搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数百MeV/u高能区C6+离子激发W的L壳层 X射线

周贤明 尉静 程锐 梅策香 曾利霞 王兴 梁昌慧 赵永涛 张小安

引用本文:
Citation:

数百MeV/u高能区C6+离子激发W的L壳层 X射线

周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安

W L-shell X-ray emission induced by C6+ ions with several hundred MeV/u

Zhou Xian-Ming, Wei Jing, Cheng Rui, Mei Ce-Xiang, Zeng Li-Xia, Wang Xing, Liang Chang-Hui, Zhao Yong-Tao, Zhang Xiao-An
PDF
HTML
导出引用
  • 在能量为154—424 MeV/u 的高能区域, 研究了C6+离子轰击W靶时激发W的L壳层X射线. 本文中, 由于L X射线发射时M, N等外壳层处于多空穴的状态, 观测到了相应谱线能量的蓝移, 以及分支Lι, Lβ1,3,4, Lβ2,15与 Lα1,2 X射线相对强度比的增大. 另外, 利用优化的厚靶截面公式, 并考虑多电离对X射线荧光产额的影响, 计算了L X射线的发射截面, 并与平面玻恩近似(PWBA), 经能量损失(E)-库仑排斥(C)-稳态微扰(PSS)-相对论(R)修正的PWBA理论(ECPSSR)和两体碰撞近似(BEA)理论计算结果进行了对比. 分析表明, 在本实验能区内ECPSSR对PWBA的修正作用可以忽略, 两者计算结果几乎相同且均大于实验截面; BEA估算整体上与实验结果符合较好.
    The L-shell X-ray emission of tungsten is investigated under the bombardment of C6+ ions in a high energy range of 154—424 MeV/u. Compared with the atomic data, the energy of the X-ray is enlarged, and the relative intensity ratio of Lι, Lβ1,3,4 and Lβ2,15 to Lα1,2 X-rays are enhanced. The L-subshell and the total X-ray production cross section are calculated from a well corrected thick target formula and compared with the theoretical estimation of binary encounter approximation (BEA), plane-wave Born approximation (PWBA) and ECPSSR (PWBA theory modified with Energy-loss, Coulomb-repulsion, Perturbed-Stationary-State and Relativistic corrections). On the whole, the experimental cross sections are all smaller than the prediction of PWBA and ECPSSR, but in rough agreement with that of BEA. It is indicated that the inner-shell ionization of W can be considered as a binary process between the high energy C6+ ions acting as a point charge and the independent target electrons. With the L-shell ionization, the outer-shells are multiply ionized. The multi-ionization degree is approximately regard as a constant in the present work. This leads the X-ray energy to be blueshifted and the relative intensity ratios of Lι and Lβ to Lα X-ray to be enhanced. Using the atomic parameters corrected by multi-ionization, the X-ray production cross section can be estimated by the BEA model.
      通信作者: 张小安, zhangxiaoan2000@126.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0402300)、国家自然科学基金(批准号: 11505248, 11775042, 11875096)、陕西省科技厅科研计划(批准号: 2021JQ-812)、陕西省教育厅科学研究计划(批准号: 20JK0975)、咸阳师范学院学术带头人(批准号: XSYXSD202108)和咸阳师范学院重点培育项目(批准号: XSYK21037)资助的课题.
      Corresponding author: Zhang Xiao-An, zhangxiaoan2000@126.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11505248, 11775042, 11875096), the Scientific Research Program of Science and Technology Department of Shaanxi Province, China (Grant No. 2021JQ-812), the Scientific Research Program Foundation of the Education Department of Shaanxi Province, China (Grant No. 20JK0975), the Acadimic Leader of Xianyang Normal University, China (Grant No. XSYXSD202108), and the Key Cultivation Project of Xianyang Normal University, China (Grant No. XSYK21037).
    [1]

    Xu G, Barriga-Carrasco M D, Blazevic A, et al. 2017 Phys. Rev. Lett. 119 207801

    [2]

    Breuer L, Meinerzhagen F, Herder M, Bender M, Severin D, Lerach J O, Wucher A 2016 J. Vac. Sci. Technol. B 34 03H130Google Scholar

    [3]

    Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M, Jaskóła M, Korman A, Kretschmer W, Lapicki G, Mukoyama T 2009 Phys. Rev. A 79 032710Google Scholar

    [4]

