搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体对石墨烯的功能化改性

赵雯琪 张岱 崔明慧 杜颖 张树宇 区琼荣

引用本文:
Citation:

等离子体对石墨烯的功能化改性

赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣

Graphene modification based on plasma technologies

Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong
PDF
HTML
导出引用
  • 等离子体态物质富含高反应活性粒子群, 包括电子、离子、自由基、光子等, 是催化或直接参与化学反应的重要因子, 在化学合成与材料改性领域有重要应用价值, 往往可以使热平衡条件下难以发生, 甚至不能发生的化学反应, 在等离子体催化下得以发生和加速. 常规条件下的石墨烯就是低反应活性物质, 往往需要在高温甚至高压和强酸强碱条件下才能发生化学反应, 对于新型石墨烯衍生材料的合成与改性是一个束缚. 而等离子体催化石墨烯反应, 可以在常温常压无腐蚀性条件下, 引发石墨烯的还原、氧化、缺陷修复、掺杂、接枝、外延生长和交联等一系列化学反应, 为石墨烯功能化改性及其新型复合材料合成提供了更多可能性, 值得深入探索. 过去十多年, 等离子体在石墨烯合成与改性方面的研究报道并不鲜见, 特色鲜明, 然而, 较多的报道停留在技术路线的尝试以及结果呈现层面, 化学反应动力学研究鲜有涉及, 本文对这些研究报道进行综合论述, 主要是对部分代表性研究结果的再报告和总结性讨论, 旨在促进相关领域的深入研究.
    Plasma contains highly reactive species, including electrons, ions, radicals, photons, etc., which are critical for catalyzing or directly participating in chemical reactions. Plasma is a highly efficient tool in chemical synthesis and material modification, since it can make the chemical reactions that are difficult or even impossible to occur under thermal equilibrium conditions take place and accelerate through its catalysis. The chemical reactivity of graphene under conventional conditions is low, which means that the reaction of graphene requires high temperature, high pressure and/or strong acid or alkali, thereby restricting the synthesis and modification of novel graphene-derived materials. Plasma-assisted graphene reaction can trigger a series of chemical reactions, such as reduction, oxidation, defect repair, doping, grafting, epitaxial growth and cross-linking of graphene, under ambient temperature and pressure without any corrosive conditions. It provides great potentials for the functional modification of graphene and the synthesis of graphene composites, which deserve further exploration. Over the past decade, a number of studies of graphene synthesis and modification by using plasma with distinctive characteristics have been reported. However, most of reports focused on the presentation of technical routes and corresponding results, and the research on chemical reaction kinetics is still far from being fully addressed. In this review, we make a comprehensive discussion about these reports by mainly summarizing and discussing some of the representative results, in order to promote further research in the relevant fields.
      通信作者: 张树宇, zhangshuyu@fudan.edu.cn ; 区琼荣, qrou@fudan.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51677031, 11975081)资助的课题
      Corresponding author: Zhang Shu-Yu, zhangshuyu@fudan.edu.cn ; Ou Qiong-Rong, qrou@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51677031, 11975081)
    [1]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [2]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [3]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [4]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [5]

    Muñoz R, Gómez Aleixandre C 2013 Chem. Vap. Deposition 19 297Google Scholar

    [6]

    Chhowalla M, Teo K B K, Ducati C, Rupesinghe N L, Amaratunga G A J, Ferrari A C, Roy D, Robertson J, Milne W I 2001 J. Appl. Phys. 90 5308Google Scholar

    [7]

    Wu Y, Qiao P, Chong T, Shen Z 2002 Adv. Mater. 14 64Google Scholar

    [8]

    Hiramatsu M, Shiji K, Amano H, Hori M 2004 Appl. Phys. Lett. 84 4708Google Scholar

    [9]

    Shiji K, Hiramatsu M, Enomoto A, Nakamura M, Amano H, Hori M 2005 Diamond Relat. Mater. 14 831Google Scholar

    [10]

    Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M 2009 Solid State Ionics 180 381Google Scholar

    [11]

    Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P, Provencio P N 1998 Science 282 1105Google Scholar

    [12]

    Boskovic B O, Stolojan V, Khan R U A, Haq S, Silva S R P 2002 Nat. Mater. 1 165Google Scholar

    [13]

    Qi J L, Zheng W T, Zheng X H, Wang X, Tian H W 2011 Appl. Surf. Sci. 257 6531Google Scholar

    [14]

    Peng K J, Wu C L, Lin Y H, Liu Y J, Tsai D P, Pai Y H, Lin G R 2013 J. Mater. Chem. C 1 3862Google Scholar

    [15]

