搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化

柳小伟 宋辉 郭美卿 王根伟 迟青卓

引用本文:
Citation:

基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化

柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓

Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model

Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo
PDF
HTML
导出引用
  • 硅基电极材料在应用中的一个主要问题是巨大的体积膨胀, 以及由此带来的电极材料破裂、粉化. 本文在有限变形假设前提下, 基于电化学-力学耦合理论, 研究球形Si/C核壳结构在嵌锂过程中的浓度、应力场的演化, 并在此基础上讨论了核壳结构的优化设计. 计算结果显示: 壳层可以很好地保护硅颗粒的膨胀; 然而核内产生的较大的径向压缩应力可能导致核壳界面的脱黏, 而核壳界面处的切向拉伸应力可能会导致壳层的断裂. 进一步为有效提高核壳结构的电化学与力学性能, 从而实现锂离子电池更长的循环寿命, 考虑了两种结构的优化: 1)单层核壳结构; 2)双层核壳结构. 结果表明对于单层核壳结构应使用更软的包覆层材料; 而双层核壳结构中优化的材料布置方案为内软外硬, 对双层核壳结构的硬度分析表明, 内层材料的杨氏模量应低于10 GPa, 而外层材料的应不高于70 GPa. 本文的结论对球形材料颗粒电极的设计及优化具有一定的指导意义.
    Silicon is considered as a first candidate for ideal anode material of the next-generation lithium-ion battery due to its high theoretical capacity to meet the demand for higher energy density. On the other hand, high theoretical capacity is accompanied by massive volume expansion, which gives arise to high stress and crack and pulverization of anode particles. Finally, the capacity of the battery fades gradually. While some kinds of factors contribute to the failure of silicon-based electrodes, the most important one is the diffusion-induced stress generated in silicon-based electrode particles. The cyclic processes of lithiation and delithiation are accomplished by the intercalation into and deintercalation from the silicon particles of lithium ions. During the cycle, physical processes and chemical processes, such as diffusion of lithium ions, phase transition, and volume expansion, take place simultaneously, making the cyclic process a strong-coupling problem to be addressed. For example, the intercalation of lithium ions into the electrode results in volume expansion and phase transition of anodes, thereby inducing stress; in turn, stress affects the diffusion process of lithium ions. Aiming to probe this problem, with the finite deformation hypothesis, an electrochemical-mechanical coupling model is used to study the variation and distribution of concentration and stress of core-shell structure during lithiation. And more importantly, great emphasis is put on the optimal design of core-shell structure. The numerical results show that the shell is useful in prohibiting the volume expansion of silicon core, but large compressive radial stress in silicon core may cause the core and shell to be detached, while the tangential tensile stress at the core-shell interface leads the shell to fracture. To improve the electrochemical and mechanical performance and hence lengthen the cycle life of lithium-ion batteries, two kinds of optimal designs are considered: 1) single-layered core-shell structure and 2) double-layered core-shell structure. The numerical results suggest that the softer shell material is suitable for a single-layered core-shell structure and the inner-soft & outer-hard design is optimal for the double-layered core-shell structure. Furthermore, the effects of Young's modulus of the inner and outer carbon layer materials on the chemical and mechanical performance of anode are explored. The simulation shows that the optimal Young's modulus of the inner shell is less than 10 GPa, and that of the outer shell is not higher than 70 GPa. This research is helpful in designing and optimizing the silicon-based anode electrodes of lithium-ion batteries.
      通信作者: 宋辉, songhui@tyut.edu.cn ; 郭美卿, guomeiqing@tyut.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11872265)和山西省自然科学基金 (批准号: 201901D111087, 201801D121281)资助的课题
      Corresponding author: Song Hui, songhui@tyut.edu.cn ; Guo Mei-Qing, guomeiqing@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11872265) and the Natural Science Foundation of Shanxi Province of China (Grant Nos. 201901D111087, 201801D121281)
    [1]

    程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202Google Scholar

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202Google Scholar

    [2]

    Li M, Lu J, Chen Z, Khalil A 2018 Adv. Mater. 30 1800561Google Scholar

    [3]

    Xie Z, Ma Z, Wang Y, Zhou Y, Lu C 2016 RSC Adv. 6 22383Google Scholar

    [4]

    Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 J. Power Sources 147 269Google Scholar

