率L1.56 × 10–11 m3/(J·s)[32]
    梯度自由能参数κ3.38 × 10–8 J/m[32]
    空位扩散系数$ {D_{\text{v}}} $5.586 × 10–18 m2/s[33]
    空位形成能$ E_{\text{v}}^{\text{f}} $5.10 eV[34]
    表面能${\gamma _{\text{s}}}$1.76 eV[35]
    晶界能${\gamma _{{\text{GB}}}}$1.67 eV[36]
    弹性模量C11389.3 GPa[37]
    C12118.7 GPa[37]
    C4459.7 GPa[37]
    下载: 导出CSV
    Baidu
  • [1]

    Govers K, Lemehov S, Hou M, Verwerft M 2007 J. Nucl. Mater. 366 161Google Scholar

    [2]

    杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静 2021 70 054601Google Scholar

    Yang H, Feng Z H, Wang H R, Zhang Y P, Chen Z, Xin T Y, Song X R, Wu L, Zhang J 2021 Acta Phys. Sin. 70 054601Google Scholar

    [3]

    孙正阳, 杨超, 柳文波 2020 金属学报 56 1295

    Sun Z Y, Yang C, Liu W B 2020 Acta Metall. Sin. 56 1295

    [4]

    Solomon A A 1973 J. Am. Ceram. Soc. 56 164Google Scholar

    [5]

    Brask D N 1979 J. Nucl. Mater. 83 265Google Scholar

    [6]

    Porter D L, Takata M L, Wood E L 1983 J. Nucl. Mater. 116 272Google Scholar

    [7]

    Sahu H K, Jung P 1985 J. Nucl. Mater. 136 154Google Scholar

    [8]

    Brager H R, Garner F A, Guthrie G L 1977 J. Nucl. Mater. 66 301Google Scholar

    [9]

    Jiang Y, Liu W, Li W, Sun Z, Xin Y, Chen P, Yun D 2021 Comput. Mater. Sci. 188 110176Google Scholar

    [10]

    Millett P C, Rokkam S, El-Azab A, Tonks M, Wolf D 2009 Model. Simul. Mater. Sci. Eng. 17 64003Google Scholar

    [11]

    Brailsford A D, Bullough R, Hayns M R 1976 J. Nucl. Mater. 60 246Google Scholar

    [12]

    Wiedersich H 1972 Radiat. Eff. Defect. S. 12 111Google Scholar

    [13]

    Millett P C, El-Azab A, Rokkam S, Tonks M, Wolf D 2011 Comput. Mater. Sci. 50 949Google Scholar

    [14]

    Millett P C, El-Azab A, Wolf D 2011 Comput. Mater. Sci. 50 960Google Scholar

    [15]

    Liu W B, Wang N, Ji Y Z, Song P C, Zhang C, Yang Z G, Chen L Q 2016 J. Nucl. Mater. 479 316Google Scholar

    [16]

    杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪 2021 70 116101Google Scholar

    Yang Z X, Liu W B, Zhang C Y, He X F, Sun Z Y, Jia L X, Shi T T, Yun D 2021 Acta Phys. Sin. 70 116101Google Scholar

    [17]

    Hu S Y, Chen L Q 2001 Acta Mater. 49 1879Google Scholar

    [18]

    Wang J J, Bhattacharyya S, Li Q, Heo T W, Ma X Q, Chen L 2012 Phil. Mag. Lett. 92 327

    [19]

    Kim D, Kim S G, Kim W T, Cho J, Han H N, Cha P 2011 Scr. Mater. 64 1079Google Scholar

    [20]

    Chang K, Lee G, Kwon J 2016 Radiat. Eff. Defect. S. 171 242Google Scholar

    [21]

    Salvo M, Sercombe J, Ménard J, Julien J, Helfer T, Désoyer T 2015 J. Nucl. Mater. 456 54Google Scholar

    [22]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [23]

    Tonks M R, Zhang Y, Butterfield A, Bai X 2015 Model. Simul. Mater. Sci. Eng. 23 45009Google Scholar

    [24]

    Wang Y U, Jin Y M, Khachaturyan A G 2002 J. Appl. Phys. 92 1351Google Scholar

    [25]

    Sheng G, Bhattacharyya S, Zhang H, Chang K, Shang S L, Mathaudhu S N, Liu Z K, Chen L Q 2012 Mater. Sci. Eng. A 554 67Google Scholar

    [26]

    Tonks M, Millett P 2011 Mater. Sci. Eng. A 528 4086Google Scholar

    [27]