    Wang S M, Pei Y H, Wang X, Wang H, Meng Q N, Tian H W, Zheng X L, Zheng W T, Liu Y C 2010 J. Phys. D: Appl. Phys. 43 455402Google Scholar

    [16]

    Wang S, Qiao L, Zhao C, Zhang X, Chen J, Tian H, Zheng W, Han Z 2013 New J. Chem. 37 1616Google Scholar

    [17]

    Kim Y S, Lee J H, Kim Y D, Jerng S K, Joo K, Kim E, Jung J, Yoon E, Park Y D, Seo S, Chun S H 2013 Nanoscale 5 1221Google Scholar

    [18]

    Terasawa T o, Saiki K 2012 Carbon 50 869Google Scholar

    [19]

    Kim Y, Song W, Lee S Y, Jeon C, Jung W, Kim M, Park C Y 2011 Appl. Phys. Lett. 98 263106Google Scholar

    [20]

    Cai M, Outlaw R A, Quinlan R A, Premathilake D, Butler S M, Miller J R 2014 ACS Nano 8 5873Google Scholar

    [21]

    Yu K, Bo Z, Lu G, Mao S, Cui S, Zhu Y, Chen X, Ruoff R S, Chen J 2011 Nanoscale Res. Lett. 6 202Google Scholar

    [22]

    Wang J, Zhu M, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Carbon 42 2867Google Scholar

    [23]

    Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, Vanhulsel A, Haesendonck C V 2008 Nanotechnology 19 305604Google Scholar

    [24]

    Tseng W S, Chen Y C, Hsu C C, Lu C H, Wu C I, Yeh N C 2020 Nanotechnology 31 335602Google Scholar

    [25]

    Kato T, Hatakeyama R 2012 ACS Nano 6 8508Google Scholar

    [26]

    Yang W, He C, Zhang L, Wang Y, Shi Z, Cheng M, Xie G, Wang D, Yang R, Shi D, Zhang G 2012 Small 8 1429Google Scholar

    [27]

    Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli M H 2014 Nano Lett. 14 3064Google Scholar

    [28]

    Ma Y, Jang H, Kim S J, Pang C, Chae H 2015 Nanoscale Res. Lett. 10 308Google Scholar

    [29]

    Zhu M, Wang J, Holloway B C, Outlaw R A, Zhao X, Hou K, Shutthanandan V, Manos D M 2007 Carbon 45 2229Google Scholar

    [30]

    Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 52 14121Google Scholar

    [31]

    Hussain S, Kovacevic E, Berndt J, Santhosh N M, Pattyn C, Dias A, Strunskus T, Ammar M R, Jagodar A, Gaillard M, Boulmer Leborgne C, Cvelbar U 2020 Nanotechnology 31 395604Google Scholar

    [32]

    Mouralova K, Zahradnicek R, Bednar J 2019 Diamond Relat. Mater. 97 107439Google Scholar

    [33]

    Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z 2019 J. Mater. Chem. A 7 4813Google Scholar

    [34]

    Su F, Chen G, Sun J 2019 Tribol. Int. 130 1Google Scholar

    [35]

    Zhang H, Wu S, Lu Z, Chen X, Chen Q, Gao P, Yu T, Peng Z, Ye J 2019 Carbon 147 341Google Scholar

    [36]

    Chu J, Han Y, Li Y, Jia P, Cui H, Duan S, Feng P, Peng X 2020 J. Phys. D: Appl. Phys. 53 325101Google Scholar

    [37]

    Wang X, Zhang Y, Tang M, Han D, Fu E, Xue J, Zhao Z 2015 Carbon 93 230Google Scholar

    [38]

    Gutierrez G, Le Normand F, Muller D, Aweke F, Speisser C, Antoni F, Le Gall Y, Lee C S, Cojocaru C S 2014 Carbon 66 1Google Scholar

    [39]

    Mun J H, Lim S K, Cho B J 2012 J. Electrochem. Soc. 159 G89Google Scholar

    [40]

    Baraton L, He Z, Lee C S, Maurice J L, Cojocaru C S, Gourgues Lorenzon A F, Lee Y H, Pribat D 2011 Nanotechnology 22 085601Google Scholar

    [41]

    Garaj S, Hubbard W, Golovchenko J A 2010 Appl. Phys. Lett. 97 183103Google Scholar

    [42]

    Lee J S, Jang C W, Kim J M, Shin D H, Kim S, Choi S H, Belay K, Elliman R G 2014 Carbon 66 267Google Scholar

    [43]

    Zhao Y, Han D, Wang X, Hu Z, Chen Y, Chen Y, Zhou D, Li Y, Fu E G, Zhao Z 2019 Carbon 153 776Google Scholar

