搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三体里德堡超级原子的关联动力学研究

白文杰 严冬 韩海燕 华硕 谷开慧

引用本文:
Citation:

三体里德堡超级原子的关联动力学研究

白文杰, 严冬, 韩海燕, 华硕, 谷开慧

Correlated dynamics of three-body Rydberg superatoms

Bai Wen-Jie, Yan Dong, Han Hai-Yan, Hua Shuo, Gu Kai-Hui
PDF
HTML
导出引用
  • 因为寿命长, 并且原子间相互作用容易操控, 所以里德堡原子在量子信息与量子光学领域具有极大的吸引力. 特别地, 偶极阻塞效应成为执行很多量子信息处理任务的物理资源. 本文基于严格的偶极阻塞效应, 将捕获在三个磁光阱中的二能级里德堡原子系综看作超级原子, 在此基础上研究原子数目可调控的三体里德堡超级原子的同相和反相动力学行为, 同时实现W态和两种最大纠缠态的制备. 本工作在量子操控和量子信息处理方面具有潜在的应用前景.
    Owing to the long lifetime of Rydberg atom, easy to operate and easy to control the interaction between Rydberg atoms, Rydberg atom has attracted considerable attention in quantum information and quantum optics fields. Specially, the anti-blockade effect, as a physical resource, can be used to implement various tasks in quantum information processing. Based on the rigid dipole blockade, an ensemble of two-level Rydberg atoms trapped in three magneto-optical traps can be regarded as a superatom. Based on the superatom model, the in-phase and anti-phase dynamics of the three-body Rydberg superatoms are studied by adjusting the numbers of atoms, and the W state and two kinds of maximal entangled states are generated simultaneously. Our work has great potential applications in coherent manipulation and quantum information processing.The numerical simulations are performed based on the superatom model and thereby the formidable obstacle that the Hilbert space dimension grows exponentially with the particle number increasing can be completely removed. As a result, the quantum control and quantum entanglement can be achieved from the single-quanta level to the mesoscopic level.
      通信作者: 严冬, ydbest@126.com
    • 基金项目: 国家自然科学基金(批准号: 11874004, 11204019)、吉林省教育厅科学基金(批准号: JJKH20200557KJ)、吉林省科技厅2021年自然科学基金(批准号: 20210101411JC)、长春大学基金项目和吉林工程技术师范学院校级科研项目(批准号: BSKJ201907)资助的课题
      Corresponding author: Yan Dong, ydbest@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874004, 11204019), the Science Foundation of Education Department of Jilin Province, China (Grant No. JJKH20200557KJ), the Natural Science Foundation of Science and Technology Department of Jilin Province, China(Grant No. 20210101411JC), the Science Foundation of Changchun University, and the Science Foundation of Jilin Engineering Normal University, China (Grant No. BSKJ201907).
    [1]

    Jaksch D, Cirac J, Zoller P, Rolston S, Côté R, Lukin M 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [2]

    Lukin M D, Fleischhauer M, Cote R, Duan L, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [3]

    Li D, Shao X 2018 Phys. Rev. A 98 062338Google Scholar

    [4]

    Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y, Song J 2021 Phys. Rev. A 103 012601Google Scholar

    [5]

    Barredo D, Lienhard V, De Leseleuc S, Lahaye T, Browaeys A 2018 Nature 561 79Google Scholar

    [6]

    Bannasch G, Killian T, Pohl T 2013 Phys. Rev. Lett. 110 253003Google Scholar

    [7]

    Beterov I, Tretyakov D, Entin V, Yakshina E, Ryabtsev I, Saffman M, Bergamini S 2020 J. Phys. B:At. Mol. Opt. Phys. 53 182001Google Scholar

    [8]

    Saffman M 2016 J. Phys. B:At. Mol. Opt. Phys. 49 202001Google Scholar

    [9]

    Müller M, Diehl S, Pupillo G, Zoller P 2012 Adv. Atom. Mol. Opt. Phys. 61 1Google Scholar

    [10]

    Schauss P 2018 Quantum Sci. Technol. 3 023001Google Scholar

    [11]

    Yu S, He X, Xu P, Liu M, Wang J, Zhan M 2012 Chin. Sci. Bull. 57 1931Google Scholar

    [12]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [13]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110Google Scholar

    [14]