    [5]

    孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌 2019 68 120201Google Scholar

    Sun F N, Feng L, Bu J H, Zhang J, Li L A, Wang S B 2019 Acta Phys. Sin. 68 120201Google Scholar

    [6]

    Baggetto L, Niessen R A H, Roozeboom F, Notten P H L 2008 Adv. Funct. Mater. 18 1057Google Scholar

    [7]

    Panat R 2015 Thin Solid Films 596 174Google Scholar

    [8]

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B X 2019 J. Power Sources 413 259Google Scholar

    [9]

    Prussin S 1961 J. Appl. Phys. 32 1876Google Scholar

    [10]

    Zhang X, Shyy W, Sastry A M 2007 J. Electrochem. Soc. 154 A910Google Scholar

    [11]

    Song Y, Lu B, Ji X, Zhang J 2012 J. Electrochem. Soc. 159 A2060Google Scholar

    [12]

    Bagheri A, Arghavani J, Naghdabadi R 2019 Mech. Mater. 137 103134Google Scholar

    [13]

    Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar

    [14]

    Christensen J 2010 J. Electrochem. Soc. 157 A366Google Scholar

    [15]

    Zhang X Y, Hao F, Chen H S, Fang D N 2014 J. Electrochem. Soc. 161 A2243Google Scholar

    [16]

    Cheng Y T, Verbrugge M W 2008 J. Appl. Phys. 104 1876

    [17]

    Deluca C M, Maute K, Dunn M L 2011 J. Power Sources 196 9672Google Scholar

    [18]

    Li Y, Zhang K, Zheng B, Zhang X Q, Wang Q 2015 J. Appl. Phys. 117 245103

    [19]

    Hu B, Ma Z S, Lei W X, Zou Y L, Lu C S 2017 Theor. Appl. Mech. Lett. 7 199Google Scholar

    [20]

    Zhao Y F, Lu B, Zhang J 2018 Acta. Mech. Solida. Sin. 31 290Google Scholar

    [21]

    Gao X, Lu W, Xu J 2020 J. Power Sources 449 227501Google Scholar

    [22]

    Hao F, Fang D 2013 J. Electrochem. Soc. 160 A595Google Scholar

    [23]

    Zhao K J, Pharr M, Hartle L, Vlassak J J, Suo Z G 2012 J. Power Sources 218 6Google Scholar

    [24]

    Wu B, Lu W 2017 J. Phys. Chem. C 121 19022Google Scholar

    [25]

    Zhang Y, Zhu Z 2020 Int. J. Adv. Manuf. Technol. 108 499Google Scholar

    [26]

    Bohn E, Eckl T, Kamlah M, McMeekingc R 2013 J. Electrochem. Soc. 160 A1638Google Scholar

    [27]

    Zhang X, Chen H S, Fang D 2019 Int. J. Mech. Sci. 169 105323

    [28]

    Xu C, Weng L, Chen B, Zhou J Q, Cai R 2019 Int. J. Mech. Sci. 157 87

    [29]

    Zhao K, Pharr M, Cai S, Vlassak J J, Suo Z G 2011 J. Am. Ceram. Soc. 94 s226Google Scholar

    [30]

    Zhang K, Zheng B, Yang F, Li Y 2020 Int. J. Mech. Sci. 177 105602Google Scholar

    [31]

    Liu B H, Wang X, Chen H S, Chen S, Yang H X, Xu J, Jiang H Q, Fang D N 2019 J. Appl. Mech. 86 041005Google Scholar

    [32]

    Ding N, Xu J, Yao Y X, Wegner G, Fang X, . Chen C.H, Lieberwirth I 2009 Solid State Ionics 180 222Google Scholar

    [33]

    Sethuraman V A, Chon M J, Shimshak M, Winkle N V, Guduru P R 2010 Electrochem. Commun. 12 1614Google Scholar

    [34]

    Wu B, Lu W 2017 J. Power Sources 360 360Google Scholar

    [35]

    Deng Q, Hu R, Xu C, Chen B, Zhou J 2019 J. Solid State Electrochem. 23 2999Google Scholar

  • 图 1  锂离子电池的用途

    Fig. 1.  Usage of lithium-ion batteries.

    图 2  电化学-力学耦合机理

    Fig. 2.  Electrochemistry-mechanics coupling mechanism.

