-
基于全相对论多组态Dirac-Fock方法,对L壳层旁观空穴下Ar原子退激衰变辐射K-X射线Kα1,2 (K→L3,2) 和Kβ 1,3 (K→M3,2) 的6908条伴线和超伴线跃迁能、跃迁概率进行了系统计算,计算结果与文献已有数据比较具有很好的一致性.通过对(K- 1L- l,l =0–8)伴线和(K- 2L- l,l =0–8)超伴线跃迁谱线卷积得了其合成谱,给出了L壳层不同空穴数下K-X射线伴线和超伴线的平均能量和平均跃迁强度.结果表明,退激辐射X射线能量以及能移与L壳层空穴个数呈现明显的线性关系.基于结论,进一步给出了跃迁能移与L壳层空穴个数之间的关系表达式.研究结果可以为解释离子、原子碰撞过程中产生的X射线谱提供重要的理论支持.A systematical knowledge of the satellite and hypersatellite structures of X-ray transitions is of great interest for various research areas, such as the explanation of the X-ray radiation from universe, plasma diagnostics, extreme ultraviolet (EUV) and X-ray sources and so on. Among these researches, the detailed explanation of the complex structures of X-ray satellites and hypersatellites are crucial for understanding the X-ray emission mechanism and the hollow atom formation mechanism. In this paper, the Kα and Kβ X-ray satellite and hypersatellite structure are theoretically studied for hollow argon atoms with the relativistic multiconfiguration Dirac-Fock (MCDF) method, which includes the Breit and quantum electro-dynamics (QED) corrections. To check the applicability of the method, the transition energies and rates of the diagram lines for Ar are calculated,. and the results are in agreement with previously published data. Then the MCDF calculations of the transition energies and probabilities of Kα 1, 2 (K →L3, 2) and Kβ 1, 3 (K → M3, 2) X-ray satellites and hypersatellites, which originate from the argon atoms with additional vacancies in the L shell, are carried out. To obtain the overall profile of the K X-ray spectrum, the diagram lines are integrated with the satellites and hypersatellites on the assumption that the intensity is proportional to the corresponding transition probability and each discrete line has a Gaussian distribution profile with a full width at half maximum (FWHM) value of 20 eV. From the convoluted profile, we can obtain the dependence of the average transition energy and relative transition intensity of the satellites and hypersatellites on the initial hollow configuration. It is found that the transition energy shift increases linearly with the number of spectator vacancies in the L shell increasing. For instance, the energy shift of the Kα satellite caused by L-shell hole is about 20 eV, and that of the Kβ satellite is 48 eV. While for hypersatellite, the energy shift increases greatly due to the double ionization in the K shell. The energy shift increment of Kα and Kβ hypersatellites corresponding to L vacancy are 21 and 52 eV, respectively. Finally, four simple empirical formulae for estimating the energy shifts of the Kα, Kβ X-ray satellites and hypersatellite for Ar atom with any number of L-shells vacancies are deduced by using the least square method. These results are useful in explaining various K X-ray spectra and better understanding the collision process.