    Schmelmer O, Dollinger G, Datzmann G, Hauptner A, Körner H J, Maier-Komor P, Reichart P 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 469Google Scholar

    [5]

    Tapper U, Räisädnen J 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 71 214

    [6]

    Greenberg J S, Davis C K, Vincent P 1974 Phys. Rev. Lett. 30 473

    [7]

    周小红, 张志远, 甘再国, 许甫荣, 周善贵 2020 中国科学: 物理学 力学 天文学 50 112002Google Scholar

    Zhou X H, Zhang Z Y, Gan Z G, Xu F R, Zhou S G 2020 Sci. Sin. -Phys. Mech. Astron. 50 112002Google Scholar

    [8]

    叶沿林, 杨晓菲, 刘洋, 韩家兴 2020 中国科学: 物理学 力学 天文学 50 112003Google Scholar

    Ye Y L, Yang Y F, Liu Y, Han J X 2020 Sci. Sin.-Phys. Mech. Astron. 50 112003Google Scholar

    [9]

    赵永涛, 张子民, 程锐, 等 2020 中国科学: 物理学 力学 天文学 50 112004Google Scholar

    Zhao Y T, Zhang Z M, Chen R, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112004Google Scholar

    [10]

    曹须, 陈旭荣, 龚畅, 等 2020 中国科学: 物理学 力学 天文学 50 112005Google Scholar

    Cao X, Chen X R, Gong C, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112005Google Scholar

    [11]

    赵红卫, 徐瑚珊, 肖国青, 等 2020 中国科学: 物理学 力学 天文学 50 112006Google Scholar

    Zhao H W, Xu H S, Xiao G Q, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112006Google Scholar

    [12]

    郭冰, 柳卫平, 唐晓东, 李志宏, 何建军 2020 中国科学: 物理学 力学 天文学 50 112007Google Scholar

    Guo B, Liu W P, Tang X D, Li Z H, He J J 2020 Sci. Sin.-Phys. Mech. Astron. 50 112007Google Scholar

    [13]

    马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008Google Scholar

    Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008Google Scholar

    [14]

    马余刚, 许怒, 刘峰 2020 中国科学: 物理学 力学 天文学 50 112009Google Scholar

    Ma Y G, Xu N, Liu F 2020 Sci. Sin.-Phys. Mech. Astron. 50 112009Google Scholar

    [15]

    孙志宇, 陈良文, 蔡汉杰, 李亮, 尤郑昀, 袁野, 王莹, 谢聚军, 冯兆庆, 王世陶 2020 中国科学: 物理学 力学 天文学 50 112010Google Scholar

    Sun Z Y, Chen L W, Cai H J, Li L, You Z Y, Yuan Y, Wang Y, Xie J J, Feng Z Q, Wang S T 2020 Sci. Sin.-Phys. Mech. Astron. 50 112010Google Scholar

    [16]

    程锐, 张晟, 申国栋, 等 2020 中国科学: 物理学 力学 天文学 50 112011Google Scholar

    Chen R, Zhang S, Sheng G D, et al. 2020 Sci Sin. -Phys. Mech. Astron. 50 112011Google Scholar

    [17]

    Kawata S 2021 Adv. Phys. X 6 1873860

    [18]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar

    [19]

    Hofmann I 2015 Rev. Accel. Sci. Technol. 08 37Google Scholar

    [20]

    Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Rev. Mod. Phys. 86 317Google Scholar

    [21]

    Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [22]

    Marshall F J, McKenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [23]

    Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 1767

    [24]

    Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969

    [25]

    Gorlachev I, Gluchshenko N, Ivanov I, Kireyev A, Krasnopyorova M, Kurakhmedov A, Platov A, Sambayev Y, Zdorovets M 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 448 19Google Scholar

    [26]

    Lapicki G 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 467 123Google Scholar

    [27]

    Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar

    [28]

    Cohen D D, Stelcer E, Crawford J, Atanacio A, Doherty G, Lapicki G 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 318 11Google Scholar

    [29]

    Gryzinski M 1965 Phys. Rev. A 138 A336

    [30]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1Google Scholar

    [31]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [32]

    Lapicki G 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 189 8Google Scholar

    [33]

    Vigilante M, Cuzzocrea P, De Cesare N, Murolo F, Perillo E, Spadaccini G 1990 Nucl. Instrum. Methods Phys. Res. , Sect. B 51 232Google Scholar

