搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理

张华 陈少平 龙洋 樊文浩 王文先 孟庆森

引用本文:
Citation:

微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理

张华, 陈少平, 龙洋, 樊文浩, 王文先, 孟庆森

Thermoelectric transport mechanism of Mg2Si0.4Sn0.6-yBiy prepared by low-temperature microwave reaction

Zhang Hua, Chen Shao-Ping, Long Yang, Fan Wen-Hao, Wang Wen-Xian, Meng Qing-Sen
PDF
导出引用
  • 德拜弛豫理论表明, 在频率为2.45 GHz的外加交变电磁场的作用下, 微波对极性分子的极化过程约为10-10 s, 因此利用微波固相反应可以在短时低温条件下制备出纳米粉体材料. 本文以MgH2代替Mg粉, 利用微波固相反应在低温下制备了Mg2Si0.4Sn0.6-yBiy (0 ≤y ≤q 0.03)固溶体, 并结合单带抛物线计算模型对其热电传输机理进行了分析. 研究结果表明: 利用该工艺可以有效抑制Mg的挥发和MgO 的生成, 在400 ℃保温15 min内即可完成MgH2与Si粉和Sn粉的固相反应, 获得片层间距为100 nm的超细化学计量比产物; 杂质Bi的引入可以有效增加载流子浓度, 并引起晶格畸变, 在晶格畸变和样品特有的纳米片层结构的协同作用下, 声子得到有效散射, 样品具有最低的热导率1.36 W·m-1·K-1. 较低的有效掺杂率和复杂的能带结构具有降低能带态密度有效质量和减小载流子弛豫时间的双刃效应, 使得本征激发提前, 在600 K样品取得最大ZT值为0.66.
    According to Debye relaxation, the polarization of electric dipole can be accomplished in 10-10 s under the action of an alternating electromagnetic filed with a frequency of 2.45 GHz, so it is feasible to obtain nano powder by carrying out solid reaction in microwave at low temperature in a short time. In this work, the syntheses of Mg2Si0.4Sn0.6-yBiy (0 ≤ y ≤ 0.03) solid solution thermoelectric materials are successfully achieved by microwave-assisted solid state reaction at low temperature with MgH2 serving as one reactant instead of Mg, and their transportation mechanisms are studied based on the SPB (single parabolic band) model as well. The results indicate that the volatilization and oxidation of Mg can be suppressed effectively in this process. Fine stoichiometric product can be achieved with nano-lamellar structure with an interlayer spacing of about 100 nm by carrying out the reaction between MgH2 and Si, Sn in microwave at 400℃ in 15 min. The introduction of Bi dopant can increase carrier concentration and lattice distortion. With the cooperation between the nano lamellar structure and lattice distortion, the phone is scattered so effectively that the sample owns a lowest thermal conductivity, κmin of 1.36 W·m-1·K-1 at 550 K based on the fact that the phonon scattering is dominant in the heat transfer process. The calculated results show that the theoretical κmin is 0.93 W·m-1·K-1, which is lower than 1.36 W·m-1·K-1. Therefore, by further adjusting the process parameters and increasing the effective doping rate of Bi and the density of the lattice defects, it is expected to obtain lower thermal conductivity. The band convergence is also verified by increasing the density-of-state effective mass. The apparent increase in m* is due to a gradual increase in carrier concentration with increasing temperature. Despite the agreement between the data and the model, the irregular behavior between m* and temperature is a very strong indication and the electric transmission performance of the sample is likely to be influenced by the structure of the multi band structure. Owing possibly to the low reaction temperature, there are Bi precipitates at the grain boundary. In addition to the phonon scattering and the alloy scattering, the Bi segregation and the scattering of carrier by nano-lamellar structure make the carrier mobility of the sample slightly lower. The lower effective doping rate and complex band structure make the carrier concentration and density-of-state effective mass low coupled with the low carrier mobility, which leads to low material factor β with a ZT of 0.66 at 600 K consequently.
      通信作者: 陈少平, sxchengshaoping@163.com;fanwenhao1979@163.com ; 樊文浩, sxchengshaoping@163.com;fanwenhao1979@163.com
    • 基金项目: 国家自然科学基金(批准号: 51101111, 51405328)、山西省高校青年学术带头人和山西省回国留学人员科研资助项目(批准号: 2012-031, 2012-033)资助的课题.
      Corresponding author: Chen Shao-Ping, sxchengshaoping@163.com;fanwenhao1979@163.com ; Fan Wen-Hao, sxchengshaoping@163.com;fanwenhao1979@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101111, 51405328), the Shanxi Provincial Foundation for Leaders of Disciplines in Science, China, and the Shanxi Provincial Foundation for Returned Scholars, China (Grant Nos. 2012-031, 2012-033).
    [1]

    Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Yu, Vedernikov M V 2006 Phys. Rev. B 74 045207

