搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟

宋岩 江鸿翔 赵九洲 何杰 张丽丽 李世欣

引用本文:
Citation:

Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟

宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣

Numerical simulations of solidification microstructure evolution process for commercial-purity aluminum alloys inoculated by Al-Ti-B refiner

Song Yan, Jiang Hong-Xiang, Zhao Jiu-Zhou, He Jie, Zhang Li-Li, Li Shi-Xin
PDF
HTML
导出引用
  • 采用耦合群体动力学方法与元胞自动机方法建立了细化处理条件下铝合金凝固微观组织演变的数值模型. 该模型考虑了α-Al的非均匀形核过程、晶粒的初始球形长大以及之后的枝晶生长过程. 利用建立的模型模拟了Al-5Ti-1B中间合金细化工业纯铝凝固组织演变过程. 结果表明: 形核初始阶段, 熔体中存在充足数量的有效形核粒子, α-Al形核率随着熔体过冷度的增大逐渐增高; 形核开始不久后, α-Al的异质形核过程由熔体中有效形核粒子数量控制, 直到再辉发生, 形核停止. 模拟分析了中间合金添加量以及熔体冷却速度对工业纯铝凝固组织演变过程的影响, 模拟结果与实验结果相符, 验证了模型的准确性.
    Solidification microstructure of aluminum alloy has a great influence on the properties of the casting. An aluminum alloy with the structure of fine equiaxed grains has low casting defects and presents excellent mechanical properties. Recently, chemical inoculation by adding grain refiner is the technique most extensively used to achieve a fine, equiaxed grain structure of Al alloy in the industrial production. In order to investigate the detailed solidification microstructure evolution of the alloy, many numerical models have been proposed. Cellular automaton method is one of the powerful tools for simulating the morphology evolution of detailed grains in the solidification process of alloy. However, the present cellular automata model has a shortcoming, that is, its calculation of the nucleation rate is based on the experimental number density of grains. In this work, a population dynamics-cellular automaton model is developed for describing the solidification microstructure evolution of the inoculated aluminum alloy. The model takes account of the heterogeneous nucleation of α-Al nucleus, the initial spherical growth of α-Al grains and the dendritic growth process. The model is used for simulating the solidification microstructure evolution of the commercial-purity aluminum (CP-Al) inoculated by Al-5Ti-1B master alloy. The results indicate that the heterogeneous nucleation process of α-Al can be divided into the two stages. In the early stage of nucleation, there are enough effective particles in the melt. The nucleation rate of α-Al increases with the increase of the undercooling of the melt. After a short time, the nucleation of α-Al is dominated by the number density of the effective particles in the melt. Nucleation process stops when the recalescence takes place. The effects of the additive amount of Al-5Ti-1B master alloy and the cooling rate of the melt on the solidification microstructure of the CP-Al are investigated by using the established model. The final solidification structures of CP-Al are predicted. And a comparison between the predicted results and the experimental ones shows that they are in good agreement with each other.
      通信作者: 江鸿翔, hxjiang@imr.ac.cn ; 赵九洲, jzzhao@imr.ac.cn
    • 基金项目: 中国科学院空间科学战略性先导科技专项(批准号: XDA15013800)、辽宁省自然科学基金(批准号: 2020-MS-005)和国家自然科学基金(批准号: 51771210, 51501207, 51971227)资助的课题
      Corresponding author: Jiang Hong-Xiang, hxjiang@imr.ac.cn ; Zhao Jiu-Zhou, jzzhao@imr.ac.cn
    • Funds: Project supported by the Chinese Academy of Sciences Strategic Priority Program on Space Science, China (Grant No. XDA15013800), the Natural Science Foundation of Liaoning Province, China (Grant No. 2020-MS-005), and the National Natural Science Foundation of China (Grant Nos. 51771210, 51501207, 51971227)
    [1]

    Murty B S, Kori S A, Chakraborty M 2002 Int. Mater. Rev. 47 3Google Scholar

    [2]

    Guo G R, Tie D 2017 Acta Metall. Sinica 30 409Google Scholar

    [3]

    Liu Z 2017 Metall. Mater. Trans. 48 4755Google Scholar

    [4]

    Greer A L 2016 J. Chem. Phys. 145 211704Google Scholar

    [5]

    Zhang L L, Jiang H X, Zhao J Z, He J 2017 J. Mater. Process. Technol. 246 205Google Scholar

    [6]

