-
Dielectric properties of aqueous NaCl solution, which are dependent on temperature (293-353 K), with a concentration in a range of 0.001-0.5 mol/L at microwave frequencies ranging from 200 MHz to 6.25 GHz are studied experimentally. The results indicate that imaginary part decreases with frequency increasing, and tetrahedral structure of H2O and hydrogen bond of aqueous NaCl solution is broken by high temperature, leading to the decreasing of real part of dielectric. The loss angle tangent in solution obviously decreases in a low frequency zone at 353 K compared with that in pure water. Temperature window effect that complex dielectric increases or decreases with temperature varying at 2.45 GHz and 5.8 GHz, thereby leading to the oscillation of dissipation power in microwave heating process and the nonequilibrium distribution of temperature is also confirmed.
-
Keywords:
- microwaves /
- complex permittivity /
- dielectric property /
- high temperature probe
[1] Hamed H S, Owen B B 1958 The Physical Chemistry of Electrolyte Solutions (New York: Reinhold) pp4-7
[2] Hubbard J B, Wolynes P G 1988 The Chemical Physics of Salvation (New York: Elsevier) pp2-3
[3] Koneshan S, Rasaiah J C 2000 J. Chem. Phys. 18 113
[4] Huang K M, Jia G Z, Yang X Q 2008 Acta Phys. Chem. Sin. 24 20 (in Chinese) [黄卡玛, 贾国柱, 杨晓庆2008 物理化学学报 24 20]
[5] Jepsen U P, Merbold H 2010 J. Infrared Milli. Terahz Waves 31 430
[6] Peyman A, Gabriel C, Grant E H 2007 Bioelectromagnetics 28 264
[7] Chandra A, Bagchi B 1999 J. Chem. Phys. 110 10024
[8] Chandra A, Bagchi B 2000 J. Chem. Phys. 112 1876
[9] Gulich R, Köhler M, Lunkenheimer P, Loidl A 2009 Radiat. Environ. Biophys. 48 107
[10] Wallen S L, Pfund D M, Fulton J L 1998 J. Chem. Phys. 108 4039
[11] Ferlat G, Miguel A S, Jal J F, Soetens J C, Bopp P A, Hazemann J L, Testemale D, Daniel I 2002 J. Mol. Liq. 101 127
[12] de Jong P H K, Neilson G W, Bellissent-Funel M C 1996 J. Chem. Phys. 105 5155
[13] Yamaguchi T, Yamaguchi M, Ohzono H, Wakita H, Yamanaka K 1996 Chem. Phys. Lett. 252 317
[14] Soper A K, Weckström K 2006 Biophys. Chem. 124 180
[15] Kropman M F, Bakker H J 2001 Science 291 2118
[16] Peter U J, Merbold H 2012 J. Infrared Milli Terahz Waves 31 430
[17] Levy E, Puzenko A, Kaatze U, Ishai P B, Feldman Y 2012 J. Chem. Phys. 136 114503
[18] Basey-Fisher T H, Hanham S M, Andresen H, Maier S A, Stevens M M, Alford N M, Klein N 2011 Appl. Phys. Lett. 99 233703
[19] Zhang L L, Huang X R, Zhou H W, Huang Y N 2012 Acta Phys. Sin. 61 077701 [张丽丽, 黄欣茹, 周恒为, 黄以能 2012 61 077701]
[20] Zhang L L, Huang X R, Zhou H W, Huang Y N 2012 Acta Phys. Sin. 61 187701 (in Chinese) [张丽丽, 黄欣茹, 周恒为, 黄以能 2012 61 187701]
[21] Yang X Q, Huang K M 2006 IEEE Trans. on GRS. 43 315
[22] Zhao S C, Li G R, Zhang L N, Wang T B, Ding A L 2006 Acta Phys. Sin. 55 3711 (in Chinese) [赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽 2006 55 3711]
