-
随着激光和加速器技术的发展, 激光场强度和粒子能量也有所提升, 在高场强和高电子能量的条件下, 电子与光子的汤姆孙散射过程将达到高度非线性状态, 在这种状态下会发生多光子效应, 即单个电子同时与多个光子相互作用并辐射一个高能光子, 此过程通常称为多光子汤姆孙散射. 当场强和粒子能量变得更高时, 需要引入量子电动力学理论来解决极端光场物理中的动理学过程. 近期, 全球多台数拍瓦激光装置逐渐投入使用, 激光等离子体相互作用中的此类效应会变得极其显著. 而全光汤姆孙散射成为目前研究极端光场物理最佳的实验方案, 因此, 系统地研究全光多光子汤姆孙散射是本领域未来十年极其重要的方向. 本文对近年来全光汤姆孙散射实验从单光子、低阶多光子到高阶多光子的研究进展进行了综述, 并对其未来的发展方向进行了展望. 另外, 伴随着散射过程产生的准直高亮X/伽马射线, 有望发展成为具有重要应用价值的紧凑型超亮高能光源.With the development of laser and accelerator technology, and improvement of the particle energy and field intensity, the scattering process between electron and photon will reach the highly nonlinear regime, where the multi-photon process takes place and the quantum electrodynamics starts to play a role. In the near future, with the commissioning of the multi-PW laser facilities, these effects will be available. In this article, we review the recent progress of electron-photon scattering experiments, from single or few-photon regime to high-order multi-photon regime. In the scattering process, collimated bright X/gamma-energy photons are generated, making it possible to realize a compact top-table bright light source, which is also known as inverse Compton scattering source. Finally, the prospects and challenges of scattering experiments are discussed.
[1] Thomson J 1899 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47 253
Google Scholar
[2] Barkla C G 1903 Proc. Phys. Soc. London 19 185
Google Scholar
[3] Barkla C G 1903 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 5 685
Google Scholar
[4] Stephenson R J 1967 Am. J. Phys. 35 140
Google Scholar
[5] Compton A H 1923 Phys. Rev. 21 483
Google Scholar
[6] Compton A H 1923 Nature 112 435
[7] Woo Y H 1925 Phys. Rev. 25 444
Google Scholar
[8] Woo Y H 1930 Proc. Natl. Acad. Sci. U.S.A. 16 814
Google Scholar
[9] Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 470
Google Scholar
[10] Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 467
Google Scholar
[11] Woo Y H 1931 Phys. Rev. 38 6
Google Scholar
[12] Woo Y H 1932 Phys.l Rev. 41 21
Google Scholar
[13] Woo Y H 1932 Phys. Rev. 39 555
Google Scholar
[14] D E Evans, J K 1969 Rep. Prog. Phys. 32 207
Google Scholar
[15] Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625
Google Scholar
[16] Longair M S 2011 High-Energy Astrophysics (Cambridge: Cambridge University Press)
[17] Prunty S L 2014 Phys. Scr. 89 128001
Google Scholar
[18] Strickland D, Mourou G 1985 Opt. Commun. 56 219
Google Scholar
[19] Harvey C, Heinzl T, Ilderton A 2009 Phys. Rev. A 79 063407
Google Scholar
[20] Heinzl T, Ilderton A 2009 Eur. Phys. J. D 55 359
Google Scholar
[21] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267
Google Scholar
[22] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541
Google Scholar
[23] Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538
Google Scholar
[24] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535
Google Scholar
[25] Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nat. Phys. 2 696
Google Scholar
[26] Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229
Google Scholar
[27] Mourou G A, Korn G, Sandner W, Collier J L 2011 ELI – Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers Whitebook at THOSS Media GmbH https://eli-laser.eu/media/1019/eli-whitebook.pdf
[28] Papadopoulos D N, Zou J P, Blanc C L, Chériaux G, Georges P, Druon F, Mennerat G, Ramirez P, Martin L, Fréneaux A, Beluze A, Lebas N, Monot P, Mathieu F, Audebert P 2016 High Power Laser Sci. Eng. 4 e34
Google Scholar