    [34]

    Kondo C, Takabayashi Y, Muranaka T, Masugi S, Azuma T, Komaki K, Hatakeyama A, Yamazaki Y, Takada E, Murakami T 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 230 85Google Scholar

    [35]

    Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703Google Scholar

    [36]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 曾利霞 2017 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [37]

    Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar

    [38]

    张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹 2013 62 173401Google Scholar

    Zhang X A, Mei C X, Zhao Y T, Cheng R, Wang X, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R 2013 Acta Phys. Sin. 62 173401Google Scholar

    [39]

    Awaya Y, Kambara T, Kanai Y 1999 Int. J. Mass Spectrom. 192 49Google Scholar

    [40]

    Hopkins F, Elliott D O, Bhalla C P, Richard P 1973 Phys. Rev. A 8 2952Google Scholar

    [41]

    Hoszowska J, Kheifets A K, Dousse J Cl, Berset M, Bray I, Cao W, Fennane K, Kayser Y, Kavčič M, Szlachetko J, Szlachetko M 2009 Phys. Rev. Lett. 102 073006Google Scholar

    [42]

    Horvat V, Watson R L, Peng Y 2009 Phys. Rev. A 79 012708Google Scholar

    [43]

    Kavčič M, Kobal M, Budnar M, Dousse J Cl, Tökési K 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 235Google Scholar

    [44]

    Kobal M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 229 165Google Scholar

    [45]

    Cipolla S J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 153Google Scholar

    [46]

    Cipolla S j, Hill B P 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 241 129Google Scholar

    [47]

    Miranda J, Lucio O G, Téllez E B, Martı́nez J N 2004 Radiat. Phys. Chem. 69 257Google Scholar

    [48]

    Bearden J A 1967 Rev. Mod. Phys. 39 78Google Scholar

    [49]

    Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C, Vaughan D) 2001 X-ray Data Book

    [50]

    Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar

    [51]

    Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar

    [52]

    Sarkadi L, Mukoyama T 1980 J. Phys. B: Atom. Mol. Phys. 13 2255Google Scholar

    [53]

    Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar

    [54]

    Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar

    [55]

    Kavčič M, Šmit Ž, Budnar M 1997 Phys. Rev. A 56 4675Google Scholar

    [56]

    Campbell J L 2003 At. Data Nucl. Data tables 85 291Google Scholar

    [57]

    Campbell J L 2009 At. Data Nucl. Data tables 95 115Google Scholar

    [58]

    Ouziane S, Amokrane A, Zilabdi M 2000 Nucl. Instrum Methods Phys. Res., Sect. B 161-163 141

    [59]

    Kennedy V J, Augusthy A, Varier K M, Magudapathy P, Nair K G M, Dhal B B, Padhi H C 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 134 165Google Scholar

    [60]

    Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Chen X M, Zhao Y T, Xiao G Q 2017 Nucl. Instrum. Methods Res., Sect. B 408 140Google Scholar

    [61]

    Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [62]

    Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar

    [63]

    Scofield J H 1974 At. Data Nucl. Data tables 14 121Google Scholar

    [64]

    Scofield J H 1974 Phys. Rev. A 10 1507

  • 图 1  Si漂移X射线探测器(SDD)的探测效率

    Fig. 1.  Efficiency of the silicon drift detector.

    图 2  不同能量C6+离子激发W的L壳层特征X射线谱, 以及质子激发谱

    Fig. 2.  W L-shell X-ray spectra induced by high energy C6+ ions with various incident energy, and compared with that induced by proton.

    图 3  不同能量C6+激发W的Lβ1, 3, 4与Lα1, 2 X射线相对强度比

    Fig. 3.  Relative intensity ratios of W Lβ1, 3, 4 to Lα1, 2 X-ray induced by C6+ ions with various incident energy.

    图 5  不同能量C6+激发W的Lι与Lα1, 2 X射线相对强度比

    Fig. 5.  Relative intensity ratios of W Lι and Lα1, 2 X-ray induced by C6+ ions with various incident energy.

    图 4  不同能量C6+激发W的Lβ2, 15与Lα1, 2 X射线相对强度比

    Fig. 4.  Relative intensity ratios of W Lβ2, 15 and Lα1, 2 X-ray induced by C6+ ions with various incident energy.