[23] Tang H M, Deng K, Hu X S, Sun Y G, Chen H, Lin Y, Lin Z R 2010 J. Sichuan Normal. Univ. 33 833 (in Chinese) [唐红梅, 邓科, 胡祥书, 孙永贵, 陈洪, 林云, 林展如 2010 四川师范大学学报 33 833]
[24] Dong C J, Chen Q Y, Xu M, Zhou H P, Duan M Y, Hu Z G 2009 J. Sichuan Normal. Univ. 32 781 (in Chinese) [董成军, 陈青云, 徐明, 周海平, 段满益, 胡志刚2009四川师范大学学报 32 781]
[25] Wu X H, Yang X Q, Huang K M 2009 CIESC J. 60 303 (in Chinese) [吴欣华, 杨晓庆, 黄卡玛2009 化工学报 60 303]
-
[1] Hamed H S, Owen B B 1958 The Physical Chemistry of Electrolyte Solutions (New York: Reinhold) pp4-7
[2] Hubbard J B, Wolynes P G 1988 The Chemical Physics of Salvation (New York: Elsevier) pp2-3
[3] Koneshan S, Rasaiah J C 2000 J. Chem. Phys. 18 113
[4] Huang K M, Jia G Z, Yang X Q 2008 Acta Phys. Chem. Sin. 24 20 (in Chinese) [黄卡玛, 贾国柱, 杨晓庆2008 物理化学学报 24 20]
[5] Jepsen U P, Merbold H 2010 J. Infrared Milli. Terahz Waves 31 430
[6] Peyman A, Gabriel C, Grant E H 2007 Bioelectromagnetics 28 264
[7] Chandra A, Bagchi B 1999 J. Chem. Phys. 110 10024
[8] Chandra A, Bagchi B 2000 J. Chem. Phys. 112 1876
[9] Gulich R, Köhler M, Lunkenheimer P, Loidl A 2009 Radiat. Environ. Biophys. 48 107
[10] Wallen S L, Pfund D M, Fulton J L 1998 J. Chem. Phys. 108 4039
[11] Ferlat G, Miguel A S, Jal J F, Soetens J C, Bopp P A, Hazemann J L, Testemale D, Daniel I 2002 J. Mol. Liq. 101 127
[12] de Jong P H K, Neilson G W, Bellissent-Funel M C 1996 J. Chem. Phys. 105 5155
[13] Yamaguchi T, Yamaguchi M, Ohzono H, Wakita H, Yamanaka K 1996 Chem. Phys. Lett. 252 317
[14] Soper A K, Weckström K 2006 Biophys. Chem. 124 180
[15] Kropman M F, Bakker H J 2001 Science 291 2118
[16] Peter U J, Merbold H 2012 J. Infrared Milli Terahz Waves 31 430
[17] Levy E, Puzenko A, Kaatze U, Ishai P B, Feldman Y 2012 J. Chem. Phys. 136 114503
[18] Basey-Fisher T H, Hanham S M, Andresen H, Maier S A, Stevens M M, Alford N M, Klein N 2011 Appl. Phys. Lett. 99 233703
[19] Zhang L L, Huang X R, Zhou H W, Huang Y N 2012 Acta Phys. Sin. 61 077701 [张丽丽, 黄欣茹, 周恒为, 黄以能 2012 61 077701]
[20] Zhang L L, Huang X R, Zhou H W, Huang Y N 2012 Acta Phys. Sin. 61 187701 (in Chinese) [张丽丽, 黄欣茹, 周恒为, 黄以能 2012 61 187701]
[21] Yang X Q, Huang K M 2006 IEEE Trans. on GRS. 43 315
[22] Zhao S C, Li G R, Zhang L N, Wang T B, Ding A L 2006 Acta Phys. Sin. 55 3711 (in Chinese) [赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽 2006 55 3711]
[23] Tang H M, Deng K, Hu X S, Sun Y G, Chen H, Lin Y, Lin Z R 2010 J. Sichuan Normal. Univ. 33 833 (in Chinese) [唐红梅, 邓科, 胡祥书, 孙永贵, 陈洪, 林云, 林展如 2010 四川师范大学学报 33 833]
[24] Dong C J, Chen Q Y, Xu M, Zhou H P, Duan M Y, Hu Z G 2009 J. Sichuan Normal. Univ. 32 781 (in Chinese) [董成军, 陈青云, 徐明, 周海平, 段满益, 胡志刚2009四川师范大学学报 32 781]
[25] Wu X H, Yang X Q, Huang K M 2009 CIESC J. 60 303 (in Chinese) [吴欣华, 杨晓庆, 黄卡玛2009 化工学报 60 303]
计量
- 文章访问数: 9142
- PDF下载量: 2144
- 被引次数: 0