搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于调频连续波雷达的物体运动状态实时检测算法研究

屈奎 张荣福 肖鹏程

引用本文:
Citation:

基于调频连续波雷达的物体运动状态实时检测算法研究

屈奎, 张荣福, 肖鹏程

Real-time detection algorithm of object motion state based on frequency modulated continuous wave radar

Qu Kui, Zhang Rong-Fu, Xiao Peng-Cheng
PDF
HTML
导出引用
  • 微波雷达依靠非接触、响应速度快、对自然环境的适应性强等特点在物体运动状态检测中的应用越来越广泛. 常用的调频连续波雷达运动检测算法基于差拍信号频谱的峰值估计, 存在计算量大, 抗干扰能力差等缺点. 本文通过对运动物体的差拍信号做特定频率的离散傅里叶变换, 将变换后的实部和虚部在互相垂直的两个方向上进行叠加, 其合成轨迹近似为椭圆, 求出各轨迹点的相位即可还原物体的运动状态. 该算法无需对每个调频周期的拍信号做频谱分析, 时间复杂度较低. 静止物体的拍信号被处理成了固定的直流信号, 对运动物体的测量不造成影响, 具有抗静止物体干扰的能力. 在雷达中心频率为24 GHz, 带宽为0.15 GHz的条件下对算法进行了验证, 位移测量精度达到0.27 mm, 以500 mm作为位移的测量范围, 线性度达到0.05%. 速度的测量精度为1.11 mm/s.
    Real time detection of object motion is widely used in industrial activities and daily life. The contactless measurement is a flexible way, which has no effect on the state of movement of the object. Compared with the optical, ultrasonic and laser sensors, microwave radar has the advantages of high measurement accuracy and being unaffected by the environment such as smoke, dust, fog, and rain. The frequency modulated continuous wave (FMCW) radar is a widely used radar system, the echo of which contains abundant information, and there is no blind zone in the range because the transmitter and receiver work at the same time. The algorithm of movement detection of FMCW radar is commonly based on the peak estimation of signal spectrum, in order to achieve high accuracy, it is necessary to increase the frequency and bandwidth, resulting in high hardware complexity, a large amount of calculation, poor real-time response and poor anti-jamming ability. The proposed algorithm is based on the discrete Fourier transform with specific frequency of the beat signal. The real part and imaginary part of discrete Fourier transform are superposed in two perpendicular directions, and the resultant trajectory is approximately elliptical. The relative displacement of the object is proportional to the cumulative phase change of the corresponding points on the ellipse, the phase of each trajectory point can be calculated to restore the motion state of the object. The proposed algorithm does not need Fourier transform for the beat signal of each chirp, so the time complexity is low. The beat signal of the static object is processed into a fixed direct-current signal, which has no influence on the measurement of the moving object, therefore the algorithm has the ability to resist the interference of the static object. The measurement is limited to relative motion, because the phase obtained is relative. It has great potential applications in the fields of measuring relative displacement, such as mechanical vibration frequency, vital signal detection, mechanical arm control, etc.. An experimental setup with a center frequency of 24 GHz, bandwidth of 0.15 GHz and frequency modulation period of 4 ms is used to test the hypothesis. The experimental results are in good agreement with the theoretical results. The displacement measurement accuracy is 0.27 mm, and the linearity is 0.05% with 500 mm as the displacement measurement range. The measurement accuracy of velocity is 1.11 mm/s.
      通信作者: 张荣福, zrf@usst.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFF0101402)和科技部重点研发计划(批准号: 2017YFC0110200)资助的课题
      Corresponding author: Zhang Rong-Fu, zrf@usst.edu.cn
    • Funds: Project supported by National Key Scientific Instrument and Equipment Development Project (Grant No. 2016YFF0101402) and National Key R&D Program of China (Grant No. 2017YFC0110200)
    [1]

    Yang L, Wang B Q, Zhang R H, Zhou H B, Wang R B 2018 IEEE Photonics J 10 1Google Scholar

    [2]

    Yoon J W, Park T 2016 IEEE Trans. Instrum. Meas. 65 1518Google Scholar

    [3]

    谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙 2019 68 130601Google Scholar

    Xie T Y, Wang J, Wang Z X, Ma C, Yu Y, Li T Y, Fang J, Yu J L 2019 Acta Phys. Sin. 68 130601Google Scholar

    [4]

    Kim S, Cam, Nguyen C 2003 IEEE Trans. Microw. Theory Tech. 51 1724Google Scholar

    [5]

    Kim D K, Kim Y 2019 Sci. Rep. 9 6763Google Scholar

    [6]

    Tudose M L, Anghel A, Cacoveanu R, Datcu M 2018 Sensors 19 82Google Scholar

    [7]