    Firstenberg O, Adams C S, Hofferberth S 2016 J. Phys. B: At. Mol. Opt. Phys. 49 152003Google Scholar

    [15]

    Petrosyan D, Rao D B, Mølmer K 2015 Phys. Rev. A 91 043402Google Scholar

    [16]

    Saffman M, Walker T 2002 Phys. Rev. A 66 065403Google Scholar

    [17]

    Maxwell D, Szwer D, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [18]

    Gorshkov A V, Nath R, Pohl T 2013 Phys. Rev. Lett. 110 153601Google Scholar

    [19]

    Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T, Lukin M D 2011 Phys. Rev. Lett. 107 133602Google Scholar

    [20]

    Tiarks D, Baur S, Schneider K, Dürr S, Rempe G 2014 Phys. Rev. Lett. 113 053602Google Scholar

    [21]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [22]

    Tresp C, Zimmer C, Mirgorodskiy I, Gorniaczyk H, Paris-Mandoki A, Hofferberth S 2016 Phys. Rev. Lett. 117 223001Google Scholar

    [23]

    Yu D 2014 Phys. Rev. A 89 063809Google Scholar

    [24]

    Müller M, Lesanovsky I, Weimer H, Buchler H P, Zoller P 2009 Phys. Rev. Lett. 102 170502Google Scholar

    [25]

    Olmos B, Li W, Hofferberth S, Lesanovsky I 2011 Phys. Rev. A 84 041607Google Scholar

    [26]

    Fan C H, Zhang H X, Wu J H 2019 Phys. Rev. A 99 033813 7

    [27]

    Zhang H X, Fan C H, Wu J H 2020 Opt. Express 28 35350Google Scholar

    [28]

    Weber T, Höning M, Niederprüm T, Manthey T, Thomas O, Guarrera V, Fleischhauer M, Barontini G, Ott H 2015 Nat. Phys. 11 157Google Scholar

    [29]

    Gaerttner M, Whitlock S, Schoenleber D W, Evers J 2014 Phys. Rev. Lett. 113 233002Google Scholar

    [30]

    Saffman M, Walker T 2005 Phys. Rev. A 72 022347Google Scholar

    [31]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [32]

    Carmele A, Vogell B, Stannigel K, Zoller P 2014 New J. Phys. 16 063042Google Scholar

    [33]

    Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015 Phys. Rev. A 91 023813Google Scholar

    [34]

    Zhao P Z, Wu X, Xing T H, Xu G F, Tong D M 2018 Phys. Rev. A 98 032313Google Scholar

    [35]

    Huygens C 1980 Horologium oscillatorium

    [36]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization-A Unified Approach to Nonlinear Science (Cambridge: Cambridge University Press)

    [37]

    Osipov G V, Kurths J, Zhou C 2007 Synchronization in Oscillatory Networks (Springfield: Springer Science & Business Media)

    [38]

    Acebrón J A, Bonilla L L, Vicente C J P, Ritort F, Spigler R 2005 Rev. Mod. Phys. 77 137Google Scholar

    [39]

    Hillbrand J, Auth D, Piccardo M, Opačak N, Gornik E, Strasser G, Capasso F, Breuer S, Schwarz B 2020 Phys. Rev. Lett. 124 023901Google Scholar

    [40]

    Karpat G, Yalcinkaya I, Cakmak B 2019 Phys. Rev. A 100 012133Google Scholar

    [41]

    Karpat G, Yalcinkaya I, Cakmak B 2020 Phys. Rev. A 101 042121Google Scholar

    [42]

    Gärttner M 2015 Phys. Rev. A 92 013629Google Scholar

  • 图 1  (a) 同一阻塞区域中捕获在三个磁光阱中的原子系综; (b) 二能级单个里德堡原子能级图, 两个里德堡原子相互作用表现为范德瓦尔斯(vdW)势; (c) 超级原子的能级结构: 在严格偶极阻塞条件下, 超级原子(原子系综)可以分为三个较小的超级原子, 每个较小的超级原子由各自光阱中的原子组成

    Fig. 1.  (a) Schematic diagram of an ensemble of Rydberg atoms trapped in three magneto-optical traps but in the same blockade region; (b) energy structure of the two-level Rydberg atom, two Rydberg atoms interact mediated by vdW potential; (c) energy structure of the superatoms: a superatom representing the ensemble can be divided into three smaller superatoms which are make up of atoms in respective magneto-optical traps.