[29] Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fusion 60 044002
Google Scholar
[30] Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, Hopps N W, Kato Y, Khazanov E A, Kodama R, Korn G, Li R X, Li Y T, Limpert J, Ma J G, Nam C H, Neely D, Papadopoulos D, Penman R R, Qian L J, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmari S, Trines R, Zhu J Q, Zhu P, Zuegel J D 2019 High Power Laser Science and Engineering 7 e54
Google Scholar
[31] Chu Y, Gan Z, Liang X, Yu L, Lu X, Wang C, Wang X, Xu L, Lu H, Yin D 2015 Opt. Lett. 40 5011
Google Scholar
[32] Zamfir N V 2014 Eur. Phys. J.-Spec. Top. 223 1221
Google Scholar
[33] Hernandez-Gomez C, Blake S P, Chekhlov O, et al. 2010 J. Phys.: Conf. Ser. 244 032006
Google Scholar
[34] Weber S, Bechet S, Borneis S, Brabec L, Bučka M, Chacon-Golcher E, Ciappina M, DeMarco M, Fajstavr A, Falk K 2018 Matter Radiat. Extremes 2 149
[35] Wenchao Y, Colton F, Grigory G, Daniel H, Ji L, Ping Z, Baozhen Z, Jun Z, Cheng L, Min C, Shouyuan C, Sudeep B, Donald U 2017 Nat. Photonics 11 514
Google Scholar
[36] Vranic M, Martins J L, Vieira J, Fonseca R A, Silva L O 2014 Phys. Rev. Lett. 113 134801
Google Scholar
[37] Li J X, Hatsagortsyan K Z, Keitel C H 2014 Phys. Rev. Lett. 113 044801
Google Scholar
[38] Burton D A, Noble A 2014 Contemp. Phys. 55 110
Google Scholar
[39] Thomas A G R, Ridgers C P, Bulanov S S, Griffin B J, Mangles S P D 2012 Phys. Rev. X 2 041004
[40] O'Connell R F 2012 Contemp. Phys. 53 301
Google Scholar
[41] Di Piazza A, Mueller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177
Google Scholar
[42] Bulanov S V, Esirkepov T Z, Kando M, Koga J K, Bulanov S S 2011 Phys. Rev. E 84 056605
Google Scholar
[43] Hammond R T 2010 Phys. Rev. A 81 062104
Google Scholar
[44] Di Piazza A, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 254802
Google Scholar
[45] Di Piazza A 2016 Phys. Rev. Lett. 117 213201
Google Scholar
[46] Gu Y J, Klimo O, Bulanov S V, Weber S 2018 Commun. Phys. 1 93
Google Scholar
[47] Ilderton A 2011 Phys. Rev. Lett. 106 020404
Google Scholar
[48] Hu H, Mueller C, Keitel C H 2010 Phys. Rev. Lett. 105 080401
Google Scholar
[49] Gu Y J, Klimo O, Weber S, Korn G 2016 New J. Phys. 18 113023
Google Scholar
[50] Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H 2013 Phys. Rev. Lett. 110 255002
Google Scholar
[51] Sarri G, Poder K, Cole J M, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747
Google Scholar
[52] Bulanov S V, Sasorov P, Bulanov S S, Korn G 2019 Phys. Rev. D 100 016012 6
[53] Sengupta N D 1949 Bull. Calcutta Math. Soc. 41 187
[54] Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738
Google Scholar
[55] Salamin Y I, Faisal F H M 1996 Phys. Rev. A 54 4383
Google Scholar
[56] Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705
Google Scholar
[57] Goldman I I 1964 Sov. Phys. JETP 19 954
[58] Nikishov A I, Ritus V I 1964 Sov. Phys. JETP 19 529
[59] Chen S Y, Maksimchuk A, Umstadter D 1998 Nature 396 653
Google Scholar
[60] Koga J, Esirkepov T Z, Bulanov S V 2005 Phys. Plasmas 12 093106
Google Scholar
[61] Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003
[62] Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L 1996 Phys. Rev. Lett. 76 3116
Google Scholar
[63] Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Phys. Rev. Lett. 77 4182
Google Scholar
[64] Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C 1997 Phys. Rev. Lett. 79 1626
Google Scholar
[65] Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. Spec. Top.-Accel. Beams 13 070704
Google Scholar