    Pittella E, Nasr I, Pisa S, Cavagnaro M 2016 IEEE Trans. Biomed. Eng. 63 1447Google Scholar

    [8]

    Mercuri M, Lorato I R, Liu Y H, Wieringa F, Hoof C V, Torfs T 2019 Nat. Electron. 2 252Google Scholar

    [9]

    Pan X, Xiang C, Liu S, Yan S 2019 Sensors 19 3176Google Scholar

    [10]

    Nosrati M, Shahsavari S, Lee S, Wang H, Tavassolian N 2019 IEEE Trans. Antennas Propag. 67 2390Google Scholar

    [11]

    Wang G C, Gu C Z, Inoue T, Li C Z 2014 IEEE Trans. Microw. Theory Tech. 62 2812Google Scholar

    [12]

    Schleicher B, Nasr I, Trasser A, Schumacher H 2013 IEEE Trans. Microw. Theory Tech. 61 2076Google Scholar

    [13]

    Qi G Q 2002 International Conference on Signal Processing Beijing, China, October 18–18, p7.

    [14]

    Qi G Q, Jia X L 2001 CIE International Conference on Radar Proceedings Beijing, China, February 1–1, p567

    [15]

    Pauli M, Ayhan S, Scherr S, Rusch C, Zwick T 2012 International Multi-conference on Systems Chemnitz, Germany, March 1–1, 2012 p4

    [16]

    Scherr S, Ayhan S, Fischbach B, Bhutani A, Pauli M, Zwick T 2015 IEEE Trans. Instrum. Meas. 64 1868Google Scholar

    [17]

    Pauli M, Gottel B, Scherr S, Bhutani A, Ayhan S, Winkler W, Zwick T 2017 IEEE Trans. Microw. Theory Tech. 65 1707Google Scholar

    [18]

    Pohl N, Jaeschke T, Aufinger K 2012 IEEE Trans. Microw. Theory Tech. 60 757Google Scholar

    [19]

    Scherr S, Afroz R, Ayhan S, Thomas S, Jaeschke T, Marahrens S, Bhutani A, Pauli M, Pohl N, Zwick T 2017 IEEE Trans. Microw. Theory Tech. 65 3640Google Scholar

    [20]

    Piotrowsky L, Jaeschke T, Kueppers S, Siska J, Pohl N 2019 IEEE Trans. Microw. Theory Tech. 67 5360Google Scholar

    [21]

    Bredendiek C, Pohl N, Jaeschke T, Thomas S, Aufinger K, Bilgic A 2013 European Microwave Integrated Circuit Conference Amsterdam, Netherlands, October 29–30 2012 p309

    [22]

    Jaeschke T, Bredendiek C, Kuppers S, Pohl N 2014 IEEE Trans. Microw. Theory Tech. 62 3582Google Scholar

    [23]

    科尔曼T H 著 (殷建平 译) 2013 算法导论 (北京: 机械工业出版社) 第25−29页

    Cormen T H (translated by Yin J P) 2013 Introduction to Algorithms (Beijing: Machinery Industry Press) pp25−29 (in Chinese)

  • 图 1  发射波的频率随时间的变化

    Fig. 1.  the time-frequency domain of transmitted signal.

    图 2  变量$ {\rm{Re}}_{{k}} $$ {\rm{Im}}_{{k}} $的合成轨迹示意图. 红色实心点处在横坐标轴的正半轴上, 代表相位φ = 2jπ, jZ的位置

    Fig. 2.  The synthetic ellipse trajectory diagram of variables $ {\rm{Re}}_{{k}} $ and $ {\rm{Im}}_{{k}} $. The red solid point is on the positive half axis of abscissa, which represents the position of φ = 2jπ, jZ.

    图 3  雷达前端 (a)正面为收发天线; (b)反面为电路板

    Fig. 3.  Radar front end: (a) The front side is transceiver antenna; (b) the reverse side is circuit board.

    图 4  实验系统结构图

    Fig. 4.  Block diagram of the FMCW radar system.

    图 5  测量装置与载有金属板的步进电机

    Fig. 5.  Measuring set and stepper motor with metal plate.

    图 6  计算机模拟在4种不同起始距离下做$ \lambda /2 $位移时的采样点轨迹变化, 起始距离分别为 (a) 800 mm; (b) 1200 mm; (c) 1600 mm; (d) 2000 mm

    Fig. 6.  Computer simulation of trajectory change by these sampling points at four different starting distances, the displacement is $ \lambda /2 $, the starting distances are: (a) 800 mm; (b) 1200 mm; (c) 1600 mm; (d) 2000 mm.