    图 2  (a), (c) 超级原子的激发概率P; (b), (d) 皮尔森关联系数${C_{\rm{p}}}$(和保真度$F = \left| {\psi \left( t \right)} \right\rangle {\left\langle W \right|^2}$, 其中$\left| {\psi \left( t \right)} \right\rangle $为任意时刻系统的量子态, 而$\left| W \right\rangle = \left( {|{R_1}{G_2}{G_3}\rangle + |{G_1}{R_2}{G_3}\rangle + |{G_1}{G_2}{R_3}\rangle } \right)/\sqrt 3 $, 见(d)中绿色曲线)的动力学演化. 上图满足$ {n_1} = {n_2} = 6, {n_3} = 1 $, 而下图满足$ {n_1} = {n_2} = {n_3} = 6 $. 其他参数有: 拉比频率$\varOmega = 2\;{\rm{MHz}}$, 自发弛豫速率$\varGamma = 0.002\;{\rm{MHz}}$, 单光子失谐$\varDelta = 0$

    Fig. 2.  (a), (c) Dynamical evolution of excitation probability of Rydberg SAsP; (c), (d) Pearson's correlation coefficient ${C_{\rm{p}}}$(and the fidelity $F = \left| {\psi \left( t \right)} \right\rangle {\left\langle W \right|^2}$ with the quantum state of the system $\left| {\psi \left( t \right)} \right\rangle $ and $\left| W \right\rangle = \left( {|{R_1}{G_2}{G_3}\rangle + |{G_1}{R_2}{G_3}\rangle + |{G_1}{G_2}{R_3}\rangle } \right)/\sqrt 3 $, see the green curve in Figure (d)). Top: ${n_1} = {n_2} = 6$, ${n_3} = 1$ and bottom: ${n_1} = {n_2} = {n_3} = 6$. Other parameters are Rabi frequency $\varOmega = 2\;{\rm{MHz}}$, spontaneous emission rate $\Gamma = 0.002\;{\rm{MHz}}$, and the single-photon detuning $\varDelta = 0$.

    图 3  (a) 皮尔森关联系数${C_{p12}}$; (b) 超级原子的最大里德堡激发概率$P_1^{\max }$; (c) 最大并发纠缠度$C_{12}^{\max }$作为原子数目$ {n_1}\left( = {{n_2}} \right) $和单光子失谐Δ的函数. 演化时间为$\varOmega t = 10$, 原子数目固定为$ {n_3} = 1 $, 其他参数同图2

    Fig. 3.  (a) Pearson's correlation coefficient${C_{{\rm{p}}12}}$; (b) maximal excitation probability of Rydberg SA $P_1^{\max }$; (c) maximal concurrence $C_{12}^{\max }$ as a function of the number of atoms $ {n_1}\left( = {{n_2}} \right) $ and the single-photon detuning Δ for a fixed number of atoms $ {n_3} = 1 $. All simulations are done after $\varOmega t = 10$ evolution time. Relevant parameters are the same as in Fig. 2.

    图 4  (a) 超级原子的激发概率P和 (b) 皮尔森关联系数${C_{\rm{p}}}$的时间演化曲线; (c) 皮尔森关联系数${C_{\rm{p}}}$作为单光子失谐Δ的函数; (d) 最大并发纠缠度$C_{12}^{\max }$作为原子数目$ {n_1} $的函数. 图(c)和图(d)的演化时间为$\varOmega t = 10$. 图(a), 图(b)和图(c)图中原子数目为$ {n_1} = {n_2} = 6, {n_3} = 1 $, 而图(d)中原子数目$ {n_3} = 1 $. 其他参数同图2

    Fig. 4.  (a) Dynamical evolution of excitation probability of Rydberg SAsP and (b) Pearson's correlation coefficient ${C_{\rm{p}}}$; (c) Pearson's correlation coefficient ${C_{\rm{p}}}$ as a function of the single-photon detuning Δ; (d) maximal concurrence $C_{12}^{\max }$ as a function of the number of atoms $ {n_1}\left( = {{n_2}} \right) $. All simulations in Figrue (c)and (d) are done after $\varOmega t = 10$ evolution time. The number of atoms $ {n_1} = {n_2} = 6, {n_3} = 1 $ for Figure (a), Figurue (b) and Figure (c), and $ {n_3} = 1 $ for Figure (d). Relevant parameters are the same as in Fig. 2.