    Jiang H X, Sun Q, Zhang L L, Zhao J Z 2018 J. Alloys Compd. 748 774Google Scholar

    [7]

    StJohn D H, Qian M, Easton M A, Cao P 2011 Acta Mater. 59 4907Google Scholar

    [8]

    Quested T E, Greer A L 2004 Acta Mater. 52 5233Google Scholar

    [9]

    Easton M, StJohn D 2005 Metall. Mater. Trans A. 36A 1911Google Scholar

    [10]

    Qian M, Cao P, Easton M A, McDonald S D, StJohn D H 2010 Acta Mater. 58 3262Google Scholar

    [11]

    Wheeler A A, Boettinger W J, McFadden G B 1992 Phys. Rev. A 45 7424Google Scholar

    [12]

    Boussinot G, Apel M 2017 Acta Mater. 122 310Google Scholar

    [13]

    陈云, 康秀红, 李殿中 2009 58 390Google Scholar

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390Google Scholar

    [14]

    单博炜, 林鑫, 魏雷, 黄卫东 2009 58 1132Google Scholar

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132Google Scholar

    [15]

    赵九洲, 李璐, 张显飞 2014 金属学报 50 641Google Scholar

    Zhao J Z, Li L, Zhang X F 2014 Acta Metall. Sin. 50 641Google Scholar

    [16]

    Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233Google Scholar

    [17]

    Zhu M F, Hong C P 2001 ISIJ Int. 41 436Google Scholar

    [18]

    石玉峰, 许庆彦, 柳百成 2013 61 108101Google Scholar

    Shi Y F, Xu Q Y, Liu B C 2013 Acta Phys. Sin. 61 108101Google Scholar

    [19]

    潘诗琰, 朱鸣芳 2009 58 278Google Scholar

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278Google Scholar

    [20]

    Zhang X F, Zhao J Z, Jiang H X, Zhu M F 2012 Acta Mater. 60 2249Google Scholar

    [21]

    Mullins W W, Sekerka R F 1963 J. Appl. Phys. 34 323Google Scholar

    [22]

    张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩 2017 金属学报 53 1091Google Scholar

    Zhang L L, Jiang H X, Zhao J Z, Li L, Sun Q 2017 Acta Metall. Sin. 53 1091Google Scholar

    [23]

    邓聪坤, 江鸿翔, 赵九洲, 何杰, 赵雷 2020 金属学报 56 212Google Scholar

    Deng C K, Jiang H X, Zhao J Z, He J, Zhao L 2020 Acta Metall. Sin. 56 212Google Scholar

    [24]

    张显飞 2012 博士学位论文 (沈阳: 中国科学院金属研究所)

    Zhang X F 2012 Ph. D. Dissertation (Shenyang: Institute of Metal Research, Chinese Academy of Sciences) (in Chinese)

    [25]

    江鸿翔, 赵九洲 2011 金属学报 47 1099Google Scholar

    Jiang H X, Zhao J Z 2011 Acta Metall. Sin. 47 1099Google Scholar

    [26]

    陈海林 2008 博士学位论文 (长沙: 中南大学)

    Chen H L 2008 Ph. D. Dissertation (Changsha: Central South University) (in Chinese)

    [27]

    Ansara I, Dinsdale A T, Rand M H 1998 Cost 507: Thermochemical Database for Light Metal Alloys (Vol. 2) (Luxembourg: Office for Official Publications of the European Communities)

    [28]

    Xu Y J, Zhao D D, Li Y J 2018 Metall. Mater. Trans. A 49 1770Google Scholar

    [29]

    傅献彩, 沈文霞, 姚天杨, 侯文华 2007 物理化学(上册) (北京: 高等教育出版社) 第168页

    Fu X C, Shen W X, Yao T Y, Hou W H 2007 Physical Chemistry (Vol. 1) (Beijing: Higher Education Press) p168 (in Chinese)

    [30]

    Greer A L, Bunn A M, Tronche A 2000 Acta Mater. 48 2823Google Scholar

    [31]

    Quested T E, Greer A L 2005 Acta Mater. 53 4643Google Scholar

    [32]

    Men H, Fan Z 2011 Acta Mater. 59 2704Google Scholar

  • 图 1  0.01% Al-5Ti-1B中间合金细化处理工业纯铝凝固过程中, 熔体过饱和度S = ClCe, α-Al形核驱动力ΔGV, 异质形核率I随时间的变化. 熔体冷速为3.5 K/s

    Fig. 1.  The supersaturation of the melt S = ClCe (dash line), the driving force of nucleation ΔGV (dot line) and the heterogeneous nucleation rate I (solid line) of α-Al during cooling the CP-Al melt inoculated by 0.01% Al-5Ti-1B master alloy at the cooling rate of 3.5 K/s.