    图 7  实验测量在4种不同起始距离下做$ \lambda /2 $位移时的采样点轨迹变化, 起始距离分别为 (a) 800 mm; (b) 1200 mm; (c) 1600 mm; (d) 2000 mm

    Fig. 7.  Experimental measurement of trajectory changes by these sampling points at four different starting distances, the displacement is $ \lambda /2 $, the starting distances are: (a) 800 mm; (b) 1200 mm; (c) 1600 mm; (d) 2000 mm.

    图 8  位移测量结果 (a)位移随时间的变化; (b)位移偏差随位移的变化

    Fig. 8.  Measurement of displacement of metal plate: (a) Change of displacement with time; (b) change of displacement deviation.

    图 9  (a)测量位移和设定位移的比较; (b)测量位移的偏差变化

    Fig. 9.  (a) Change of measured displacement and set displacement with time; (b) deviation of measured displacement.

    图 10  (a)速度测量值和速度设定值的比较; (b)速度测量值的偏差变化

    Fig. 10.  (a) Change of measured speed and set speed with time; (b) deviation of measured speed.

    表 1  与其他算法的比较

    Table 1.  Comparison of this work with other methods.

    文献算法时间复杂度*测量环境测量内容
    [21]插值法O($N{\,\mathrm{l}\mathrm{o}\mathrm{g} }_{2}N$)环境简单, 被测物几乎是唯一的散射源绝对距离
    [22]补零法O($M \log_{2}M$)绝对距离
    [19]CZTO($N\log_{2}N$)+ O($ {N}^{3/2} $)绝对距离
    [20]插值法+补零法O($M\log_{2}M$)绝对距离
    [16]CZTO($N\log_2 N$)+ O($ {N}^{3/2} $)被测物及雷达封装在波导内绝对距离
    本算法O(N)无其他运动物体相对距离
    注: *N 为一个调频周期内拍信号的采样点数目. M 为补零后的采样点数目.
    下载: 导出CSV

    表 2  金属板运动的测量结果

    Table 2.  Measurement results of metal plate movement.

    设定速度
    /(mm·s–1)
    位移设
    定值/mm
    位移测量值
    平均
    值/mm
    平均值的
    偏差/mm
    最大
    偏差/mm
    标准
    差/mm
    10300300.100.100.260.15
    400399.91–0.090.240.15
    500499.93–0.070.250.14
    20300299.95–0.050.210.12
    400400.080.080.240.14
    500500.050.050.270.13
    30300300.090.090.260.15
    400399.96–0.040.210.12
    500499.96–0.040.230.12
    下载: 导出CSV
    Baidu
  • [1]

    Yang L, Wang B Q, Zhang R H, Zhou H B, Wang R B 2018 IEEE Photonics J 10 1Google Scholar

    [2]

    Yoon J W, Park T 2016 IEEE Trans. Instrum. Meas. 65 1518Google Scholar

    [3]

    谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙 2019 68 130601Google Scholar

    Xie T Y, Wang J, Wang Z X, Ma C, Yu Y, Li T Y, Fang J, Yu J L 2019 Acta Phys. Sin. 68 130601Google Scholar

    [4]

    Kim S, Cam, Nguyen C 2003 IEEE Trans. Microw. Theory Tech. 51 1724Google Scholar

    [5]

    Kim D K, Kim Y 2019 Sci. Rep. 9 6763Google Scholar

    [6]

    Tudose M L, Anghel A, Cacoveanu R, Datcu M 2018 Sensors 19 82Google Scholar

    [7]

    Pittella E, Nasr I, Pisa S, Cavagnaro M 2016 IEEE Trans. Biomed. Eng. 63 1447Google Scholar

    [8]

    Mercuri M, Lorato I R, Liu Y H, Wieringa F, Hoof C V, Torfs T 2019 Nat. Electron. 2 252Google Scholar

    [9]

    Pan X, Xiang C, Liu S, Yan S 2019 Sensors 19 3176Google Scholar

    [10]

    Nosrati M, Shahsavari S, Lee S, Wang H, Tavassolian N 2019 IEEE Trans. Antennas Propag. 67 2390Google Scholar

    [11]

    Wang G C, Gu C Z, Inoue T, Li C Z 2014 IEEE Trans. Microw. Theory Tech. 62 2812Google Scholar

    [12]

    Schleicher B, Nasr I, Trasser A, Schumacher H 2013 IEEE Trans. Microw. Theory Tech. 61 2076Google Scholar

    [13]

    Qi G Q 2002 International Conference on Signal Processing Beijing, China, October 18–18, p7.