[66] Banerjee S, Kalmykov S Y, Powers N D, Golovin G, Ramanathan V, Cunningham N J, Brown K J, Chen S, Ghebregziabher I, Shadwick B A, Umstadter D P, Cowan B M, Bruhwiler D L, Beck A, Lefebvre E 2013 Phys. Rev. Spec. Top. - Accel. Beams 16
[67] Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039
[68] Li Y F, Li D Z, Huang K, Tao M Z, Li M H, Zhao J R, Ma Y, Guo X, Wang J G, Chen M 2017 Phys. Plasmas 24 023108
Google Scholar
[69] Couperus J P, Pausch R, Köhler A, Zarini O, Krämer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487
Google Scholar
[70] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002
Google Scholar
[71] Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J 2019 Phys. Rev. Lett. 122 084801
Google Scholar
[72] Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E 2013 Nat. Commun. 4
[73] Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002
Google Scholar
[74] Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C 2016 Phys. Rev. Lett. 117 124801
Google Scholar
[75] Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802
Google Scholar
[76] Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308
Google Scholar
[77] Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106 9
[78] Tsai H E, Arefiev A V, Shaw J M, Stark D J, Wang X, Zgadzaj R, Downer M C 2017 Phys. Plasmas 24 013106
Google Scholar
[79] Döpp A, Guillaume E, Thaury C, Gautier J, Andriyash I, Lifschitz A, Malka V, Rousse A, Phuoc K T 2016 Plasma Phys. Controlled Fusion 58 034005
Google Scholar
[80] Yu C, Qi R, Wang W, Liu J, Li W, Wang C, Zhang Z, Liu J, Qin Z, Fang M 2016 Sci. Rep. 6 29518
Google Scholar
[81] Feng J, Wang J, Li Y, Zhu C, Li M, He Y, Li D, Wang W, Chen L 2017 Phys. Plasmas 24 093110
Google Scholar
[82] Zhu C, Wang J, Feng J, Li Y, Li D, Li M, He Y, Ma J, Tan J, Zhang B 2018 Plasma Phys. Controlled Fusion 61 024001
[83] Ma Y, Hua J, Liu D, He Y, Zhang T, Chen J, Yang F, Ning X, Yang Z, Zhang J, Pai C H, Gu Y, Lu W 2020 Matter Radiat. Extremes 5 064401
Google Scholar
[84] Schindler S, Doepp A, Ding H, et al. 2019 SPIE Proceedings 11037 11037
Google Scholar
[85] Wenz J, Doepp A, Khrennikov K, Schindler S, Gilljohann M F, Ding H, Gotzfried J, Buck A, Xu J, Heigoldt M, Helml W, Veisz L, Karsch S 2019 Nat. Photonics 13 263
Google Scholar
[86] Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003
Google Scholar
[87] Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28
Google Scholar
[88] Golovin G, Banerjee S, Chen S, Powers N, Liu C, Yan W, Zhang J, Zhang P, Zhao B, Umstadter D 2016 Nucl. Instrum. Methods Phys. Res., Sec. A 830 375
Google Scholar
[89] Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132
Google Scholar
[90] Sarri G, Corvan D J, Schumaker W, Cole J M, Di Piazza A, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D 2014 Phys. Rev. Lett. 113 224801
Google Scholar
[91] Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003
Google Scholar
[92] Liu C, Zhang J, Chen S, Golovin G, Banerjee S, Zhao B, Powers N, Ghebregziabher I, Umstadter D 2014 Opt. Lett. 39 80
Google Scholar
[93] Zhao B, Banerjee S, Yan W, Zhang P, Zhang J, Golovin G, Liu C, Fruhling C, Haden D, Chen S 2018 Opt. Commun. 412 141
Google Scholar
[94] Corvan D J, Sarri G, Zepf M 2014 Rev. Sci. Instrum. 85 065119
Google Scholar
[95] Kojima S, Ikenouchi T, Arikawa Y, Sakata S, Zhang Z, Abe Y, Nakai M, Nishimura H, Shiraga H, Ozaki T, Miyamoto S, Yamaguchi M, Takemoto A, Fujioka S, Azechi H 2016 Rev. Sci. Instrum. 87 43502
Google Scholar