    [2]

    Culp S R, Poon S J, Hickman N, Tritt T M, Blumm J 2006 Appl. Phys. Lett. 88 042106

    [3]

    Kumar P, Kashyap S C, Sharma V K, Cupta H C 2015 Chin. Phys. B 24 098101

    [4]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [5]

    Zhang Y C, He J Z, Xiao Y L, Liang H N 2014 Mod. Phys. Lett. 28 1450018

    [6]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 63 057201]

    [7]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X F, Zhang Q J, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893

    [8]

    Zhang X, Liu H, Lu Q, Zhang J X, Zhang F P 2013 Appl. Phys. Lett. 103 063901

    [9]

    Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B, Tritt T M 2008 Appl. Phys. Lett. 93 102109

    [10]

    Liu X H, Zhu T J, Wang H, Hu L P, Xie H H, Jiang G Y, Snyder G J, Zhao X B 2013 Adv. Energy Mater. 3 1238

    [11]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333

    [12]

    Yi T H, Chen S P, Li S, Yang H, Bux S, Bian Z X, Katcho N A, Shakouri A, Mingo N, Fleurial J P, Browning N D, Kauzlarich S M 2012 J. Mater. Chem. 47 24805

    [13]

    Chen S P, Zhang X, Fan W H, Yi T H, Quach D V, Bux S, Meng Q S, Kauzlarich S M, Munir Z A 2015 J. Alloys Compd. 625 251

    [14]

    Berthebaud D, Gascoin F 2013 J. Solid State Chem. 202 61

    [15]

    Du Z L, Zhu T J, Chen Y, He J, Gao H L, Jiang G Y, Tritt T M, Zhao X B 2012 J. Mater. Chem. 22 6838

    [16]

    Liu W, Tang X F, Li H, Yin K, Sharp J, Zhou X Y, Uher C 2012 J. Mater. Chem. 22 13653

    [17]

    Xu H J, Shi J Y, Ruan Y Z 2001 Material Science Foundation (Beijing: Beijing University of Technology Press) p281 (in Chinese) [徐恒军, 石巨岩, 阮玉忠 2001 材料科学基础(北京: 北京工业出版社)第281页]

    [18]

    Gao P, Lu X, Berkun I, Schmidt R D, Hogan T P 2014 Appl. Phys. Lett. 105 202104

    [19]

    May A F, Snyder G J 2012 Materials, Preparation, and Characterization in Thermoelectrics (Boca Raton: CRC Press) pp11.1-11.17

    [20]

    Bux S K, Yeung M T, Toberer E S, Snyder G J, Kaner R B, Fleurial J P 2011 J. Mater. Chem. 21 12259

    [21]

    Blunt R F, Frederikse H P R, Hosler W R 1955 Phys. Rev. 100 663

    [22]

    Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 336

    [23]

    Yan J K 2009 Ph. D. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [严继康 2009 博士学位论文 (昆明: 昆明理工大学)]

    [24]

    Seo J W, Kim C M, Park K 2015 Powder Technol. 278 11

    [25]

    Chen X, Shi L, Zhou J, Goodenough J B 2015 J. Alloy Compd. 641 30

    [26]

    Jiang G Y, He J, Zhu T J, Fu C, Liu X, Hu L, Zhao X B 2014 Adv. Funct. Mater. 24 3776

  • [1]

    Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Yu, Vedernikov M V 2006 Phys. Rev. B 74 045207

    [2]

    Culp S R, Poon S J, Hickman N, Tritt T M, Blumm J 2006 Appl. Phys. Lett. 88 042106

    [3]

    Kumar P, Kashyap S C, Sharma V K, Cupta H C 2015 Chin. Phys. B 24 098101

    [4]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [5]

    Zhang Y C, He J Z, Xiao Y L, Liang H N 2014 Mod. Phys. Lett. 28 1450018

    [6]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 63 057201]

    [7]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X F, Zhang Q J, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893

    [8]

    Zhang X, Liu H, Lu Q, Zhang J X, Zhang F P 2013 Appl. Phys. Lett. 103 063901

    [9]

    Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B, Tritt T M 2008 Appl. Phys. Lett. 93 102109

    [10]

    Liu X H, Zhu T J, Wang H, Hu L P, Xie H H, Jiang G Y, Snyder G J, Zhao X B 2013 Adv. Energy Mater. 3 1238

    [11]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333

    [12]

    Yi T H, Chen S P, Li S, Yang H, Bux S, Bian Z X, Katcho N A, Shakouri A, Mingo N, Fleurial J P, Browning N D, Kauzlarich S M 2012 J. Mater. Chem. 47 24805

    [13]

    Chen S P, Zhang X, Fan W H, Yi T H, Quach D V, Bux S, Meng Q S, Kauzlarich S M, Munir Z A 2015 J. Alloys Compd. 625 251

