-
在能量为154—424 MeV/u 的高能区域, 研究了C6+离子轰击W靶时激发W的L壳层X射线. 本文中, 由于L X射线发射时M, N等外壳层处于多空穴的状态, 观测到了相应谱线能量的蓝移, 以及分支Lι, Lβ1,3,4, Lβ2,15与 Lα1,2 X射线相对强度比的增大. 另外, 利用优化的厚靶截面公式, 并考虑多电离对X射线荧光产额的影响, 计算了L X射线的发射截面, 并与平面玻恩近似(PWBA), 经能量损失(E)-库仑排斥(C)-稳态微扰(PSS)-相对论(R)修正的PWBA理论(ECPSSR)和两体碰撞近似(BEA)理论计算结果进行了对比. 分析表明, 在本实验能区内ECPSSR对PWBA的修正作用可以忽略, 两者计算结果几乎相同且均大于实验截面; BEA估算整体上与实验结果符合较好.The L-shell X-ray emission of tungsten is investigated under the bombardment of C6+ ions in a high energy range of 154—424 MeV/u. Compared with the atomic data, the energy of the X-ray is enlarged, and the relative intensity ratio of Lι, Lβ1,3,4 and Lβ2,15 to Lα1,2 X-rays are enhanced. The L-subshell and the total X-ray production cross section are calculated from a well corrected thick target formula and compared with the theoretical estimation of binary encounter approximation (BEA), plane-wave Born approximation (PWBA) and ECPSSR (PWBA theory modified with Energy-loss, Coulomb-repulsion, Perturbed-Stationary-State and Relativistic corrections). On the whole, the experimental cross sections are all smaller than the prediction of PWBA and ECPSSR, but in rough agreement with that of BEA. It is indicated that the inner-shell ionization of W can be considered as a binary process between the high energy C6+ ions acting as a point charge and the independent target electrons. With the L-shell ionization, the outer-shells are multiply ionized. The multi-ionization degree is approximately regard as a constant in the present work. This leads the X-ray energy to be blueshifted and the relative intensity ratios of Lι and Lβ to Lα X-ray to be enhanced. Using the atomic parameters corrected by multi-ionization, the X-ray production cross section can be estimated by the BEA model.
-
Keywords:
- high energy heavy ions /
- ion-atom collision /
- multiple ionization /
- X-ray
[1] Xu G, Barriga-Carrasco M D, Blazevic A, et al. 2017 Phys. Rev. Lett. 119 207801
[2] Breuer L, Meinerzhagen F, Herder M, Bender M, Severin D, Lerach J O, Wucher A 2016 J. Vac. Sci. Technol. B 34 03H130Google Scholar
[3] Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M, Jaskóła M, Korman A, Kretschmer W, Lapicki G, Mukoyama T 2009 Phys. Rev. A 79 032710Google Scholar
[4] Schmelmer O, Dollinger G, Datzmann G, Hauptner A, Körner H J, Maier-Komor P, Reichart P 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 469Google Scholar
[5] Tapper U, Räisädnen J 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 71 214
[6] Greenberg J S, Davis C K, Vincent P 1974 Phys. Rev. Lett. 30 473
[7] 周小红, 张志远, 甘再国, 许甫荣, 周善贵 2020 中国科学: 物理学 力学 天文学 50 112002Google Scholar
Zhou X H, Zhang Z Y, Gan Z G, Xu F R, Zhou S G 2020 Sci. Sin. -Phys. Mech. Astron. 50 112002Google Scholar
[8] 叶沿林, 杨晓菲, 刘洋, 韩家兴 2020 中国科学: 物理学 力学 天文学 50 112003Google Scholar
Ye Y L, Yang Y F, Liu Y, Han J X 2020 Sci. Sin.-Phys. Mech. Astron. 50 112003Google Scholar
[9] 赵永涛, 张子民, 程锐, 等 2020 中国科学: 物理学 力学 天文学 50 112004Google Scholar
Zhao Y T, Zhang Z M, Chen R, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112004Google Scholar
[10] 曹须, 陈旭荣, 龚畅, 等 2020 中国科学: 物理学 力学 天文学 50 112005Google Scholar