    [44]

    Gallon H J, Tu X, Twigg M V, Whitehead J C 2011 Appl. Catal., B 106 616Google Scholar

    [45]

    Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D 2013 Nanotechnology 24 455401Google Scholar

    [46]

    Major S, Kumar S, Bhatnagar M, Chopra K L 1986 Appl. Phys. Lett. 49 394Google Scholar

    [47]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [48]

    Gómez Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K 2007 Nano Lett. 7 3499Google Scholar

    [49]

    Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394Google Scholar

    [50]

    Zhou Q, Zhao Z, Chen Y, Hu H, Qiu J 2012 J. Mater. Chem. 22 6061Google Scholar

    [51]

    Eng A Y S, Sofer Z, Šimek P, Kosina J, Pumera M 2013 Chem. Eur. J. 19 15583Google Scholar

    [52]

    Muhammad Hafiz S, Ritikos R, Whitcher T J, Md. Razib N, Bien D C S, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P, Huang N M, Rahman S A 2014 Sens. Actuators, B 193 692Google Scholar

    [53]

    Cardinali M, Valentini L, Fabbri P, Kenny J M 2011 Chem. Phys. Lett. 508 285Google Scholar

    [54]

    Yang C, Gong J, Zeng P, Yang X, Liang R, Ou Q, Zhang S 2018 Appl. Surf. Sci. 452 481Google Scholar

    [55]

    Xu W, Wang X, Zhou Q, Meng B, Zhao J, Qiu J, Gogotsi Y 2012 J. Mater. Chem. 22 14363Google Scholar

    [56]

    Ma Y, Wang Q, Miao Y, Lin Y, Li R 2018 Appl. Surf. Sci. 450 413Google Scholar

    [57]

    Yang C, Yu Y, Xie Y, Zhang D, Zeng P, Dong Y, Yang B, Liang R, Ou Q, Zhang S 2019 Appl. Surf. Sci. 473 83Google Scholar

    [58]

    Zhang D, Du Y, Yang C, Zeng P, Yu Y, Xie Y, Liang R, Ou Q, Zhang S 2021 J. Mater. Sci. 56 1359

    [59]

    Yang C, Zhang D, Zhao W, Cui M, Liang R, Ou Q, Zhang S 2020 J. Alloys Compd. 835 155334Google Scholar

    [60]

    Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H 2014 ACS Sustainable Chem. Eng. 2 3Google Scholar

    [61]

    Goverapet Srinivasan S, van Duin A C T 2011 J. Phys. Chem. A 115 13269Google Scholar

    [62]

    Kim K, Park H J, Woo B C, Kim K J, Kim G T, Yun W S 2008 Nano Lett. 8 3092Google Scholar

    [63]

    Lu X, Yang X, Tariq M, Li F, Steimecke M, Li J, Varga A, Bron M, Abel B 2020 J. Mater. Chem. A 8 2445Google Scholar

    [64]

    Felten A, Eckmann A, Pireaux J J, Krupke R, Casiraghi C 2013 Nanotechnology 24 355705Google Scholar

    [65]

    Seah C M, Vigolo B, Chai S P, Mohamed A R 2016 Carbon 105 496Google Scholar

    [66]

    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F 2010 Nanotechnology 21 435203Google Scholar

    [67]

    Xiao N, Dong X, Song L, Liu D, Tay Y, Wu S, Li L J, Zhao Y, Yu T, Zhang H, Huang W, Hng H H, Ajayan P M, Yan Q 2011 ACS Nano 5 2749Google Scholar

    [68]

    Gokus T, Nair R R, Bonetti A, Böhmler M, Lombardo A, Novoselov K S, Geim A K, Ferrari A C, Hartschuh A 2009 ACS Nano 3 3963Google Scholar

    [69]

    Nourbakhsh A, Cantoro M, Klekachev A V, Pourtois G, Hofkens J, van der Veen M H, Heyns M M, De Gendt S, Sels B F 2011 J. Phys. Chem. C 115 16619Google Scholar

    [70]

    Lu N, Yin D, Li Z, Yang J 2011 J. Phys. Chem. C 115 11991Google Scholar

    [71]

    Dai Y F, Ni S, Li Z Y, Yang J L 2013 J. Phys. Condens. Matter 25 405301Google Scholar

    [72]

    Xiang H J, Wei S H, Gong X G 2010 Phys. Rev. B 82 035416Google Scholar

    [73]

    Yan J A, Chou M Y 2010 Phys. Rev. B 82 125403Google Scholar

    [74]

    Kutana A, Giapis K P 2009 J. Phys. Chem. C 113 14721Google Scholar

    [75]