    图 5  (a) 超级原子的激发概率P和 (b) 皮尔森关联系数${C_p}$的时间演化曲线; (c) 皮尔森关联系数${C_p}$作为单光子失谐Δ的函数; (d) 最大纠缠并发纠缠度$C_{23}^{\max }$作为原子数目$ {n_2}\left( { = {n_3}} \right) $的函数. 图(c)和图(d)的演化时间为$\varOmega t = 10$. 图(a)、图(b)和图(c)原子数目为$ {n}_{1}=6, {n}_{2}={n}_{3}=3 $. 其他参数同图2

    Fig. 5.  (a) Dynamical evolution of excitation probability of Rydberg SAsP and (b) Pearson's correlation coefficient${C_{\rm{p}}}$; (c) Pearson's correlation coefficient ${C_{\rm{p}}}$ as a function of the single-photon detuning Δ; (d) maximal concurrence $C_{23}^{\max }$ as a function of the number of atoms $ {n_2}\left( { = {n_3}} \right) $. All simulations in Figure (c)and Figure (d) are done after $\varOmega t = 10$ evolution time. The number of atoms $ {n_1} = 6, \;{n_2} = {n_3} = 3 $ for Fgiure (a), Figure (b) and Figure (c). Relevant parameters are the same as in Fig. 2.

    Baidu
  • [1]

    Jaksch D, Cirac J, Zoller P, Rolston S, Côté R, Lukin M 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [2]

    Lukin M D, Fleischhauer M, Cote R, Duan L, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [3]

    Li D, Shao X 2018 Phys. Rev. A 98 062338Google Scholar

    [4]

    Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y, Song J 2021 Phys. Rev. A 103 012601Google Scholar

    [5]

    Barredo D, Lienhard V, De Leseleuc S, Lahaye T, Browaeys A 2018 Nature 561 79Google Scholar

    [6]

    Bannasch G, Killian T, Pohl T 2013 Phys. Rev. Lett. 110 253003Google Scholar

    [7]

    Beterov I, Tretyakov D, Entin V, Yakshina E, Ryabtsev I, Saffman M, Bergamini S 2020 J. Phys. B:At. Mol. Opt. Phys. 53 182001Google Scholar

    [8]

    Saffman M 2016 J. Phys. B:At. Mol. Opt. Phys. 49 202001Google Scholar

    [9]

    Müller M, Diehl S, Pupillo G, Zoller P 2012 Adv. Atom. Mol. Opt. Phys. 61 1Google Scholar

    [10]

    Schauss P 2018 Quantum Sci. Technol. 3 023001Google Scholar

    [11]

    Yu S, He X, Xu P, Liu M, Wang J, Zhan M 2012 Chin. Sci. Bull. 57 1931Google Scholar

    [12]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [13]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110Google Scholar

    [14]

    Firstenberg O, Adams C S, Hofferberth S 2016 J. Phys. B: At. Mol. Opt. Phys. 49 152003Google Scholar

    [15]

    Petrosyan D, Rao D B, Mølmer K 2015 Phys. Rev. A 91 043402Google Scholar

    [16]

    Saffman M, Walker T 2002 Phys. Rev. A 66 065403Google Scholar

    [17]

    Maxwell D, Szwer D, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [18]

    Gorshkov A V, Nath R, Pohl T 2013 Phys. Rev. Lett. 110 153601Google Scholar

    [19]

    Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T, Lukin M D 2011 Phys. Rev. Lett. 107 133602Google Scholar

    [20]

    Tiarks D, Baur S, Schneider K, Dürr S, Rempe G 2014 Phys. Rev. Lett. 113 053602Google Scholar

    [21]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [22]

    Tresp C, Zimmer C, Mirgorodskiy I, Gorniaczyk H, Paris-Mandoki A, Hofferberth S 2016 Phys. Rev. Lett. 117 223001Google Scholar

    [23]

    Yu D 2014 Phys. Rev. A 89 063809Google Scholar

    [24]

    Müller M, Lesanovsky I, Weimer H, Buchler H P, Zoller P 2009 Phys. Rev. Lett. 102 170502Google Scholar