Cao X, Chen X R, Gong C, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112005Google Scholar
[11] 赵红卫, 徐瑚珊, 肖国青, 等 2020 中国科学: 物理学 力学 天文学 50 112006Google Scholar
Zhao H W, Xu H S, Xiao G Q, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112006Google Scholar
[12] 郭冰, 柳卫平, 唐晓东, 李志宏, 何建军 2020 中国科学: 物理学 力学 天文学 50 112007Google Scholar
Guo B, Liu W P, Tang X D, Li Z H, He J J 2020 Sci. Sin.-Phys. Mech. Astron. 50 112007Google Scholar
[13] 马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008Google Scholar
Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008Google Scholar
[14] 马余刚, 许怒, 刘峰 2020 中国科学: 物理学 力学 天文学 50 112009Google Scholar
Ma Y G, Xu N, Liu F 2020 Sci. Sin.-Phys. Mech. Astron. 50 112009Google Scholar
[15] 孙志宇, 陈良文, 蔡汉杰, 李亮, 尤郑昀, 袁野, 王莹, 谢聚军, 冯兆庆, 王世陶 2020 中国科学: 物理学 力学 天文学 50 112010Google Scholar
Sun Z Y, Chen L W, Cai H J, Li L, You Z Y, Yuan Y, Wang Y, Xie J J, Feng Z Q, Wang S T 2020 Sci. Sin.-Phys. Mech. Astron. 50 112010Google Scholar
[16] 程锐, 张晟, 申国栋, 等 2020 中国科学: 物理学 力学 天文学 50 112011Google Scholar
Chen R, Zhang S, Sheng G D, et al. 2020 Sci Sin. -Phys. Mech. Astron. 50 112011Google Scholar
[17] Kawata S 2021 Adv. Phys. X 6 1873860
[18] Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar
[19] Hofmann I 2015 Rev. Accel. Sci. Technol. 08 37Google Scholar
[20] Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Rev. Mod. Phys. 86 317Google Scholar
[21] Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002Google Scholar
[22] Marshall F J, McKenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004Google Scholar
[23] Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 1767
[24] Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969
[25] Gorlachev I, Gluchshenko N, Ivanov I, Kireyev A, Krasnopyorova M, Kurakhmedov A, Platov A, Sambayev Y, Zdorovets M 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 448 19Google Scholar
[26] Lapicki G 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 467 123Google Scholar
[27] Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar
[28] Cohen D D, Stelcer E, Crawford J, Atanacio A, Doherty G, Lapicki G 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 318 11Google Scholar
[29] Gryzinski M 1965 Phys. Rev. A 138 A336
[30] Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1Google Scholar
[31] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar
[32] Lapicki G 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 189 8Google Scholar
[33] Vigilante M, Cuzzocrea P, De Cesare N, Murolo F, Perillo E, Spadaccini G 1990 Nucl. Instrum. Methods Phys. Res. , Sect. B 51 232Google Scholar
[34] Kondo C, Takabayashi Y, Muranaka T, Masugi S, Azuma T, Komaki K, Hatakeyama A, Yamazaki Y, Takada E, Murakami T 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 230 85Google Scholar
[35] Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703Google Scholar
[36] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 曾利霞 2017 66 143401Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar
[37] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar
[38] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹 2013 62 173401Google Scholar