    Sun T, Fabris S 2012 Nano Lett. 12 17Google Scholar

    [76]

    Xu Z, Xue K 2010 Nanotechnology 21 045704Google Scholar

    [77]

    Barinov A, Malcioǧlu O B, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M 2009 J. Phys. Chem. C 113 9009Google Scholar

    [78]

    Zhao H, Fan S, Chen Y, Feng Z, Zhang H, Pang W, Zhang D, Zhang M 2017 ACS Appl. Mater. Interfaces 9 40774Google Scholar

    [79]

    Huang C H, Su C Y, Lai C S, Li Y C, Samukawa S 2014 Carbon 73 244Google Scholar

    [80]

    Feng T, Xie D, Tian H, Peng P, Zhang D, Fu D, Ren T, Li X, Zhu H, Jing Y 2012 Mater. Lett. 73 187Google Scholar

    [81]

    Koizumi K, Boero M, Shigeta Y, Oshiyama A 2013 J. Phys. Chem. Lett. 4 1592Google Scholar

    [82]

    Sun T, Fabris S, Baroni S 2011 J. Phys. Chem. C 115 4730Google Scholar

    [83]

    Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [84]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356Google Scholar

    [85]

    Hui L S, Whiteway E, Hilke M, Turak A 2017 Carbon 125 500Google Scholar

    [86]

    Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H 2010 Langmuir 26 3798Google Scholar

    [87]

    Sahoo G, Polaki S R, Ghosh S, Krishna N G, Kamruddin M 2018 J. Power Sources 401 37Google Scholar

    [88]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459Google Scholar

    [89]

    Qi H, Li Z, Tao Y, Zhao W, Lin K, Ni Z, Jin C, Zhang Y, Bi K, Chen Y 2018 Nanoscale 10 5350Google Scholar

    [90]

    Sugiura H, Kondo H, Higuchi K, Arai S, Hamaji R, Tsutsumi T, Ishikawa K, Hori M 2020 Carbon 170 93Google Scholar

    [91]

    Lee B J, Jeong G H 2013 Vacuum 87 200Google Scholar

    [92]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [93]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335Google Scholar

    [94]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [95]

    Gierz I, Riedl C, Starke U, Ast C R, Kern K 2008 Nano Lett. 8 4603Google Scholar

    [96]

    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752Google Scholar

    [97]

    Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768Google Scholar

    [98]

    Li X, Wang H, Robinson J T, Sanchez H, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939Google Scholar

    [99]

    Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H 2011 ACS Nano 5 4350Google Scholar

    [100]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar

    [101]

    Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H 2011 J. Am. Chem. Soc. 133 19668Google Scholar

    [102]

    Pham V P, Kim K H, Jeon M H, Lee S H, Kim K N, Yeom G Y 2015 Carbon 95 664Google Scholar

    [103]

    Wang Y, Shao Y, Matson D W, Li J, Lin Y 2010 ACS Nano 4 1790Google Scholar

    [104]

    Lin Y P, Ksari Y, Aubel D, Hajjar Garreau S, Borvon G, Spiegel Y, Roux L, Simon L, Themlin J M 2016 Carbon 100 337Google Scholar

    [105]

    Akada K, Terasawa T o, Imamura G, Obata S, Saiki K 2014 Appl. Phys. Lett. 104 131602Google Scholar

    [106]

    Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y 2010 J. Mater. Chem. 20 7491Google Scholar

    [107]

    Baraket M, Stine R, Lee W K, Robinson J T, Tamanaha C R, Sheehan P E, Walton S G 2012 Appl. Phys. Lett. 100 233123Google Scholar

    [108]

    Dou S, Tao L, Huo J, Wang S, Dai L 2016 Energy Environ. Sci. 9 1320Google Scholar

    [109]

    Ji W, Liu Y, Shan Z, Zhang X, Ding F, Li X 2019 Ceram. Int. 45 7095Google Scholar

    [110]

    Elumalai S, Su C Y, Yoshimura M 2019 Front. Mater. 6 216Google Scholar

    [111]

    Abdelkader-Fernández V K, Domingo Garcia M, Lopez Garzon F J, Fernandes D M, Freire C, de la Torre M D L, Melguizo M, Godino Salido M L, Perez Mendoza M 2019 Carbon 144 269Google Scholar

    [112]

    Wong C H A, Sofer Z, Klímová K, Pumera M 2016 ACS Appl. Mater. Interfaces 8 31849Google Scholar

    [113]

    Denis P A 2010 Chem. Phys. Lett. 492 251Google Scholar

    [114]

    Denis P A 2013 Comput. Mater. Sci. 67 203Google Scholar

    [115]