    [14]

    Qi G Q, Jia X L 2001 CIE International Conference on Radar Proceedings Beijing, China, February 1–1, p567

    [15]

    Pauli M, Ayhan S, Scherr S, Rusch C, Zwick T 2012 International Multi-conference on Systems Chemnitz, Germany, March 1–1, 2012 p4

    [16]

    Scherr S, Ayhan S, Fischbach B, Bhutani A, Pauli M, Zwick T 2015 IEEE Trans. Instrum. Meas. 64 1868Google Scholar

    [17]

    Pauli M, Gottel B, Scherr S, Bhutani A, Ayhan S, Winkler W, Zwick T 2017 IEEE Trans. Microw. Theory Tech. 65 1707Google Scholar

    [18]

    Pohl N, Jaeschke T, Aufinger K 2012 IEEE Trans. Microw. Theory Tech. 60 757Google Scholar

    [19]

    Scherr S, Afroz R, Ayhan S, Thomas S, Jaeschke T, Marahrens S, Bhutani A, Pauli M, Pohl N, Zwick T 2017 IEEE Trans. Microw. Theory Tech. 65 3640Google Scholar

    [20]

    Piotrowsky L, Jaeschke T, Kueppers S, Siska J, Pohl N 2019 IEEE Trans. Microw. Theory Tech. 67 5360Google Scholar

    [21]

    Bredendiek C, Pohl N, Jaeschke T, Thomas S, Aufinger K, Bilgic A 2013 European Microwave Integrated Circuit Conference Amsterdam, Netherlands, October 29–30 2012 p309

    [22]

    Jaeschke T, Bredendiek C, Kuppers S, Pohl N 2014 IEEE Trans. Microw. Theory Tech. 62 3582Google Scholar

    [23]

    科尔曼T H 著 (殷建平 译) 2013 算法导论 (北京: 机械工业出版社) 第25−29页

    Cormen T H (translated by Yin J P) 2013 Introduction to Algorithms (Beijing: Machinery Industry Press) pp25−29 (in Chinese)

  • [1] 杨瑞科, 王甲乐. 带电沙尘大气对微波量子照明雷达性能的影响.  , 2024, 73(17): 170302. doi: 10.7498/aps.73.20240802
    [2] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案.  , 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [3] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生.  , 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [4] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠.  , 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [5] 潘浩, 曲兴华, 史春钊, 李雅婷, 张福民. 激光调频连续波测距的精度评定方法研究.  , 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [6] 朱浩男, 吴德伟, 李响, 王湘林, 苗强, 方冠. 基于纠缠见证的路径纠缠微波检测方法.  , 2018, 67(4): 040301. doi: 10.7498/aps.67.20172164
    [7] 张涛, 陈万忠, 李明阳. 基于频率切片小波变换和支持向量机的癫痫脑电信号自动检测.  , 2016, 65(3): 038703. doi: 10.7498/aps.65.038703
    [8] 张华, 陈少平, 龙洋, 樊文浩, 王文先, 孟庆森. 微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理.  , 2015, 64(24): 247302. doi: 10.7498/aps.64.247302
    [9] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究.  , 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [10] 王丰, 贾国柱, 刘莉, 刘凤海, 梁文海. 温度相关的微波频率下氯化钠水溶液介电特性.  , 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [11] 艾未华, 孔毅, 赵现斌. 基于小波的多极化机载合成孔径雷达海面风向反演.  , 2012, 61(14): 148403. doi: 10.7498/aps.61.148403
    [12] 杨晶, 刘国宾, 顾思洪. 平行线偏光激发CPT共振方案实验研究.  , 2012, 61(4): 043202. doi: 10.7498/aps.61.043202
    [13] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演.  , 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [14] 刘广东, 张业荣. 乳腺癌检测的三维微波热声成像技术.  , 2011, 60(7): 074303. doi: 10.7498/aps.60.074303
    [15] 方进勇, 黄惠军, 张治强, 张晓微, 张黎军, 张庆元, 郝文析, 黄文华, 江伟华. X波段百兆瓦级高功率微波合成器设计及实验研究.  , 2011, 60(8): 088402. doi: 10.7498/aps.60.088402
    [16] 孙增国, 韩崇昭. 基于区域分类、自适应滑动窗和结构检测的合成孔径雷达图像联合降斑算法.  , 2010, 59(5): 3210-3220. doi: 10.7498/aps.59.3210
    [17] 郑鸿, 杨成韬. 磁电薄膜与微波作用研究.  , 2010, 59(7): 5055-5060. doi: 10.7498/aps.59.5055
    [18] 雷中华, 兰明建, 汪先友, 李建杰. 遗迹引力波对宇宙微波背景辐射极化的影响.  , 2008, 57(11): 7408-7414. doi: 10.7498/aps.57.7408
    [19] 韩志全. 微波铁氧体损耗的晶粒表层自旋波共振模型.  , 1999, 48(13): 291-297. doi: 10.7498/aps.48.291
    [20] 刘盛纲. 静电系统中电子运动轨迹的理论.  , 1966, 22(2): 233-244. doi: 10.7498/aps.22.233
计量
  • 文章访问数:  5304
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-05-19
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回
Baidu
map