Zhang X A, Mei C X, Zhao Y T, Cheng R, Wang X, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R 2013 Acta Phys. Sin. 62 173401Google Scholar
[39] Awaya Y, Kambara T, Kanai Y 1999 Int. J. Mass Spectrom. 192 49Google Scholar
[40] Hopkins F, Elliott D O, Bhalla C P, Richard P 1973 Phys. Rev. A 8 2952Google Scholar
[41] Hoszowska J, Kheifets A K, Dousse J Cl, Berset M, Bray I, Cao W, Fennane K, Kayser Y, Kavčič M, Szlachetko J, Szlachetko M 2009 Phys. Rev. Lett. 102 073006Google Scholar
[42] Horvat V, Watson R L, Peng Y 2009 Phys. Rev. A 79 012708Google Scholar
[43] Kavčič M, Kobal M, Budnar M, Dousse J Cl, Tökési K 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 235Google Scholar
[44] Kobal M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 229 165Google Scholar
[45] Cipolla S J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 153Google Scholar
[46] Cipolla S j, Hill B P 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 241 129Google Scholar
[47] Miranda J, Lucio O G, Téllez E B, Martı́nez J N 2004 Radiat. Phys. Chem. 69 257Google Scholar
[48] Bearden J A 1967 Rev. Mod. Phys. 39 78Google Scholar
[49] Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C, Vaughan D) 2001 X-ray Data Book
[50] Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar
[51] Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar
[52] Sarkadi L, Mukoyama T 1980 J. Phys. B: Atom. Mol. Phys. 13 2255Google Scholar
[53] Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar
[54] Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar
[55] Kavčič M, Šmit Ž, Budnar M 1997 Phys. Rev. A 56 4675Google Scholar
[56] Campbell J L 2003 At. Data Nucl. Data tables 85 291Google Scholar
[57] Campbell J L 2009 At. Data Nucl. Data tables 95 115Google Scholar
[58] Ouziane S, Amokrane A, Zilabdi M 2000 Nucl. Instrum Methods Phys. Res., Sect. B 161-163 141
[59] Kennedy V J, Augusthy A, Varier K M, Magudapathy P, Nair K G M, Dhal B B, Padhi H C 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 134 165Google Scholar
[60] Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Chen X M, Zhao Y T, Xiao G Q 2017 Nucl. Instrum. Methods Res., Sect. B 408 140Google Scholar
[61] Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar
[62] Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar
[63] Scofield J H 1974 At. Data Nucl. Data tables 14 121Google Scholar
[64] Scofield J H 1974 Phys. Rev. A 10 1507
-
表 1 不同能量C6+离子轰击产生W的L壳层分支X射线能量, 以及300 keV质子激发数据和单电离的原子数据[48,49]
Table 1. W L-subshell X-ray energies induced by high energy C6+ ions and 300 keV H+, and the atomic data [48,49].
Lι/eV Lα1, 2/eV Lβ1, 3, 4/eV Lβ2, 15/eV Lγ1/eV Lγ2, 3/eV Atomic 7387 8392 9673 9955 11285 11647 Proton 7383 ± 3 8390 ± 3 9677 ± 4 9959 ± 5 11289 ± 4 11649 ± 5 154 MeV/u 7508 ± 5 8472 ± 3 9750 ± 3 10041 ± 5 11363 ± 6 11794 ± 9 205 MeV/u 7497 ± 7 8438 ± 5 9711 ± 5 9999 ± 7 11349 ± 9 11743 ± 10 293 MeV/u 7495 ± 6 8446 ± 3 9718 ± 4 10017 ± 5 11343 ± 7 11767 ± 8 343 MeV/u 7493 ± 5 8432 ± 5 9708 ± 4 10005 ± 4 11336 ± 8 11746 ± 11 424 MeV/u 7503 ± 7 8440 ± 4 9712 ± 5 10007 ± 6 11346 ± 7 11749 ± 10 表 2 高能C6+离子激发W的L X射线发射截面
Table 2. Experimental results of W L-shell X-ray production cross section induced by high energy C6+ ions.