    Chu K, Wang F, Tian Y, Wei Z 2017 Electrochim. Acta 231 557Google Scholar

    [116]

    Chen X J, Bo X, Ren W H, Chen S, Zhao C 2019 Mater. Chem. Front. 3 1433Google Scholar

    [117]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196Google Scholar

    [118]

    Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S 2018 Adv. Mater. 30 1705850Google Scholar

    [119]

    Bazaka K, Baranov O, Cvelbar U, Podgornik B, Wang Y, Huang S, Xu L, Lim J W M, Levchenko I, Xu S 2018 Nanoscale 10 17494Google Scholar

    [120]

    Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28Google Scholar

  • 图 1  等离子体技术改性石墨烯的主要物理过程示意图

    Fig. 1.  A schematic diagram of the main physical processes of graphene modification based on plasma technologies.

    图 2  (a) PECVD方法在Ni基板上生长石墨烯示意图[14]; (b) PECVD方法在Si/SiO2基板上生长单层石墨烯示意图[25]; (c) PECVD方法在Cu催化与非催化条件下生长垂直石墨烯示意图[28]

    Fig. 2.  A schematic diagram of (a) growing graphene on a Ni substrate by PECVD[14], (b) growing monolayer graphene on a Si/SiO2 substrate by PECVD [25] and (c) growing vertical graphene by PECVD with and without Cu catalysis [28].

    图 3  (a) DBD等离子体还原GO示意图[50]; (b) CH4/Ar等离子体同步还原与修复GO过程[54]; (c) Ar等离子体一步还原HAuCl4与GO示意图[57]; (d)等离子体还原与热还原形核生长过程示意图[60]

    Fig. 3.  A schematic diagram of (a) GO reduction using DBD plasma[50], (b) GO reduction and repair using CH4/Ar plasma[54], (c) one-step reduction of HAuCl4 and GO using Ar plasma[57], (d) nucleation and growth process using plasma reduction and thermal reduction, respectively[60].

    图 4  氧等离子体处理对石墨烯的功能化修饰 (a) SLG, BLG, FLG经氧等离子体处理后的光致发光行为及表面原子结构示意图[67]; (b) GO与氧等离子体处理后的GO (P-GO)表面扫描电子显微镜(scanning electron microscope, SEM)图[78]; (c) 碳化硅衬底(SiC)、高序热解石墨(highly oriented pyrolytic graphite, HOPG)以及SiC上的SLG和氧等离子体处理后的SLG上的水滴[86]; (d) 单层纳米多孔石墨烯膜的制备与性能测试示意图[89]

    Fig. 4.  Functional modification of graphene by oxygen plasma treatment: (a) Photoluminescence image of SLG, BLG and FLG after exposure to O2 plasma and a schematic illustration of the atomic structure of graphene after O2 plasma treatment[67]; (b) SEM photos of pristine GO and P-GO surfaces[78]; (c) water droplets on SiC, HOPG, SLG on SiC, and oxygen-plasma-etched graphene on SiC[86]; (d) a schematic illustration of preparation and characterization of monolayer nanoporous graphene films[89].

    图 5  (a) 本征石墨烯的能带结构[92]; (b) 石墨烯狄拉克点位置和费米能级随不同掺杂类型变化原理图[95]; (c) 石墨烯氮掺杂的三种构型: 吡啶氮、吡咯氮和石墨氮[103]; (d) 氮掺杂石墨烯催化H2O2电化学还原的循环伏安曲线[103]; (e) 氮掺杂Co9S8/graphene的Co 2p轨道分峰谱(左)和N 1s轨道分峰谱(右)[108]; (f) 硫掺杂石墨烯催化OER反应极化曲线[112]

    Fig. 5.  (a) Band structure of pristine graphene[92]; (b) the position of the Dirac point and the Fermi level as a function of doping type[95]; (c) bonding configurations for nitrogen atoms in N-graphene[103]; (d) cyclic voltammograms of H2O2 on N-graphene electrode[103]; (e) Co 2p deconvolution spectra (left) and N 1s deconvolution spectra of N-Co9S8/graphene (right)[108]; (f) linear sweep voltammograms for OER of S-graphene[112].