    图 6  C6+离子产生W的L X射线发射截面实验值, 以及不同的理论计算值

    Fig. 6.  L X-ray production cross section of W produced by high energy C6+ ions, and compared with various theoretical calculations.

    表 1  不同能量C6+离子轰击产生W的L壳层分支X射线能量, 以及300 keV质子激发数据和单电离的原子数据[48,49]

    Table 1.  W L-subshell X-ray energies induced by high energy C6+ ions and 300 keV H+, and the atomic data [48,49].

    Lι/eV1, 2/eV1, 3, 4/eV2, 15/eV1/eV2, 3/eV
    Atomic73878392967399551128511647
    Proton7383 ± 38390 ± 39677 ± 49959 ± 511289 ± 411649 ± 5
    154 MeV/u7508 ± 58472 ± 39750 ± 310041 ± 511363 ± 611794 ± 9
    205 MeV/u7497 ± 78438 ± 59711 ± 59999 ± 711349 ± 911743 ± 10
    293 MeV/u7495 ± 68446 ± 39718 ± 410017 ± 511343 ± 711767 ± 8
    343 MeV/u7493 ± 58432 ± 59708 ± 410005 ± 411336 ± 811746 ± 11
    424 MeV/u7503 ± 78440 ± 49712 ± 510007 ± 611346 ± 711749 ± 10
    下载: 导出CSV

    表 2  高能C6+离子激发W的L X射线发射截面

    Table 2.  Experimental results of W L-shell X-ray production cross section induced by high energy C6+ ions.

    E/(MeV·u–1)Lι/(102 b)Lα/(103 b)1, 3, 4/(103 b)2, 15/(102 b)Lβ/(103 b)Lγ/(102 b)Ltotal/(103 b)
    1542.29 ± 0.392.58 ± 0.441.55 ± 0.267.41 ± 1.252.29 ± 0.395.48 ± 0.935.64 ± 0.96
    2051.56 ± 0.262.18 ± 0.371.22 ± 0.215.25 ± 0.891.74 ± 0.303.89 ± 0.664.47 ± 0.76
    2931.28 ± 0.221.79 ± 0.301.06 ± 0.184.56 ± 0.771.51 ± 0.263.10 ± 0.533.74 ± 0.64
    3431.24 ± 0.211.71 ± 0.291.07 ± 0.184.56 ± 0.771.52 ± 0.262.96 ± 0.503.68 ± 0.62
    4241.13 ± 0.191.63 ± 0.280.92 ± 0.164.44 ± 0.751.36 ± 0.232.70 ± 0.463.40 ± 0.57
    下载: 导出CSV
    Baidu
  • [1]

    Xu G, Barriga-Carrasco M D, Blazevic A, et al. 2017 Phys. Rev. Lett. 119 207801

    [2]

    Breuer L, Meinerzhagen F, Herder M, Bender M, Severin D, Lerach J O, Wucher A 2016 J. Vac. Sci. Technol. B 34 03H130Google Scholar

    [3]

    Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M, Jaskóła M, Korman A, Kretschmer W, Lapicki G, Mukoyama T 2009 Phys. Rev. A 79 032710Google Scholar

    [4]

    Schmelmer O, Dollinger G, Datzmann G, Hauptner A, Körner H J, Maier-Komor P, Reichart P 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 469Google Scholar

    [5]

    Tapper U, Räisädnen J 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 71 214

    [6]

    Greenberg J S, Davis C K, Vincent P 1974 Phys. Rev. Lett. 30 473

    [7]

    周小红, 张志远, 甘再国, 许甫荣, 周善贵 2020 中国科学: 物理学 力学 天文学 50 112002Google Scholar

    Zhou X H, Zhang Z Y, Gan Z G, Xu F R, Zhou S G 2020 Sci. Sin. -Phys. Mech. Astron. 50 112002Google Scholar

    [8]

    叶沿林, 杨晓菲, 刘洋, 韩家兴 2020 中国科学: 物理学 力学 天文学 50 112003Google Scholar

    Ye Y L, Yang Y F, Liu Y, Han J X 2020 Sci. Sin.-Phys. Mech. Astron. 50 112003Google Scholar

    [9]

    赵永涛, 张子民, 程锐, 等 2020 中国科学: 物理学 力学 天文学 50 112004Google Scholar

    Zhao Y T, Zhang Z M, Chen R, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112004Google Scholar

    [10]