E/(MeV·u–1) Lι/(102 b) Lα/(103 b) Lβ1, 3, 4/(103 b) Lβ2, 15/(102 b) Lβ/(103 b) Lγ/(102 b) Ltotal/(103 b) 154 2.29 ± 0.39 2.58 ± 0.44 1.55 ± 0.26 7.41 ± 1.25 2.29 ± 0.39 5.48 ± 0.93 5.64 ± 0.96 205 1.56 ± 0.26 2.18 ± 0.37 1.22 ± 0.21 5.25 ± 0.89 1.74 ± 0.30 3.89 ± 0.66 4.47 ± 0.76 293 1.28 ± 0.22 1.79 ± 0.30 1.06 ± 0.18 4.56 ± 0.77 1.51 ± 0.26 3.10 ± 0.53 3.74 ± 0.64 343 1.24 ± 0.21 1.71 ± 0.29 1.07 ± 0.18 4.56 ± 0.77 1.52 ± 0.26 2.96 ± 0.50 3.68 ± 0.62 424 1.13 ± 0.19 1.63 ± 0.28 0.92 ± 0.16 4.44 ± 0.75 1.36 ± 0.23 2.70 ± 0.46 3.40 ± 0.57 -
[1] Xu G, Barriga-Carrasco M D, Blazevic A, et al. 2017 Phys. Rev. Lett. 119 207801
[2] Breuer L, Meinerzhagen F, Herder M, Bender M, Severin D, Lerach J O, Wucher A 2016 J. Vac. Sci. Technol. B 34 03H130Google Scholar
[3] Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M, Jaskóła M, Korman A, Kretschmer W, Lapicki G, Mukoyama T 2009 Phys. Rev. A 79 032710Google Scholar
[4] Schmelmer O, Dollinger G, Datzmann G, Hauptner A, Körner H J, Maier-Komor P, Reichart P 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 469Google Scholar
[5] Tapper U, Räisädnen J 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 71 214
[6] Greenberg J S, Davis C K, Vincent P 1974 Phys. Rev. Lett. 30 473
[7] 周小红, 张志远, 甘再国, 许甫荣, 周善贵 2020 中国科学: 物理学 力学 天文学 50 112002Google Scholar
Zhou X H, Zhang Z Y, Gan Z G, Xu F R, Zhou S G 2020 Sci. Sin. -Phys. Mech. Astron. 50 112002Google Scholar
[8] 叶沿林, 杨晓菲, 刘洋, 韩家兴 2020 中国科学: 物理学 力学 天文学 50 112003Google Scholar
Ye Y L, Yang Y F, Liu Y, Han J X 2020 Sci. Sin.-Phys. Mech. Astron. 50 112003Google Scholar
[9] 赵永涛, 张子民, 程锐, 等 2020 中国科学: 物理学 力学 天文学 50 112004Google Scholar
Zhao Y T, Zhang Z M, Chen R, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112004Google Scholar
[10] 曹须, 陈旭荣, 龚畅, 等 2020 中国科学: 物理学 力学 天文学 50 112005Google Scholar
Cao X, Chen X R, Gong C, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112005Google Scholar
[11] 赵红卫, 徐瑚珊, 肖国青, 等 2020 中国科学: 物理学 力学 天文学 50 112006Google Scholar
Zhao H W, Xu H S, Xiao G Q, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112006Google Scholar
[12] 郭冰, 柳卫平, 唐晓东, 李志宏, 何建军 2020 中国科学: 物理学 力学 天文学 50 112007Google Scholar
Guo B, Liu W P, Tang X D, Li Z H, He J J 2020 Sci. Sin.-Phys. Mech. Astron. 50 112007Google Scholar
[13] 马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008Google Scholar
Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008Google Scholar
[14] 马余刚, 许怒, 刘峰 2020 中国科学: 物理学 力学 天文学 50 112009Google Scholar
Ma Y G, Xu N, Liu F 2020 Sci. Sin.-Phys. Mech. Astron. 50 112009Google Scholar
[15] 孙志宇, 陈良文, 蔡汉杰, 李亮, 尤郑昀, 袁野, 王莹, 谢聚军, 冯兆庆, 王世陶 2020 中国科学: 物理学 力学 天文学 50 112010Google Scholar
Sun Z Y, Chen L W, Cai H J, Li L, You Z Y, Yuan Y, Wang Y, Xie J J, Feng Z Q, Wang S T 2020 Sci. Sin.-Phys. Mech. Astron. 50 112010Google Scholar
[16] 程锐, 张晟, 申国栋, 等 2020 中国科学: 物理学 力学 天文学 50 112011Google Scholar
Chen R, Zhang S, Sheng G D, et al. 2020 Sci Sin. -Phys. Mech. Astron. 50 112011Google Scholar
[17] Kawata S 2021 Adv. Phys. X 6 1873860
[18] Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar
[19] Hofmann I 2015 Rev. Accel. Sci. Technol. 08 37Google Scholar
[20] Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Rev. Mod. Phys. 86 317Google Scholar
[21] Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002Google Scholar
[22] Marshall F J, McKenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004Google Scholar
[23] Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 1767
[24] Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969
[25] Gorlachev I, Gluchshenko N, Ivanov I, Kireyev A, Krasnopyorova M, Kurakhmedov A, Platov A, Sambayev Y, Zdorovets M 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 448 19Google Scholar