    Baidu
  • [1]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [2]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [3]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [4]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [5]

    Muñoz R, Gómez Aleixandre C 2013 Chem. Vap. Deposition 19 297Google Scholar

    [6]

    Chhowalla M, Teo K B K, Ducati C, Rupesinghe N L, Amaratunga G A J, Ferrari A C, Roy D, Robertson J, Milne W I 2001 J. Appl. Phys. 90 5308Google Scholar

    [7]

    Wu Y, Qiao P, Chong T, Shen Z 2002 Adv. Mater. 14 64Google Scholar

    [8]

    Hiramatsu M, Shiji K, Amano H, Hori M 2004 Appl. Phys. Lett. 84 4708Google Scholar

    [9]

    Shiji K, Hiramatsu M, Enomoto A, Nakamura M, Amano H, Hori M 2005 Diamond Relat. Mater. 14 831Google Scholar

    [10]

    Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M 2009 Solid State Ionics 180 381Google Scholar

    [11]

    Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P, Provencio P N 1998 Science 282 1105Google Scholar

    [12]

    Boskovic B O, Stolojan V, Khan R U A, Haq S, Silva S R P 2002 Nat. Mater. 1 165Google Scholar

    [13]

    Qi J L, Zheng W T, Zheng X H, Wang X, Tian H W 2011 Appl. Surf. Sci. 257 6531Google Scholar

    [14]

    Peng K J, Wu C L, Lin Y H, Liu Y J, Tsai D P, Pai Y H, Lin G R 2013 J. Mater. Chem. C 1 3862Google Scholar

    [15]

    Wang S M, Pei Y H, Wang X, Wang H, Meng Q N, Tian H W, Zheng X L, Zheng W T, Liu Y C 2010 J. Phys. D: Appl. Phys. 43 455402Google Scholar

    [16]

    Wang S, Qiao L, Zhao C, Zhang X, Chen J, Tian H, Zheng W, Han Z 2013 New J. Chem. 37 1616Google Scholar

    [17]

    Kim Y S, Lee J H, Kim Y D, Jerng S K, Joo K, Kim E, Jung J, Yoon E, Park Y D, Seo S, Chun S H 2013 Nanoscale 5 1221Google Scholar

    [18]

    Terasawa T o, Saiki K 2012 Carbon 50 869Google Scholar

    [19]

    Kim Y, Song W, Lee S Y, Jeon C, Jung W, Kim M, Park C Y 2011 Appl. Phys. Lett. 98 263106Google Scholar

    [20]

    Cai M, Outlaw R A, Quinlan R A, Premathilake D, Butler S M, Miller J R 2014 ACS Nano 8 5873Google Scholar

    [21]

    Yu K, Bo Z, Lu G, Mao S, Cui S, Zhu Y, Chen X, Ruoff R S, Chen J 2011 Nanoscale Res. Lett. 6 202Google Scholar

    [22]

    Wang J, Zhu M, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Carbon 42 2867Google Scholar

    [23]

    Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, Vanhulsel A, Haesendonck C V 2008 Nanotechnology 19 305604Google Scholar

    [24]

    Tseng W S, Chen Y C, Hsu C C, Lu C H, Wu C I, Yeh N C 2020 Nanotechnology 31 335602Google Scholar

    [25]

    Kato T, Hatakeyama R 2012 ACS Nano 6 8508Google Scholar

    [26]

    Yang W, He C, Zhang L, Wang Y, Shi Z, Cheng M, Xie G, Wang D, Yang R, Shi D, Zhang G 2012 Small 8 1429Google Scholar

    [27]

    Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli M H 2014 Nano Lett. 14 3064Google Scholar

    [28]

    Ma Y, Jang H, Kim S J, Pang C, Chae H 2015 Nanoscale Res. Lett. 10 308Google Scholar

    [29]

    Zhu M, Wang J, Holloway B C, Outlaw R A, Zhao X, Hou K, Shutthanandan V, Manos D M 2007 Carbon 45 2229Google Scholar

    [30]

    Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 52 14121Google Scholar

    [31]

    Hussain S, Kovacevic E, Berndt J, Santhosh N M, Pattyn C, Dias A, Strunskus T, Ammar M R, Jagodar A, Gaillard M, Boulmer Leborgne C, Cvelbar U 2020 Nanotechnology 31 395604Google Scholar

    [32]

    Mouralova K, Zahradnicek R, Bednar J 2019 Diamond Relat. Mater. 97 107439Google Scholar

    [33]

    Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z 2019 J. Mater. Chem. A 7 4813Google Scholar

    [34]

    Su F, Chen G, Sun J 2019 Tribol. Int. 130 1Google Scholar

    [35]

    Zhang H, Wu S, Lu Z, Chen X, Chen Q, Gao P, Yu T, Peng Z, Ye J 2019 Carbon 147 341Google Scholar

    [36]

    Chu J, Han Y, Li Y, Jia P, Cui H, Duan S, Feng P, Peng X 2020 J. Phys. D: Appl. Phys. 53 325101Google Scholar

    [37]

    Wang X, Zhang Y, Tang M, Han D, Fu E, Xue J, Zhao Z 2015 Carbon 93 230Google Scholar