[96] Singh S, Versaci R, Laso Garcia A, Morejon L, Ferrari A, Molodtsova M, Schwengner R, Kumar D, Cowan T 2018 Rev. Sci. Instrum. 89 085118
Google Scholar
[97] Haden D, Golovin G, Yan W, Fruhling C, Zhang P, Zhao B, Banerjee S, Umstadter D 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 951 1630329
[98] Cole J M, Behm K T, Gerstmayr E, Blackburn T G, Wood J C, Baird C D, Duff M J, Harvey C, Ilderton A, Joglekar A S 2018 Phys. Rev. X 8 011020
[99] Poder K, Tamburini M, Sarri G, Di Piazza A, Kuschel S, Baird C D, Behm K, Bohlen S, Cole J M, Corvan D J 2018 Phys. Rev. X 8 031004
[100] Samarin G M, Zepf M, Sarri G 2018 J. Mod. Opt. 65 1362
Google Scholar
[101] Petrillo V, Dattoli G, Drebot I, Nguyen F 2016 Phys. Rev. Lett. 117 123903
Google Scholar
[102] Chen Y Y, Hatsagortsyan K Z, Keitel C H 2019 Matter Radiat. Extremes 4 024401
Google Scholar
[103] Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001
Google Scholar
[104] Umstadter D P 2015 Contemp. Phys. 56 417
Google Scholar
[105] Albert F, Thomas A G R, Mangles S P D, Banerjee S, Corde S, Flacco A, Litos M, Neely D, Vieira J, Najmudin Z 2014 Plasma Phys. Controlled Fusion 56 084015
Google Scholar
[106] Kando M, Esirkepov T, Koga J, Pirozhkov A, Bulanov S 2018 Quantum Beam Science 2 9
Google Scholar
[107] Kando M, Pirozhkov A S, Kawase K, Esirkepov T Z, Fukuda Y, Kiriyama H, Okada H, Daito I, Kameshima T, Hayashi Y 2009 Phys. Rev. Lett. 103 235003
Google Scholar
[108] Bulanov S V, Esirkepov T Z, Kando M, Pirozhkov A S, Rosanov N N 2013 Phys. Usp. 56 429
Google Scholar
[109] Petrillo V, Serafini L, Tomassini P 2008 Phys. Rev. Spec. Top. Accel. Beams 11 070703
Google Scholar
[110] Li F Y, Sheng Z M, Liu Y, Meyer-ter-Vehn J, Mori W B, Lu W, Zhang J 2013 Phys. Rev. Lett. 110 135002
Google Scholar
[111] Meyer-Ter-Vehn J, Wu H C 2009 Eur. Phys. J. D 55 433
Google Scholar
[112] Wu H C, Meyer-ter-Vehn J, Fernandez J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801
Google Scholar
[113] Wu H C, Meyer-ter-Vehn J 2012 Nat. Photonics 6 304
Google Scholar
[114] Golovin G, Banerjee S, Liu C, et al. 2016 Sci. Rep. 6 24622
Google Scholar
[115] Har-Shemesh O, Di Piazza A 2012 Opt. Lett. 37 1352
Google Scholar
[116] Gu Y J, Weber S 2018 Opt. Express 26 19932
Google Scholar
-
表 1 常见全光逆康普顿X射线源参数
Table 1. Parameter of all-optical inverse Compton scattering X-ray source.
参数 数值 源尺寸/μm ~5 (root mean square) 发散角/ mrad ~5 (FWHM) 峰值能量 keV—20 MeV 单能性 准单能(线性)/连续谱(非线性)* 单发光子数 107—1010 峰值亮度/ ph·(s·mm2·mrad2·0.1%BW)–1 1017—1022 -
[1] Thomson J 1899 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47 253
Google Scholar
[2] Barkla C G 1903 Proc. Phys. Soc. London 19 185
Google Scholar
[3] Barkla C G 1903 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 5 685
Google Scholar
[4] Stephenson R J 1967 Am. J. Phys. 35 140
Google Scholar
[5] Compton A H 1923 Phys. Rev. 21 483
Google Scholar
[6] Compton A H 1923 Nature 112 435
[7] Woo Y H 1925 Phys. Rev. 25 444
Google Scholar
[8] Woo Y H 1930 Proc. Natl. Acad. Sci. U.S.A. 16 814
Google Scholar
[9] Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 470
Google Scholar
[10] Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 467
Google Scholar
[11] Woo Y H 1931 Phys. Rev. 38 6
Google Scholar
[12] Woo Y H 1932 Phys.l Rev. 41 21
Google Scholar
[13] Woo Y H 1932 Phys. Rev. 39 555
Google Scholar
[14] D E Evans, J K 1969 Rep. Prog. Phys. 32 207
Google Scholar
[15] Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625
Google Scholar
[16] Longair M S 2011 High-Energy Astrophysics (Cambridge: Cambridge University Press)