    图 2  0.01% Al-5Ti-1B中间合金细化处理工业纯铝凝固过程中, α-Al晶核半径r分布随时间的变化. 熔体冷速为3.5 K/s

    Fig. 2.  The radius distribution of α-Al nucleus at different time during cooling the CP-Al melt inoculated by 0.01% Al-5Ti-1B master alloy at the cooling rate of 3.5 K/s.

    图 3  0.01% Al-5Ti-1B中间合金细化处理工业纯铝凝固过程中, α-Al晶核总数量nall, 球状晶nspherical以及树枝晶数目ndendrities随时间的变化. 熔体冷速为3.5 K/s

    Fig. 3.  The number density of all nucleus nall in the Al melt, the number density of spherical nucleus nspherical and the number density of dendrities ndendrities during cooling the CP-Al melt inoculated by 0.01% Al-5Ti-1B master alloy at the cooling rate of 3.5 K/s.

    图 4  0.01% Al-5Ti-1B中间合金细化处理工业纯铝凝固微观组织演变过程 (a) 固相分数 = 0.1%; (b) 固相分数 = 1.0%; (c) 固相分数 = 25.0%; (d) 固相分数 = 70.0%. 熔体冷速为3.5 K/s. 计算区域尺寸为600 μm × 600 μm × 600 μm

    Fig. 4.  Solidification microstructure evolution during cooling the CP-Al melt inoculated by 0.01% Al-5Ti-1B master alloy at a cooling rate of 3.5 K/s: (a) Solid fraction = 0.1%; (b) solid fraction = 1.0%; (c) solid fraction = 25.0%; (d) solid fraction = 70.0%. The size of computational domain is 600 μm × 600 μm × 600 μm.

    图 5  不同数量Al-5Ti-1B中间合金细化工业纯铝凝固时异质形核率I, 熔体过冷度ΔT随时间的变化. 熔体冷速为3.5 K/s

    Fig. 5.  Calculated heterogeneous nucleation rate I of α-Al and the undercooling of the melt ΔT for the CP-Al inoculated by different amount of Al-5Ti-1B master alloy at a cooling rate of 3.5 K/s.

    图 6  不同数量Al-5Ti-1B中间合金细化工业纯铝凝固组织模拟结果 (a) 0.005%; (b) 0.01%; (c) 0.4%; (d) 1.0%. 熔体冷速为3.5 K/s. 计算区域尺寸为900 μm × 900 μm × 900 μm

    Fig. 6.  Simulated solidification microstructure for the CP-Al melt inoculated by different amount of Al-5Ti-1B master alloy at a cooling rate of 3.5 K/s: (a) 0.005%; (b) 0.01%; (c) 0.4%; (d) 1.0%. The size of computational domain is 900 μm × 900 μm × 900 μm.

    图 7  不同数量Al-5Ti-1B中间合金细化工业纯铝晶粒尺寸预测结果与实验结果. 熔体冷速为3.5 K/s. 误差棒为标准偏差

    Fig. 7.  Predicted and measured grains size vs. the additive amount of Al-5Ti-1B master alloy for the inoculated CP-Al at a cooling rate of 3.5 K/s. The error bars represent the standard deviations.

    图 8  不同冷却速度下经0.5% Al-5Ti-1B中间合金细化处理, 工业纯铝凝固时α-Al形核率随时间的变化 (a) 1.0 K/s; (b) 2.0 K/s; (c) 5.5 K/s; (d) 10.0 K/s

    Fig. 8.  Calculated heterogeneous nucleation rate of α-Al during cooling the CP-Al inoculated by 0.5% Al-5Ti-1B master alloy at the different rate: (a) 1.0 K/s; (b) 2.0 K/s; (c) 5.5 K/s; (d) 10.0 K/s.

    图 9  0.5%Al-5Ti-1B中间合金细化工业纯铝, 在不同冷却速度凝固后凝固组织的模拟结果 (a) 1.0 K/s; (b) 2.0 K/s; (c) 5.5 K/s; (d) 10 K/s. 计算区域尺寸为900 μm × 900 μm × 900 μm

    Fig. 9.  Simulated solidification microstructure for the CP-Al melt inoculated by 0.5% Al-5Ti-1B master alloy at the different cooling rate of the melt: (a) 1.0 K/s; (b) 2.0 K/s; (c) 5.5 K/s; (d) 10 K/s. The size of computational domain is 900 μm × 900 μm × 900 μm.