    曹须, 陈旭荣, 龚畅, 等 2020 中国科学: 物理学 力学 天文学 50 112005Google Scholar

    Cao X, Chen X R, Gong C, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112005Google Scholar

    [11]

    赵红卫, 徐瑚珊, 肖国青, 等 2020 中国科学: 物理学 力学 天文学 50 112006Google Scholar

    Zhao H W, Xu H S, Xiao G Q, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112006Google Scholar

    [12]

    郭冰, 柳卫平, 唐晓东, 李志宏, 何建军 2020 中国科学: 物理学 力学 天文学 50 112007Google Scholar

    Guo B, Liu W P, Tang X D, Li Z H, He J J 2020 Sci. Sin.-Phys. Mech. Astron. 50 112007Google Scholar

    [13]

    马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008Google Scholar

    Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008Google Scholar

    [14]

    马余刚, 许怒, 刘峰 2020 中国科学: 物理学 力学 天文学 50 112009Google Scholar

    Ma Y G, Xu N, Liu F 2020 Sci. Sin.-Phys. Mech. Astron. 50 112009Google Scholar

    [15]

    孙志宇, 陈良文, 蔡汉杰, 李亮, 尤郑昀, 袁野, 王莹, 谢聚军, 冯兆庆, 王世陶 2020 中国科学: 物理学 力学 天文学 50 112010Google Scholar

    Sun Z Y, Chen L W, Cai H J, Li L, You Z Y, Yuan Y, Wang Y, Xie J J, Feng Z Q, Wang S T 2020 Sci. Sin.-Phys. Mech. Astron. 50 112010Google Scholar

    [16]

    程锐, 张晟, 申国栋, 等 2020 中国科学: 物理学 力学 天文学 50 112011Google Scholar

    Chen R, Zhang S, Sheng G D, et al. 2020 Sci Sin. -Phys. Mech. Astron. 50 112011Google Scholar

    [17]

    Kawata S 2021 Adv. Phys. X 6 1873860

    [18]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar

    [19]

    Hofmann I 2015 Rev. Accel. Sci. Technol. 08 37Google Scholar

    [20]

    Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Rev. Mod. Phys. 86 317Google Scholar

    [21]

    Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [22]

    Marshall F J, McKenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [23]

    Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 1767

    [24]

    Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969

    [25]

    Gorlachev I, Gluchshenko N, Ivanov I, Kireyev A, Krasnopyorova M, Kurakhmedov A, Platov A, Sambayev Y, Zdorovets M 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 448 19Google Scholar

    [26]

    Lapicki G 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 467 123Google Scholar

    [27]

    Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar

    [28]

    Cohen D D, Stelcer E, Crawford J, Atanacio A, Doherty G, Lapicki G 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 318 11Google Scholar

    [29]

    Gryzinski M 1965 Phys. Rev. A 138 A336

    [30]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1Google Scholar

    [31]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [32]

    Lapicki G 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 189 8Google Scholar

    [33]

    Vigilante M, Cuzzocrea P, De Cesare N, Murolo F, Perillo E, Spadaccini G 1990 Nucl. Instrum. Methods Phys. Res. , Sect. B 51 232Google Scholar

    [34]

    Kondo C, Takabayashi Y, Muranaka T, Masugi S, Azuma T, Komaki K, Hatakeyama A, Yamazaki Y, Takada E, Murakami T 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 230 85Google Scholar

    [35]

    Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703Google Scholar

    [36]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 曾利霞 2017 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [37]

    Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar

    [38]

    张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹 2013 62 173401Google Scholar

    Zhang X A, Mei C X, Zhao Y T, Cheng R, Wang X, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R 2013 Acta Phys. Sin. 62 173401Google Scholar

    [39]

    Awaya Y, Kambara T, Kanai Y 1999 Int. J. Mass Spectrom. 192 49Google Scholar

    [40]

    Hopkins F, Elliott D O, Bhalla C P, Richard P 1973 Phys. Rev. A 8 2952Google Scholar

    [41]

    Hoszowska J, Kheifets A K, Dousse J Cl, Berset M, Bray I, Cao W, Fennane K, Kayser Y, Kavčič M, Szlachetko J, Szlachetko M 2009 Phys. Rev. Lett. 102 073006Google Scholar

    [42]

    Horvat V, Watson R L, Peng Y 2009 Phys. Rev. A 79 012708Google Scholar

    [43]

    Kavčič M, Kobal M, Budnar M, Dousse J Cl, Tökési K 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 235Google Scholar