[17] Prunty S L 2014 Phys. Scr. 89 128001
Google Scholar
[18] Strickland D, Mourou G 1985 Opt. Commun. 56 219
Google Scholar
[19] Harvey C, Heinzl T, Ilderton A 2009 Phys. Rev. A 79 063407
Google Scholar
[20] Heinzl T, Ilderton A 2009 Eur. Phys. J. D 55 359
Google Scholar
[21] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267
Google Scholar
[22] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541
Google Scholar
[23] Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538
Google Scholar
[24] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535
Google Scholar
[25] Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nat. Phys. 2 696
Google Scholar
[26] Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229
Google Scholar
[27] Mourou G A, Korn G, Sandner W, Collier J L 2011 ELI – Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers Whitebook at THOSS Media GmbH https://eli-laser.eu/media/1019/eli-whitebook.pdf
[28] Papadopoulos D N, Zou J P, Blanc C L, Chériaux G, Georges P, Druon F, Mennerat G, Ramirez P, Martin L, Fréneaux A, Beluze A, Lebas N, Monot P, Mathieu F, Audebert P 2016 High Power Laser Sci. Eng. 4 e34
Google Scholar
[29] Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fusion 60 044002
Google Scholar
[30] Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, Hopps N W, Kato Y, Khazanov E A, Kodama R, Korn G, Li R X, Li Y T, Limpert J, Ma J G, Nam C H, Neely D, Papadopoulos D, Penman R R, Qian L J, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmari S, Trines R, Zhu J Q, Zhu P, Zuegel J D 2019 High Power Laser Science and Engineering 7 e54
Google Scholar
[31] Chu Y, Gan Z, Liang X, Yu L, Lu X, Wang C, Wang X, Xu L, Lu H, Yin D 2015 Opt. Lett. 40 5011
Google Scholar
[32] Zamfir N V 2014 Eur. Phys. J.-Spec. Top. 223 1221
Google Scholar
[33] Hernandez-Gomez C, Blake S P, Chekhlov O, et al. 2010 J. Phys.: Conf. Ser. 244 032006
Google Scholar
[34] Weber S, Bechet S, Borneis S, Brabec L, Bučka M, Chacon-Golcher E, Ciappina M, DeMarco M, Fajstavr A, Falk K 2018 Matter Radiat. Extremes 2 149
[35] Wenchao Y, Colton F, Grigory G, Daniel H, Ji L, Ping Z, Baozhen Z, Jun Z, Cheng L, Min C, Shouyuan C, Sudeep B, Donald U 2017 Nat. Photonics 11 514
Google Scholar
[36] Vranic M, Martins J L, Vieira J, Fonseca R A, Silva L O 2014 Phys. Rev. Lett. 113 134801
Google Scholar
[37] Li J X, Hatsagortsyan K Z, Keitel C H 2014 Phys. Rev. Lett. 113 044801
Google Scholar
[38] Burton D A, Noble A 2014 Contemp. Phys. 55 110
Google Scholar
[39] Thomas A G R, Ridgers C P, Bulanov S S, Griffin B J, Mangles S P D 2012 Phys. Rev. X 2 041004
[40] O'Connell R F 2012 Contemp. Phys. 53 301
Google Scholar
[41] Di Piazza A, Mueller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177
Google Scholar
[42] Bulanov S V, Esirkepov T Z, Kando M, Koga J K, Bulanov S S 2011 Phys. Rev. E 84 056605
Google Scholar
[43] Hammond R T 2010 Phys. Rev. A 81 062104
Google Scholar
[44] Di Piazza A, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 254802
Google Scholar
[45] Di Piazza A 2016 Phys. Rev. Lett. 117 213201
Google Scholar
[46] Gu Y J, Klimo O, Bulanov S V, Weber S 2018 Commun. Phys. 1 93
Google Scholar
[47] Ilderton A 2011 Phys. Rev. Lett. 106 020404
Google Scholar
[48] Hu H, Mueller C, Keitel C H 2010 Phys. Rev. Lett. 105 080401
Google Scholar
[49] Gu Y J, Klimo O, Weber S, Korn G 2016 New J. Phys. 18 113023
Google Scholar
[50] Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H 2013 Phys. Rev. Lett. 110 255002