    图 3  (a) 锂离子电池核壳结构示意图; (b) 径向和切向示意图

    Fig. 3.  (a) Schematic diagram of core-shell structure of lithium-ion battery; (b) radial and tangential schematic diagram.

    图 4  不同假设条件下充电过程中沿着半径方向的径向应力和切向应力 (a)小变形下的径向应力; (b)有限变形下的径向应力; (c)小变形下的切向应力; (d)有限变形下的切向应力

    Fig. 4.  Radial stress and tangential stress along the radial direction during charging under different hypothesis: (a) Radial stress under small deformation; (b) radial stress under finite deformation; (c) tangential stress under small deformation; (d) tangential stress under finite deformation.

    图 5  嵌锂过程中沿着半径方向的(a)浓度和(b) von Mises 应力分布示意图

    Fig. 5.  Schematic diagram of (a) concentration; (b) von Mises stress along the radius during lithium insertion.

    图 6  嵌锂过程中(a)浓度, (b) von Mises应力, (c)径向应力, (d)切向应力随着时间的分布示意

    Fig. 6.  Schematic diagram of the distribution of (a) concentration, (b) von Mises stress, (c) radial stress, and (d) tangential stress over time during lithium insertion.

    图 7  双层核壳结构在嵌锂过程(a)浓度, (b) von Mises应力, (c)径向应力, (d)切向应力的分布示意图

    Fig. 7.  Schematic diagram of the distribution of the double-layer core-shell structure during lithium insertion process: (a) concentration; (b) von Mises stress; (c) radial stress; and (d) tangential stress.

    图 8  Si/C1/C3双层核壳结构和Si/C3/C1双层核壳结构的(a)浓度, (b) von Mises应力, (c)径向应力, (d)切向应力分布示意图

    Fig. 8.  (a) Concentration, (b) von Mises stress, (c) radial stress, and (d) tangential stress distribution schematic diagram of Si/C1/C3 double-layer core-shell structure and Si/C3/C1 double-layer core-shell structure.

    图 9  不同的内外层壳杨氏模量情况下 (a)浓度, (b)浓度, (c) von Mises应力, (d)径向应力分布示意图

    Fig. 9.  (a) Concentration, (b) concentration, (c) von Mises stress, (d) schematic diagram of radial stress distribution under different Young's modulus of inner and outer shells.

    表 1  核壳结构材料参数[16,32,33]

    Table 1.  Material parameters of core-shell structure[16,32,33]

    参数
    饱和浓度 Cmax/(mol·m–3)2.95 × 1052.4 × 104
    初始浓度C0/(mol·m–3)00
    扩散系数 D/(m2·s–1)1.0 × 10–161.45 × 10–13
    内径/外径 R/m4 × 10–85 × 10–8
    泊松比 ν0.230.30
    杨氏模量E/Pa8 × 10106 × 1010
    偏摩尔体积 Ω/(m3·mol–1)3/Cmax3.497 × 10–6
    室温 T/K298
    下载: 导出CSV

    表 2  包覆层碳的材料参数

    Table 2.  Material parameters of the outer shell.

    参数杨氏模量E/Pa饱和浓度Cmax/(mol·m–3)偏摩尔体积Ω/(m3·mol–1)泊松比ν扩散系数D/(m2·s–1)
    碳层[34]1 × 1010241613.497 × 10–60.31.0 × 10–14
    外包覆层[35]3 × 10102.5 × 1043.497 × 10–60.31.0 × 10–14
    下载: 导出CSV
    Baidu
  • [1]

    程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202Google Scholar

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202Google Scholar

    [2]

    Li M, Lu J, Chen Z, Khalil A 2018 Adv. Mater. 30 1800561Google Scholar

    [3]

    Xie Z, Ma Z, Wang Y, Zhou Y, Lu C 2016 RSC Adv. 6 22383Google Scholar

    [4]

    Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 J. Power Sources 147 269Google Scholar

    [5]

    孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌 2019 68 120201Google Scholar

    Sun F N, Feng L, Bu J H, Zhang J, Li L A, Wang S B 2019 Acta Phys. Sin. 68 120201Google Scholar

    [6]

    Baggetto L, Niessen R A H, Roozeboom F, Notten P H L 2008 Adv. Funct. Mater. 18 1057Google Scholar