    [44]

    Kobal M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 229 165Google Scholar

    [45]

    Cipolla S J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 153Google Scholar

    [46]

    Cipolla S j, Hill B P 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 241 129Google Scholar

    [47]

    Miranda J, Lucio O G, Téllez E B, Martı́nez J N 2004 Radiat. Phys. Chem. 69 257Google Scholar

    [48]

    Bearden J A 1967 Rev. Mod. Phys. 39 78Google Scholar

    [49]

    Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C, Vaughan D) 2001 X-ray Data Book

    [50]

    Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar

    [51]

    Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar

    [52]

    Sarkadi L, Mukoyama T 1980 J. Phys. B: Atom. Mol. Phys. 13 2255Google Scholar

    [53]

    Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar

    [54]

    Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar

    [55]

    Kavčič M, Šmit Ž, Budnar M 1997 Phys. Rev. A 56 4675Google Scholar

    [56]

    Campbell J L 2003 At. Data Nucl. Data tables 85 291Google Scholar

    [57]

    Campbell J L 2009 At. Data Nucl. Data tables 95 115Google Scholar

    [58]

    Ouziane S, Amokrane A, Zilabdi M 2000 Nucl. Instrum Methods Phys. Res., Sect. B 161-163 141

    [59]

    Kennedy V J, Augusthy A, Varier K M, Magudapathy P, Nair K G M, Dhal B B, Padhi H C 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 134 165Google Scholar

    [60]

    Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Chen X M, Zhao Y T, Xiao G Q 2017 Nucl. Instrum. Methods Res., Sect. B 408 140Google Scholar

    [61]

    Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [62]

    Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar

    [63]

    Scofield J H 1974 At. Data Nucl. Data tables 14 121Google Scholar

    [64]

    Scofield J H 1974 Phys. Rev. A 10 1507

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线.  , 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线.  , 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L X射线研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [4] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线.  , 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [5] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青. 近Bohr速度I20+离子在不同靶面上的L壳层X射线辐射.  , 2021, 70(2): 023201. doi: 10.7498/aps.70.20201236
    [6] 李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升. 等离子体中X射线透过率分析及潜在通信应用研究.  , 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青. 不同离子激发Au靶的多电离效应.  , 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [8] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线.  , 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [9] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线.  , 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [10] 周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青. H+和Ar11+激发Si的K壳层X射线发射研究.  , 2013, 62(8): 083201. doi: 10.7498/aps.62.083201
    [11] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应.  , 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [12] 邹贤容, 邵剑雄, 陈熙萌, 崔莹. 高电荷态Ar17+离子在表面以下过程中发射X射线分支比及各分支能量的研究.  , 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [13] 吕瑛, 陈熙萌, 曹柱荣, 吴卫东. 低能高电荷态离子(4≤ q ≤7)与He碰撞中双俘获与转移电离的截面反转效应.  , 2010, 59(6): 3892-3896. doi: 10.7498/aps.59.3892
    [14] 张泊丽, 杨治虎, 杜树斌, 常宏伟, 薛迎丽, 宋张勇, 朱可欣, 田野. 20—50MeV O5+离子引起Au的L壳层X射线产生截面研究.  , 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [15] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱.  , 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [16] 杨治虎, 宋张勇, 崔 莹, 张红强, 阮芳芳, 邵剑雄, 杜 娟, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红. Ar16+和Ar17+离子与Zr作用产生的X射线谱.  , 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [17] 鲁彦霞, 陈熙萌, 丁宝卫, 付宏斌, 崔 莹, 邵剑雄, 张红强, 高志民. C3+与Ne碰撞过程纯电离绝对截面的测量和研究.  , 2007, 56(8): 4461-4466. doi: 10.7498/aps.56.4461
    [18] 高志民, 陈熙萌, 刘兆远, 丁宝卫, 鲁彦霞, 付宏斌, 刘玉文, 杜 娟, 崔 莹, 邵剑雄, 张红强, 孙光智. 中低能非全裸C离子与He原子的碰撞研究.  , 2007, 56(4): 2079-2084. doi: 10.7498/aps.56.2079
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究.  , 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
计量
  • 文章访问数:  4055
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 修回日期:  2022-02-13
  • 上网日期:  2022-05-27
  • 刊出日期:  2022-06-05

/

返回文章
返回
Baidu
map