Google Scholar
[51] Sarri G, Poder K, Cole J M, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747
Google Scholar
[52] Bulanov S V, Sasorov P, Bulanov S S, Korn G 2019 Phys. Rev. D 100 016012 6
[53] Sengupta N D 1949 Bull. Calcutta Math. Soc. 41 187
[54] Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738
Google Scholar
[55] Salamin Y I, Faisal F H M 1996 Phys. Rev. A 54 4383
Google Scholar
[56] Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705
Google Scholar
[57] Goldman I I 1964 Sov. Phys. JETP 19 954
[58] Nikishov A I, Ritus V I 1964 Sov. Phys. JETP 19 529
[59] Chen S Y, Maksimchuk A, Umstadter D 1998 Nature 396 653
Google Scholar
[60] Koga J, Esirkepov T Z, Bulanov S V 2005 Phys. Plasmas 12 093106
Google Scholar
[61] Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003
[62] Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L 1996 Phys. Rev. Lett. 76 3116
Google Scholar
[63] Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Phys. Rev. Lett. 77 4182
Google Scholar
[64] Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C 1997 Phys. Rev. Lett. 79 1626
Google Scholar
[65] Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. Spec. Top.-Accel. Beams 13 070704
Google Scholar
[66] Banerjee S, Kalmykov S Y, Powers N D, Golovin G, Ramanathan V, Cunningham N J, Brown K J, Chen S, Ghebregziabher I, Shadwick B A, Umstadter D P, Cowan B M, Bruhwiler D L, Beck A, Lefebvre E 2013 Phys. Rev. Spec. Top. - Accel. Beams 16
[67] Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039
[68] Li Y F, Li D Z, Huang K, Tao M Z, Li M H, Zhao J R, Ma Y, Guo X, Wang J G, Chen M 2017 Phys. Plasmas 24 023108
Google Scholar
[69] Couperus J P, Pausch R, Köhler A, Zarini O, Krämer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487
Google Scholar
[70] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002
Google Scholar
[71] Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J 2019 Phys. Rev. Lett. 122 084801
Google Scholar
[72] Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E 2013 Nat. Commun. 4
[73] Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002
Google Scholar
[74] Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C 2016 Phys. Rev. Lett. 117 124801
Google Scholar
[75] Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802
Google Scholar
[76] Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308
Google Scholar
[77] Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106 9
[78] Tsai H E, Arefiev A V, Shaw J M, Stark D J, Wang X, Zgadzaj R, Downer M C 2017 Phys. Plasmas 24 013106
Google Scholar
[79] Döpp A, Guillaume E, Thaury C, Gautier J, Andriyash I, Lifschitz A, Malka V, Rousse A, Phuoc K T 2016 Plasma Phys. Controlled Fusion 58 034005
Google Scholar
[80] Yu C, Qi R, Wang W, Liu J, Li W, Wang C, Zhang Z, Liu J, Qin Z, Fang M 2016 Sci. Rep. 6 29518
Google Scholar
[81] Feng J, Wang J, Li Y, Zhu C, Li M, He Y, Li D, Wang W, Chen L 2017 Phys. Plasmas 24 093110
Google Scholar
[82] Zhu C, Wang J, Feng J, Li Y, Li D, Li M, He Y, Ma J, Tan J, Zhang B 2018 Plasma Phys. Controlled Fusion 61 024001
[83] Ma Y, Hua J, Liu D, He Y, Zhang T, Chen J, Yang F, Ning X, Yang Z, Zhang J, Pai C H, Gu Y, Lu W 2020 Matter Radiat. Extremes 5 064401
Google Scholar
[84] Schindler S, Doepp A, Ding H, et al. 2019 SPIE Proceedings 11037 11037
Google Scholar
[85] Wenz J, Doepp A, Khrennikov K, Schindler S, Gilljohann M F, Ding H, Gotzfried J, Buck A, Xu J, Heigoldt M, Helml W, Veisz L, Karsch S 2019 Nat. Photonics 13 263
Google Scholar