    [14]

    Berthebaud D, Gascoin F 2013 J. Solid State Chem. 202 61

    [15]

    Du Z L, Zhu T J, Chen Y, He J, Gao H L, Jiang G Y, Tritt T M, Zhao X B 2012 J. Mater. Chem. 22 6838

    [16]

    Liu W, Tang X F, Li H, Yin K, Sharp J, Zhou X Y, Uher C 2012 J. Mater. Chem. 22 13653

    [17]

    Xu H J, Shi J Y, Ruan Y Z 2001 Material Science Foundation (Beijing: Beijing University of Technology Press) p281 (in Chinese) [徐恒军, 石巨岩, 阮玉忠 2001 材料科学基础(北京: 北京工业出版社)第281页]

    [18]

    Gao P, Lu X, Berkun I, Schmidt R D, Hogan T P 2014 Appl. Phys. Lett. 105 202104

    [19]

    May A F, Snyder G J 2012 Materials, Preparation, and Characterization in Thermoelectrics (Boca Raton: CRC Press) pp11.1-11.17

    [20]

    Bux S K, Yeung M T, Toberer E S, Snyder G J, Kaner R B, Fleurial J P 2011 J. Mater. Chem. 21 12259

    [21]

    Blunt R F, Frederikse H P R, Hosler W R 1955 Phys. Rev. 100 663

    [22]

    Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 336

    [23]

    Yan J K 2009 Ph. D. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [严继康 2009 博士学位论文 (昆明: 昆明理工大学)]

    [24]

    Seo J W, Kim C M, Park K 2015 Powder Technol. 278 11

    [25]

    Chen X, Shi L, Zhou J, Goodenough J B 2015 J. Alloy Compd. 641 30

    [26]

    Jiang G Y, He J, Zhu T J, Fu C, Liu X, Hu L, Zhao X B 2014 Adv. Funct. Mater. 24 3776

  • [1] 屈奎, 张荣福, 肖鹏程. 基于调频连续波雷达的物体运动状态实时检测算法研究.  , 2021, 70(19): 198402. doi: 10.7498/aps.70.20210205
    [2] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案.  , 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [3] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比.  , 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [4] 孟代仪, 申兰先, 李德聪, 晒旭霞, 邓书康. Mg掺杂n型Sn基Ⅷ型单晶笼合物的结构及电传输特性.  , 2014, 63(17): 177401. doi: 10.7498/aps.63.177401
    [5] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究.  , 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [6] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究.  , 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [7] 王丰, 贾国柱, 刘莉, 刘凤海, 梁文海. 温度相关的微波频率下氯化钠水溶液介电特性.  , 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [8] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演.  , 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [9] 杨晶, 刘国宾, 顾思洪. 平行线偏光激发CPT共振方案实验研究.  , 2012, 61(4): 043202. doi: 10.7498/aps.61.043202
    [10] 彭华, 王春雷, 李吉超, 王洪超, 王美晓. Mg2Si的电子结构和热电输运性质的理论研究.  , 2010, 59(6): 4123-4129. doi: 10.7498/aps.59.4123
    [11] 刘西川, 高太长, 秦健, 刘磊. 降雨对微波传输特性的影响分析.  , 2010, 59(3): 2156-2162. doi: 10.7498/aps.59.2156
    [12] 郑鸿, 杨成韬. 磁电薄膜与微波作用研究.  , 2010, 59(7): 5055-5060. doi: 10.7498/aps.59.5055
    [13] 熊 聪, 邓书康, 唐新峰, 祁 琼, 张清杰. Zn掺杂n型笼合物Ba8Ga16-2xZnxGe30+x的热电传输特性.  , 2008, 57(2): 1190-1196. doi: 10.7498/aps.57.1190
    [14] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能.  , 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [15] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量.  , 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [16] 刘晓亚, 李 权, 蒋 刚, 朱正和, 陈涵德, 金行星, 唐永建. 微波激励ArS2体系机理的探讨.  , 2000, 49(12): 2340-2346. doi: 10.7498/aps.49.2340
    [17] 丁武. Super-Reltron的微波产生机理.  , 1997, 46(11): 2180-2187. doi: 10.7498/aps.46.2180
    [18] 刘楣, 刘卫, 曹恕, 邢定钰. 微波电场下的热电子温差电势率.  , 1995, 44(12): 1977-1983. doi: 10.7498/aps.44.1977
    [19] 万梅香. 导电高聚物的微波吸收机理的研究.  , 1992, 41(6): 917-923. doi: 10.7498/aps.41.917
    [20] 谭维翰, 刘仁红. 二分岔理论的抛物线近似.  , 1990, 39(7): 35-39. doi: 10.7498/aps.39.35-2
计量
  • 文章访问数:  5873
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-14
  • 修回日期:  2015-09-23
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map