    [7]

    Panat R 2015 Thin Solid Films 596 174Google Scholar

    [8]

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B X 2019 J. Power Sources 413 259Google Scholar

    [9]

    Prussin S 1961 J. Appl. Phys. 32 1876Google Scholar

    [10]

    Zhang X, Shyy W, Sastry A M 2007 J. Electrochem. Soc. 154 A910Google Scholar

    [11]

    Song Y, Lu B, Ji X, Zhang J 2012 J. Electrochem. Soc. 159 A2060Google Scholar

    [12]

    Bagheri A, Arghavani J, Naghdabadi R 2019 Mech. Mater. 137 103134Google Scholar

    [13]

    Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar

    [14]

    Christensen J 2010 J. Electrochem. Soc. 157 A366Google Scholar

    [15]

    Zhang X Y, Hao F, Chen H S, Fang D N 2014 J. Electrochem. Soc. 161 A2243Google Scholar

    [16]

    Cheng Y T, Verbrugge M W 2008 J. Appl. Phys. 104 1876

    [17]

    Deluca C M, Maute K, Dunn M L 2011 J. Power Sources 196 9672Google Scholar

    [18]

    Li Y, Zhang K, Zheng B, Zhang X Q, Wang Q 2015 J. Appl. Phys. 117 245103

    [19]

    Hu B, Ma Z S, Lei W X, Zou Y L, Lu C S 2017 Theor. Appl. Mech. Lett. 7 199Google Scholar

    [20]

    Zhao Y F, Lu B, Zhang J 2018 Acta. Mech. Solida. Sin. 31 290Google Scholar

    [21]

    Gao X, Lu W, Xu J 2020 J. Power Sources 449 227501Google Scholar

    [22]

    Hao F, Fang D 2013 J. Electrochem. Soc. 160 A595Google Scholar

    [23]

    Zhao K J, Pharr M, Hartle L, Vlassak J J, Suo Z G 2012 J. Power Sources 218 6Google Scholar

    [24]

    Wu B, Lu W 2017 J. Phys. Chem. C 121 19022Google Scholar

    [25]

    Zhang Y, Zhu Z 2020 Int. J. Adv. Manuf. Technol. 108 499Google Scholar

    [26]

    Bohn E, Eckl T, Kamlah M, McMeekingc R 2013 J. Electrochem. Soc. 160 A1638Google Scholar

    [27]

    Zhang X, Chen H S, Fang D 2019 Int. J. Mech. Sci. 169 105323

    [28]

    Xu C, Weng L, Chen B, Zhou J Q, Cai R 2019 Int. J. Mech. Sci. 157 87

    [29]

    Zhao K, Pharr M, Cai S, Vlassak J J, Suo Z G 2011 J. Am. Ceram. Soc. 94 s226Google Scholar

    [30]

    Zhang K, Zheng B, Yang F, Li Y 2020 Int. J. Mech. Sci. 177 105602Google Scholar

    [31]

    Liu B H, Wang X, Chen H S, Chen S, Yang H X, Xu J, Jiang H Q, Fang D N 2019 J. Appl. Mech. 86 041005Google Scholar

    [32]

    Ding N, Xu J, Yao Y X, Wegner G, Fang X, . Chen C.H, Lieberwirth I 2009 Solid State Ionics 180 222Google Scholar

    [33]

    Sethuraman V A, Chon M J, Shimshak M, Winkle N V, Guduru P R 2010 Electrochem. Commun. 12 1614Google Scholar

    [34]

    Wu B, Lu W 2017 J. Power Sources 360 360Google Scholar

    [35]

    Deng Q, Hu R, Xu C, Chen B, Zhou J 2019 J. Solid State Electrochem. 23 2999Google Scholar

  • [1] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射.  , 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [2] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性.  , 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [3] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射.  , 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [4] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为.  , 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [5] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比.  , 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [6] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控.  , 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [7] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射.  , 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [8] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制.  , 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [9] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略.  , 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [10] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响.  , 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [11] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法.  , 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [12] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性.  , 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [13] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性.  , 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [14] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究.  , 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [15] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究.  , 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [16] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响.  , 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2.  , 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究.  , 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [19] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究.  , 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究.  , 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  8130
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-04-23
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map