    [25]

    Olmos B, Li W, Hofferberth S, Lesanovsky I 2011 Phys. Rev. A 84 041607Google Scholar

    [26]

    Fan C H, Zhang H X, Wu J H 2019 Phys. Rev. A 99 033813 7

    [27]

    Zhang H X, Fan C H, Wu J H 2020 Opt. Express 28 35350Google Scholar

    [28]

    Weber T, Höning M, Niederprüm T, Manthey T, Thomas O, Guarrera V, Fleischhauer M, Barontini G, Ott H 2015 Nat. Phys. 11 157Google Scholar

    [29]

    Gaerttner M, Whitlock S, Schoenleber D W, Evers J 2014 Phys. Rev. Lett. 113 233002Google Scholar

    [30]

    Saffman M, Walker T 2005 Phys. Rev. A 72 022347Google Scholar

    [31]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [32]

    Carmele A, Vogell B, Stannigel K, Zoller P 2014 New J. Phys. 16 063042Google Scholar

    [33]

    Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015 Phys. Rev. A 91 023813Google Scholar

    [34]

    Zhao P Z, Wu X, Xing T H, Xu G F, Tong D M 2018 Phys. Rev. A 98 032313Google Scholar

    [35]

    Huygens C 1980 Horologium oscillatorium

    [36]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization-A Unified Approach to Nonlinear Science (Cambridge: Cambridge University Press)

    [37]

    Osipov G V, Kurths J, Zhou C 2007 Synchronization in Oscillatory Networks (Springfield: Springer Science & Business Media)

    [38]

    Acebrón J A, Bonilla L L, Vicente C J P, Ritort F, Spigler R 2005 Rev. Mod. Phys. 77 137Google Scholar

    [39]

    Hillbrand J, Auth D, Piccardo M, Opačak N, Gornik E, Strasser G, Capasso F, Breuer S, Schwarz B 2020 Phys. Rev. Lett. 124 023901Google Scholar

    [40]

    Karpat G, Yalcinkaya I, Cakmak B 2019 Phys. Rev. A 100 012133Google Scholar

    [41]

    Karpat G, Yalcinkaya I, Cakmak B 2020 Phys. Rev. A 101 042121Google Scholar

    [42]

    Gärttner M 2015 Phys. Rev. A 92 013629Google Scholar

  • [1] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应.  , 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究.  , 2023, 72(4): 047401. doi: 10.7498/aps.72.20222091
    [4] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [5] 计彦强, 王洁, 刘颖莉, 张大伟, 肖瑞杰, 董莉, 修晓明. 基于里德伯超级原子快速制备三粒子单重态.  , 2021, 70(12): 120301. doi: 10.7498/aps.70.20201841
    [6] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠.  , 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [7] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构.  , 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [8] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量.  , 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [9] 汪仲清, 赵小奇, 周贤菊. 原子在弱相干场光纤耦合腔系统中的纠缠特性.  , 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [10] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性.  , 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [11] 卢道明. 原子与耦合腔相互作用系统中的纠缠特性.  , 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [12] 卢道明. 腔外原子操作控制腔内原子的纠缠特性.  , 2010, 59(12): 8359-8364. doi: 10.7498/aps.59.8359
    [13] 陈宇, 邹健, 李军刚, 邵彬. 耗散环境下三原子之间稳定纠缠的量子反馈控制.  , 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [14] 张英杰, 周 原, 夏云杰. 多光子Tavis-Cummings模型中两纠缠原子的纠缠演化特性.  , 2008, 57(1): 21-27. doi: 10.7498/aps.57.21
    [15] 熊恒娜, 郭 红, 江 健, 陈 俊, 唐丽艳. 原子间纠缠和光场模间纠缠的对应关系.  , 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [16] 单传家, 夏云杰. Tavis-Cummings模型中两纠缠原子纠缠的演化特性.  , 2006, 55(4): 1585-1590. doi: 10.7498/aps.55.1585
    [17] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠.  , 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [18] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性.  , 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [19] 黄燕霞, 赵朋义, 黄熙, 詹明生. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠.  , 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  4518
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2021-09-04
  • 上网日期:  2021-09-10
  • 刊出日期:  2022-01-05

/

返回文章
返回
Baidu
map