    Yan L L, Liu C Z, Ying Y Z, Zheng C 2014 Chinese Phys. B 23 69102Google Scholar

    [28]

    Wang Y U, Jin Y M, Khachaturyan A G 2002 J. Appl. Phys. 91 6435Google Scholar

    [29]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268Google Scholar

    [30]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147Google Scholar

    [31]

    Kang K H, Ryu H J, Song K C, Yang M S 2002 J. Nucl. Mater. 301 242Google Scholar

    [32]

    Aagesen L K, Schwen D, Tonks M R, Zhang Y 2019 Comput. Mater. Sci. 161 35Google Scholar

    [33]

    Kinoshita M 1997 J. Nucl. Mater. 248 185Google Scholar

    [34]

    Freyss M, Petit T, Crocombette J 2005 J. Nucl. Mater. 347 44Google Scholar

    [35]

    Xiao H, Long C, Chen H, Tian X, Wei T, Zhao Y, Gao W 2015 Appl. Surf. Sci. 351 517Google Scholar

    [36]

    Chen T, Chen D, Sencer B H, Shao L 2014 J. Nucl. Mater. 452 364Google Scholar

    [37]

    Fritz I J 1976 J. Appl. Phys. 47 4353Google Scholar

    [38]

    Jin Y M, Wang Y U, Khachaturyan A G 2003 Philos. Mag. 83 1587Google Scholar

    [39]

    徐芝纶 1982 弹性力学(上卷) (北京: 高等教育出版社) 第89页

    Xu Z L 1982 Elasticity (Vol. 1) (Beijing: Higher Education Press) p89 (in Chinese)

    [40]

    Wang H, Biswas S, Han Y, Tomar V 2018 Comput. Mater. Sci. 150 169Google Scholar

    [41]

    Heo T W, Bhattacharyya S, Chen L 2013 Philos. Mag. 93 1468Google Scholar

    [42]

    Aagesen L K, Gao Y, Schwen D, Ahmed K 2018 Phys. Rev. E 98 23309Google Scholar

    [43]

    孙正阳, 王昱天, 柳文波 2020 金属学报 56 1643Google Scholar

    Sun Z Y, Wang L T, Liu W B 2020 Acta Metall. Sin. 56 1643Google Scholar

    [44]

    Liu W B, Ji Y Z, Tan P K, Zang H, He C H, Yun D, Zhang C, Yang Z G 2016 Materials 9 105Google Scholar

  • [1] 刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波. Zr-2.5Sn合金高温腐蚀过程的相场模拟.  , 2024, 73(14): 148201. doi: 10.7498/aps.73.20240393
    [2] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究.  , 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [3] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究.  , 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [4] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟.  , 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [5] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟.  , 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [6] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟.  , 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [7] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能.  , 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [8] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究.  , 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [9] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟.  , 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [10] 陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京. 铂纳米颗粒生长和表面结构的理论预测.  , 2012, 61(7): 076801. doi: 10.7498/aps.61.076801
    [11] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型.  , 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [12] 魏承炀, 李赛毅. 温度梯度对晶粒生长行为影响的相场模拟.  , 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [13] 陈云, 康秀红, 肖纳敏, 郑成武, 李殿中. 多晶材料晶粒生长粗化过程的相场方法模拟.  , 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [14] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟.  , 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [15] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型.  , 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [16] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟.  , 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [17] 段 鹤, 郑毓峰, 张校刚, 孙言飞, 董有忠. 水热法合成FeS2粉晶及其生长热动力学的研究.  , 2005, 54(4): 1659-1664. doi: 10.7498/aps.54.1659
    [18] 黄 锐, 林璇英, 余云鹏, 林揆训, 姚若河, 黄文勇, 魏俊红, 王照奎, 余楚迎. 多晶硅薄膜低温生长中晶粒大小的控制.  , 2004, 53(11): 3950-3955. doi: 10.7498/aps.53.3950
    [19] 张建民, 徐可为. 银和铜膜中异常晶粒生长和织构变化的实验研究.  , 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
    [20] 张建民, 徐可为. 面心立方多晶薄膜中应变能密度对晶粒取向的依赖.  , 2002, 51(11): 2562-2566. doi: 10.7498/aps.51.2562
计量
  • 文章访问数:  4567
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-05
  • 修回日期:  2021-09-14
  • 上网日期:  2022-01-15
  • 刊出日期:  2022-01-20

/

返回文章
返回
Baidu
map