[26] Lapicki G 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 467 123Google Scholar
[27] Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar
[28] Cohen D D, Stelcer E, Crawford J, Atanacio A, Doherty G, Lapicki G 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 318 11Google Scholar
[29] Gryzinski M 1965 Phys. Rev. A 138 A336
[30] Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1Google Scholar
[31] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar
[32] Lapicki G 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 189 8Google Scholar
[33] Vigilante M, Cuzzocrea P, De Cesare N, Murolo F, Perillo E, Spadaccini G 1990 Nucl. Instrum. Methods Phys. Res. , Sect. B 51 232Google Scholar
[34] Kondo C, Takabayashi Y, Muranaka T, Masugi S, Azuma T, Komaki K, Hatakeyama A, Yamazaki Y, Takada E, Murakami T 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 230 85Google Scholar
[35] Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703Google Scholar
[36] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 曾利霞 2017 66 143401Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar
[37] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar
[38] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹 2013 62 173401Google Scholar
Zhang X A, Mei C X, Zhao Y T, Cheng R, Wang X, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R 2013 Acta Phys. Sin. 62 173401Google Scholar
[39] Awaya Y, Kambara T, Kanai Y 1999 Int. J. Mass Spectrom. 192 49Google Scholar
[40] Hopkins F, Elliott D O, Bhalla C P, Richard P 1973 Phys. Rev. A 8 2952Google Scholar
[41] Hoszowska J, Kheifets A K, Dousse J Cl, Berset M, Bray I, Cao W, Fennane K, Kayser Y, Kavčič M, Szlachetko J, Szlachetko M 2009 Phys. Rev. Lett. 102 073006Google Scholar
[42] Horvat V, Watson R L, Peng Y 2009 Phys. Rev. A 79 012708Google Scholar
[43] Kavčič M, Kobal M, Budnar M, Dousse J Cl, Tökési K 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 235Google Scholar
[44] Kobal M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 229 165Google Scholar
[45] Cipolla S J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 153Google Scholar
[46] Cipolla S j, Hill B P 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 241 129Google Scholar
[47] Miranda J, Lucio O G, Téllez E B, Martı́nez J N 2004 Radiat. Phys. Chem. 69 257Google Scholar
[48] Bearden J A 1967 Rev. Mod. Phys. 39 78Google Scholar
[49] Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C, Vaughan D) 2001 X-ray Data Book
[50] Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar
[51] Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar
[52] Sarkadi L, Mukoyama T 1980 J. Phys. B: Atom. Mol. Phys. 13 2255Google Scholar
[53] Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar
[54] Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar
[55] Kavčič M, Šmit Ž, Budnar M 1997 Phys. Rev. A 56 4675Google Scholar
[56] Campbell J L 2003 At. Data Nucl. Data tables 85 291Google Scholar
[57] Campbell J L 2009 At. Data Nucl. Data tables 95 115Google Scholar
[58] Ouziane S, Amokrane A, Zilabdi M 2000 Nucl. Instrum Methods Phys. Res., Sect. B 161-163 141
[59] Kennedy V J, Augusthy A, Varier K M, Magudapathy P, Nair K G M, Dhal B B, Padhi H C 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 134 165Google Scholar
[60] Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Chen X M, Zhao Y T, Xiao G Q 2017 Nucl. Instrum. Methods Res., Sect. B 408 140Google Scholar
[61] Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar
[62] Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar
[63] Scofield J H 1974 At. Data Nucl. Data tables 14 121Google Scholar
[64] Scofield J H 1974 Phys. Rev. A 10 1507
计量
- 文章访问数: 4055
- PDF下载量: 46
- 被引次数: 0