-
Keywords:
- hollow atom /
- satellite /
- hypersatellite /
- X-ray
[1] Briand J P, Chevallier P, Tavernier M, Rozet J P 1971 Phys. Rev. Lett. 27 777
[2] Kozio K 2014 J. Quant. Spectrosc. Ra. 149 138
[3] Wang X L, Dong C D, Su M G 2012 Nucl. Instr. Meth. B 280 93
[4] Yerokhin V A, Surzhykov A, Fritzsche S 2014 Phys. Rev. A 90 022509
[5] Steinbrgge R, Bernitt S, Epp S W, Rudolph J K, Beilmann C, Bekker H, Eberle S, Mller A, Versolato O O, Wille H C, Yava H, Ullrich J, Crespo López-Urrutia J R 2015 Phys. Rev. A 91 032502
[6] Czarnota M, Bana D, Berset M, Chmielewska D, Dousse J C, Hoszowska J, Maillard Y P, Mauron O, Pajek M, Polasik M, Raboud P A, Rzadkiewicz J, Słabkowska K, Sujkowski Z 2013 Phys. Rev. A 88 052505
[7] Yuan Y J, Yang J C, Xia J W, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 317 214
[8] Shao C J, Yu D Y, Cai X H, Chen X, Ma K, Evslin J, Xue Y L, Wang W, Kozhedub Y S, Lu R C, Song Z Y, Zhang M W, Liu J L, Yang B, Guo Y P, Zhang J M, Ruan F F, Wu Y H, Zhang Y Z, Dong C Z, Chen X M, Yang Z H 2017 Phys. Rev. A 96 012708
[9] Chen X, Ma K, Dong C Z, Zhang D H, Shao C J, Yu D Y, Cai X H 2015 Nucl. Instr. Meth. B 362 14
[10] Liang T, Ma K, Chen X, Xie L Y, Dong C Z, Shao C J, Yu D Y, Cai X H 2015 Acta Phys. Sin. 64 153401 (in Chinese)[梁腾, 马堃, 陈曦, 颉录有, 董晨钟, 邵曹杰, 于得洋, 蔡晓红 2015 64 153401]
[11] Liang T, Ma K, Wu Z W, Zhang D H, Dong C Z, Shi Y L 2016 Acta Phys. Sin. 65 143401 (in Chinese)[梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙 2016 65 143401]
[12] Grant I P 1970 Adv. Phys. 19 747
[13] Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597
[14] Fritzsche S 2012 Comput. Phys. Commun. 183 1525
-
[1] Briand J P, Chevallier P, Tavernier M, Rozet J P 1971 Phys. Rev. Lett. 27 777
[2] Kozio K 2014 J. Quant. Spectrosc. Ra. 149 138
[3] Wang X L, Dong C D, Su M G 2012 Nucl. Instr. Meth. B 280 93
[4] Yerokhin V A, Surzhykov A, Fritzsche S 2014 Phys. Rev. A 90 022509
[5] Steinbrgge R, Bernitt S, Epp S W, Rudolph J K, Beilmann C, Bekker H, Eberle S, Mller A, Versolato O O, Wille H C, Yava H, Ullrich J, Crespo López-Urrutia J R 2015 Phys. Rev. A 91 032502
[6] Czarnota M, Bana D, Berset M, Chmielewska D, Dousse J C, Hoszowska J, Maillard Y P, Mauron O, Pajek M, Polasik M, Raboud P A, Rzadkiewicz J, Słabkowska K, Sujkowski Z 2013 Phys. Rev. A 88 052505
[7] Yuan Y J, Yang J C, Xia J W, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 317 214
[8] Shao C J, Yu D Y, Cai X H, Chen X, Ma K, Evslin J, Xue Y L, Wang W, Kozhedub Y S, Lu R C, Song Z Y, Zhang M W, Liu J L, Yang B, Guo Y P, Zhang J M, Ruan F F, Wu Y H, Zhang Y Z, Dong C Z, Chen X M, Yang Z H 2017 Phys. Rev. A 96 012708
[9] Chen X, Ma K, Dong C Z, Zhang D H, Shao C J, Yu D Y, Cai X H 2015 Nucl. Instr. Meth. B 362 14
[10] Liang T, Ma K, Chen X, Xie L Y, Dong C Z, Shao C J, Yu D Y, Cai X H 2015 Acta Phys. Sin. 64 153401 (in Chinese)[梁腾, 马堃, 陈曦, 颉录有, 董晨钟, 邵曹杰, 于得洋, 蔡晓红 2015 64 153401]
[11] Liang T, Ma K, Wu Z W, Zhang D H, Dong C Z, Shi Y L 2016 Acta Phys. Sin. 65 143401 (in Chinese)[梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙 2016 65 143401]
[12] Grant I P 1970 Adv. Phys. 19 747
[13] Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597
[14] Fritzsche S 2012 Comput. Phys. Commun. 183 1525
计量
- 文章访问数: 6770
- PDF下载量: 109
- 被引次数: 0