    图 10  0.5%Al-5Ti-1B中间合金细化工业纯铝, 在不同冷却速度下凝固后晶粒尺寸预测结果与实验结果. 误差棒为标准偏差

    Fig. 10.  Predicted and measured grains size vs. the cooling rate of the melt for the CP-Al inoculated by 0.5%Al-5Ti-1B master alloy. The error bars represent the standard deviations.

    表 1  工业纯铝成分[30]

    Table 1.  The composition of solute in the CP-Al alloys used by Greer et al.[30].

    ElementLiquidus slope, mPartition coefficient, kSolute composition/% (weight percent)Q
    Fe–2.9250.0300.08250.234
    Si–6.620.1200.04750.276
    Ga–2.520.1400.01250.028
    Ni–3.500.0040.00510.018
    V9.713.3300.00790.167
    Ti25.637.0000.00420.63
    Na–7.840.0130.00150.012
    下载: 导出CSV

    表 2  模拟使用的工业纯铝参数[22,30,32]

    Table 2.  The parameters of CP-Al alloys used in the simulations[22,30,32].

    ParameterValue
    Cooling rate of the CP-Al melt/(K·s–1)3.5
    Strength of the anisotropy of the
    interfacial energy, ε
    0.04
    Gibbs-Thomson coefficient, $\varGamma $/mK1.42 × 107
    Heat capacity of Al melt, CP/(J·K–1·m3)2.58 × 106
    Average jump distance of Al atoms
    in Al melt, δ/m
    2.87 × 10–10
    Boltzmann’s constant, kB1.38 × 10–23
    下载: 导出CSV
    Baidu
  • [1]

    Murty B S, Kori S A, Chakraborty M 2002 Int. Mater. Rev. 47 3Google Scholar

    [2]

    Guo G R, Tie D 2017 Acta Metall. Sinica 30 409Google Scholar

    [3]

    Liu Z 2017 Metall. Mater. Trans. 48 4755Google Scholar

    [4]

    Greer A L 2016 J. Chem. Phys. 145 211704Google Scholar

    [5]

    Zhang L L, Jiang H X, Zhao J Z, He J 2017 J. Mater. Process. Technol. 246 205Google Scholar

    [6]

    Jiang H X, Sun Q, Zhang L L, Zhao J Z 2018 J. Alloys Compd. 748 774Google Scholar

    [7]

    StJohn D H, Qian M, Easton M A, Cao P 2011 Acta Mater. 59 4907Google Scholar

    [8]

    Quested T E, Greer A L 2004 Acta Mater. 52 5233Google Scholar

    [9]

    Easton M, StJohn D 2005 Metall. Mater. Trans A. 36A 1911Google Scholar

    [10]

    Qian M, Cao P, Easton M A, McDonald S D, StJohn D H 2010 Acta Mater. 58 3262Google Scholar

    [11]

    Wheeler A A, Boettinger W J, McFadden G B 1992 Phys. Rev. A 45 7424Google Scholar

    [12]

    Boussinot G, Apel M 2017 Acta Mater. 122 310Google Scholar

    [13]

    陈云, 康秀红, 李殿中 2009 58 390Google Scholar

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390Google Scholar

    [14]

    单博炜, 林鑫, 魏雷, 黄卫东 2009 58 1132Google Scholar

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132Google Scholar

    [15]

    赵九洲, 李璐, 张显飞 2014 金属学报 50 641Google Scholar

    Zhao J Z, Li L, Zhang X F 2014 Acta Metall. Sin. 50 641Google Scholar

    [16]

    Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233Google Scholar

    [17]

    Zhu M F, Hong C P 2001 ISIJ Int. 41 436Google Scholar

    [18]

    石玉峰, 许庆彦, 柳百成 2013 61 108101Google Scholar

    Shi Y F, Xu Q Y, Liu B C 2013 Acta Phys. Sin. 61 108101Google Scholar

    [19]

    潘诗琰, 朱鸣芳 2009 58 278Google Scholar

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278Google Scholar

    [20]

    Zhang X F, Zhao J Z, Jiang H X, Zhu M F 2012 Acta Mater. 60 2249Google Scholar

    [21]

    Mullins W W, Sekerka R F 1963 J. Appl. Phys. 34 323Google Scholar

    [22]