    [38]

    Gutierrez G, Le Normand F, Muller D, Aweke F, Speisser C, Antoni F, Le Gall Y, Lee C S, Cojocaru C S 2014 Carbon 66 1Google Scholar

    [39]

    Mun J H, Lim S K, Cho B J 2012 J. Electrochem. Soc. 159 G89Google Scholar

    [40]

    Baraton L, He Z, Lee C S, Maurice J L, Cojocaru C S, Gourgues Lorenzon A F, Lee Y H, Pribat D 2011 Nanotechnology 22 085601Google Scholar

    [41]

    Garaj S, Hubbard W, Golovchenko J A 2010 Appl. Phys. Lett. 97 183103Google Scholar

    [42]

    Lee J S, Jang C W, Kim J M, Shin D H, Kim S, Choi S H, Belay K, Elliman R G 2014 Carbon 66 267Google Scholar

    [43]

    Zhao Y, Han D, Wang X, Hu Z, Chen Y, Chen Y, Zhou D, Li Y, Fu E G, Zhao Z 2019 Carbon 153 776Google Scholar

    [44]

    Gallon H J, Tu X, Twigg M V, Whitehead J C 2011 Appl. Catal., B 106 616Google Scholar

    [45]

    Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D 2013 Nanotechnology 24 455401Google Scholar

    [46]

    Major S, Kumar S, Bhatnagar M, Chopra K L 1986 Appl. Phys. Lett. 49 394Google Scholar

    [47]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [48]

    Gómez Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K 2007 Nano Lett. 7 3499Google Scholar

    [49]

    Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394Google Scholar

    [50]

    Zhou Q, Zhao Z, Chen Y, Hu H, Qiu J 2012 J. Mater. Chem. 22 6061Google Scholar

    [51]

    Eng A Y S, Sofer Z, Šimek P, Kosina J, Pumera M 2013 Chem. Eur. J. 19 15583Google Scholar

    [52]

    Muhammad Hafiz S, Ritikos R, Whitcher T J, Md. Razib N, Bien D C S, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P, Huang N M, Rahman S A 2014 Sens. Actuators, B 193 692Google Scholar

    [53]

    Cardinali M, Valentini L, Fabbri P, Kenny J M 2011 Chem. Phys. Lett. 508 285Google Scholar

    [54]

    Yang C, Gong J, Zeng P, Yang X, Liang R, Ou Q, Zhang S 2018 Appl. Surf. Sci. 452 481Google Scholar

    [55]

    Xu W, Wang X, Zhou Q, Meng B, Zhao J, Qiu J, Gogotsi Y 2012 J. Mater. Chem. 22 14363Google Scholar

    [56]

    Ma Y, Wang Q, Miao Y, Lin Y, Li R 2018 Appl. Surf. Sci. 450 413Google Scholar

    [57]

    Yang C, Yu Y, Xie Y, Zhang D, Zeng P, Dong Y, Yang B, Liang R, Ou Q, Zhang S 2019 Appl. Surf. Sci. 473 83Google Scholar

    [58]

    Zhang D, Du Y, Yang C, Zeng P, Yu Y, Xie Y, Liang R, Ou Q, Zhang S 2021 J. Mater. Sci. 56 1359

    [59]

    Yang C, Zhang D, Zhao W, Cui M, Liang R, Ou Q, Zhang S 2020 J. Alloys Compd. 835 155334Google Scholar

    [60]

    Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H 2014 ACS Sustainable Chem. Eng. 2 3Google Scholar

    [61]

    Goverapet Srinivasan S, van Duin A C T 2011 J. Phys. Chem. A 115 13269Google Scholar

    [62]

    Kim K, Park H J, Woo B C, Kim K J, Kim G T, Yun W S 2008 Nano Lett. 8 3092Google Scholar

    [63]

    Lu X, Yang X, Tariq M, Li F, Steimecke M, Li J, Varga A, Bron M, Abel B 2020 J. Mater. Chem. A 8 2445Google Scholar

    [64]

    Felten A, Eckmann A, Pireaux J J, Krupke R, Casiraghi C 2013 Nanotechnology 24 355705Google Scholar

    [65]

    Seah C M, Vigolo B, Chai S P, Mohamed A R 2016 Carbon 105 496Google Scholar

    [66]

    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F 2010 Nanotechnology 21 435203Google Scholar

    [67]

    Xiao N, Dong X, Song L, Liu D, Tay Y, Wu S, Li L J, Zhao Y, Yu T, Zhang H, Huang W, Hng H H, Ajayan P M, Yan Q 2011 ACS Nano 5 2749Google Scholar

    [68]