[86] Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003
Google Scholar
[87] Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28
Google Scholar
[88] Golovin G, Banerjee S, Chen S, Powers N, Liu C, Yan W, Zhang J, Zhang P, Zhao B, Umstadter D 2016 Nucl. Instrum. Methods Phys. Res., Sec. A 830 375
Google Scholar
[89] Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132
Google Scholar
[90] Sarri G, Corvan D J, Schumaker W, Cole J M, Di Piazza A, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D 2014 Phys. Rev. Lett. 113 224801
Google Scholar
[91] Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003
Google Scholar
[92] Liu C, Zhang J, Chen S, Golovin G, Banerjee S, Zhao B, Powers N, Ghebregziabher I, Umstadter D 2014 Opt. Lett. 39 80
Google Scholar
[93] Zhao B, Banerjee S, Yan W, Zhang P, Zhang J, Golovin G, Liu C, Fruhling C, Haden D, Chen S 2018 Opt. Commun. 412 141
Google Scholar
[94] Corvan D J, Sarri G, Zepf M 2014 Rev. Sci. Instrum. 85 065119
Google Scholar
[95] Kojima S, Ikenouchi T, Arikawa Y, Sakata S, Zhang Z, Abe Y, Nakai M, Nishimura H, Shiraga H, Ozaki T, Miyamoto S, Yamaguchi M, Takemoto A, Fujioka S, Azechi H 2016 Rev. Sci. Instrum. 87 43502
Google Scholar
[96] Singh S, Versaci R, Laso Garcia A, Morejon L, Ferrari A, Molodtsova M, Schwengner R, Kumar D, Cowan T 2018 Rev. Sci. Instrum. 89 085118
Google Scholar
[97] Haden D, Golovin G, Yan W, Fruhling C, Zhang P, Zhao B, Banerjee S, Umstadter D 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 951 1630329
[98] Cole J M, Behm K T, Gerstmayr E, Blackburn T G, Wood J C, Baird C D, Duff M J, Harvey C, Ilderton A, Joglekar A S 2018 Phys. Rev. X 8 011020
[99] Poder K, Tamburini M, Sarri G, Di Piazza A, Kuschel S, Baird C D, Behm K, Bohlen S, Cole J M, Corvan D J 2018 Phys. Rev. X 8 031004
[100] Samarin G M, Zepf M, Sarri G 2018 J. Mod. Opt. 65 1362
Google Scholar
[101] Petrillo V, Dattoli G, Drebot I, Nguyen F 2016 Phys. Rev. Lett. 117 123903
Google Scholar
[102] Chen Y Y, Hatsagortsyan K Z, Keitel C H 2019 Matter Radiat. Extremes 4 024401
Google Scholar
[103] Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001
Google Scholar
[104] Umstadter D P 2015 Contemp. Phys. 56 417
Google Scholar
[105] Albert F, Thomas A G R, Mangles S P D, Banerjee S, Corde S, Flacco A, Litos M, Neely D, Vieira J, Najmudin Z 2014 Plasma Phys. Controlled Fusion 56 084015
Google Scholar
[106] Kando M, Esirkepov T, Koga J, Pirozhkov A, Bulanov S 2018 Quantum Beam Science 2 9
Google Scholar
[107] Kando M, Pirozhkov A S, Kawase K, Esirkepov T Z, Fukuda Y, Kiriyama H, Okada H, Daito I, Kameshima T, Hayashi Y 2009 Phys. Rev. Lett. 103 235003
Google Scholar
[108] Bulanov S V, Esirkepov T Z, Kando M, Pirozhkov A S, Rosanov N N 2013 Phys. Usp. 56 429
Google Scholar
[109] Petrillo V, Serafini L, Tomassini P 2008 Phys. Rev. Spec. Top. Accel. Beams 11 070703
Google Scholar
[110] Li F Y, Sheng Z M, Liu Y, Meyer-ter-Vehn J, Mori W B, Lu W, Zhang J 2013 Phys. Rev. Lett. 110 135002
Google Scholar
[111] Meyer-Ter-Vehn J, Wu H C 2009 Eur. Phys. J. D 55 433
Google Scholar
[112] Wu H C, Meyer-ter-Vehn J, Fernandez J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801
Google Scholar
[113] Wu H C, Meyer-ter-Vehn J 2012 Nat. Photonics 6 304
Google Scholar
[114] Golovin G, Banerjee S, Liu C, et al. 2016 Sci. Rep. 6 24622
Google Scholar
[115] Har-Shemesh O, Di Piazza A 2012 Opt. Lett. 37 1352
Google Scholar
[116] Gu Y J, Weber S 2018 Opt. Express 26 19932
Google Scholar
计量
- 文章访问数: 8151
- PDF下载量: 283
- 被引次数: 0