    张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩 2017 金属学报 53 1091Google Scholar

    Zhang L L, Jiang H X, Zhao J Z, Li L, Sun Q 2017 Acta Metall. Sin. 53 1091Google Scholar

    [23]

    邓聪坤, 江鸿翔, 赵九洲, 何杰, 赵雷 2020 金属学报 56 212Google Scholar

    Deng C K, Jiang H X, Zhao J Z, He J, Zhao L 2020 Acta Metall. Sin. 56 212Google Scholar

    [24]

    张显飞 2012 博士学位论文 (沈阳: 中国科学院金属研究所)

    Zhang X F 2012 Ph. D. Dissertation (Shenyang: Institute of Metal Research, Chinese Academy of Sciences) (in Chinese)

    [25]

    江鸿翔, 赵九洲 2011 金属学报 47 1099Google Scholar

    Jiang H X, Zhao J Z 2011 Acta Metall. Sin. 47 1099Google Scholar

    [26]

    陈海林 2008 博士学位论文 (长沙: 中南大学)

    Chen H L 2008 Ph. D. Dissertation (Changsha: Central South University) (in Chinese)

    [27]

    Ansara I, Dinsdale A T, Rand M H 1998 Cost 507: Thermochemical Database for Light Metal Alloys (Vol. 2) (Luxembourg: Office for Official Publications of the European Communities)

    [28]

    Xu Y J, Zhao D D, Li Y J 2018 Metall. Mater. Trans. A 49 1770Google Scholar

    [29]

    傅献彩, 沈文霞, 姚天杨, 侯文华 2007 物理化学(上册) (北京: 高等教育出版社) 第168页

    Fu X C, Shen W X, Yao T Y, Hou W H 2007 Physical Chemistry (Vol. 1) (Beijing: Higher Education Press) p168 (in Chinese)

    [30]

    Greer A L, Bunn A M, Tronche A 2000 Acta Mater. 48 2823Google Scholar

    [31]

    Quested T E, Greer A L 2005 Acta Mater. 53 4643Google Scholar

    [32]

    Men H, Fan Z 2011 Acta Mater. 59 2704Google Scholar

  • [1] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究.  , 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [2] 张伟光, 张凯奋, 夏立东, 黄鑫, 周晓松, 彭述明, 施立群. 氘氚冰籽晶的形核行为.  , 2022, 71(2): 025203. doi: 10.7498/aps.71.20211018
    [3] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟.  , 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [4] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度.  , 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [5] 陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京. 铂纳米颗粒生长和表面结构的理论预测.  , 2012, 61(7): 076801. doi: 10.7498/aps.61.076801
    [6] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究.  , 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [7] 魏承炀, 李赛毅. 温度梯度对晶粒生长行为影响的相场模拟.  , 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [8] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析.  , 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [9] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟.  , 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [10] 王娜, 唐壁玉. L12型铝合金的结构、弹性和电子性质的第一性原理研究.  , 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [11] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究.  , 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [12] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析.  , 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [13] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果.  , 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [14] 彭开萍, 陈文哲, 钱匡武. 3004铝合金“反常”锯齿屈服现象的研究.  , 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [15] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟.  , 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [16] 吴汉华, 龙北红, 吕宪义, 汪剑波, 金曾孙. 铝合金微弧氧化过程中电学参量的特性研究.  , 2005, 54(4): 1697-1701. doi: 10.7498/aps.54.1697
    [17] 黄 文, 曾慧中, 张 鹰, 蒋书文, 魏贤华, 李言荣. 不同晶化工艺对非晶PZT纳米薄膜形核取向生长机理的影响.  , 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
    [18] 黄 锐, 林璇英, 余云鹏, 林揆训, 姚若河, 黄文勇, 魏俊红, 王照奎, 余楚迎. 多晶硅薄膜低温生长中晶粒大小的控制.  , 2004, 53(11): 3950-3955. doi: 10.7498/aps.53.3950
    [19] 张建民, 徐可为. 银和铜膜中异常晶粒生长和织构变化的实验研究.  , 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
    [20] 王培林, 丁天骅, 蔡珣. 超薄晶体膜生长过程的计算机模拟.  , 2002, 51(9): 2109-2112. doi: 10.7498/aps.51.2109
计量
  • 文章访问数:  6123
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-29
  • 修回日期:  2021-01-22
  • 上网日期:  2021-04-01
  • 刊出日期:  2021-04-20

/

返回文章
返回
Baidu
map