    Gokus T, Nair R R, Bonetti A, Böhmler M, Lombardo A, Novoselov K S, Geim A K, Ferrari A C, Hartschuh A 2009 ACS Nano 3 3963Google Scholar

    [69]

    Nourbakhsh A, Cantoro M, Klekachev A V, Pourtois G, Hofkens J, van der Veen M H, Heyns M M, De Gendt S, Sels B F 2011 J. Phys. Chem. C 115 16619Google Scholar

    [70]

    Lu N, Yin D, Li Z, Yang J 2011 J. Phys. Chem. C 115 11991Google Scholar

    [71]

    Dai Y F, Ni S, Li Z Y, Yang J L 2013 J. Phys. Condens. Matter 25 405301Google Scholar

    [72]

    Xiang H J, Wei S H, Gong X G 2010 Phys. Rev. B 82 035416Google Scholar

    [73]

    Yan J A, Chou M Y 2010 Phys. Rev. B 82 125403Google Scholar

    [74]

    Kutana A, Giapis K P 2009 J. Phys. Chem. C 113 14721Google Scholar

    [75]

    Sun T, Fabris S 2012 Nano Lett. 12 17Google Scholar

    [76]

    Xu Z, Xue K 2010 Nanotechnology 21 045704Google Scholar

    [77]

    Barinov A, Malcioǧlu O B, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M 2009 J. Phys. Chem. C 113 9009Google Scholar

    [78]

    Zhao H, Fan S, Chen Y, Feng Z, Zhang H, Pang W, Zhang D, Zhang M 2017 ACS Appl. Mater. Interfaces 9 40774Google Scholar

    [79]

    Huang C H, Su C Y, Lai C S, Li Y C, Samukawa S 2014 Carbon 73 244Google Scholar

    [80]

    Feng T, Xie D, Tian H, Peng P, Zhang D, Fu D, Ren T, Li X, Zhu H, Jing Y 2012 Mater. Lett. 73 187Google Scholar

    [81]

    Koizumi K, Boero M, Shigeta Y, Oshiyama A 2013 J. Phys. Chem. Lett. 4 1592Google Scholar

    [82]

    Sun T, Fabris S, Baroni S 2011 J. Phys. Chem. C 115 4730Google Scholar

    [83]

    Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [84]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356Google Scholar

    [85]

    Hui L S, Whiteway E, Hilke M, Turak A 2017 Carbon 125 500Google Scholar

    [86]

    Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H 2010 Langmuir 26 3798Google Scholar

    [87]

    Sahoo G, Polaki S R, Ghosh S, Krishna N G, Kamruddin M 2018 J. Power Sources 401 37Google Scholar

    [88]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459Google Scholar

    [89]

    Qi H, Li Z, Tao Y, Zhao W, Lin K, Ni Z, Jin C, Zhang Y, Bi K, Chen Y 2018 Nanoscale 10 5350Google Scholar

    [90]

    Sugiura H, Kondo H, Higuchi K, Arai S, Hamaji R, Tsutsumi T, Ishikawa K, Hori M 2020 Carbon 170 93Google Scholar

    [91]

    Lee B J, Jeong G H 2013 Vacuum 87 200Google Scholar

    [92]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [93]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335Google Scholar

    [94]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [95]

    Gierz I, Riedl C, Starke U, Ast C R, Kern K 2008 Nano Lett. 8 4603Google Scholar

    [96]

    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752Google Scholar

    [97]

    Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768Google Scholar

    [98]

    Li X, Wang H, Robinson J T, Sanchez H, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939Google Scholar

    [99]

    Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H 2011 ACS Nano 5 4350Google Scholar

    [100]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar

    [101]

    Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H 2011 J. Am. Chem. Soc. 133 19668Google Scholar

    [102]

    Pham V P, Kim K H, Jeon M H, Lee S H, Kim K N, Yeom G Y 2015 Carbon 95 664Google Scholar

    [103]

    Wang Y, Shao Y, Matson D W, Li J, Lin Y 2010 ACS Nano 4 1790Google Scholar

    [104]

    Lin Y P, Ksari Y, Aubel D, Hajjar Garreau S, Borvon G, Spiegel Y, Roux L, Simon L, Themlin J M 2016 Carbon 100 337Google Scholar

    [105]

    Akada K, Terasawa T o, Imamura G, Obata S, Saiki K 2014 Appl. Phys. Lett. 104 131602Google Scholar

    [106]

    Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y 2010 J. Mater. Chem. 20 7491Google Scholar

    [107]

    Baraket M, Stine R, Lee W K, Robinson J T, Tamanaha C R, Sheehan P E, Walton S G 2012 Appl. Phys. Lett. 100 233123Google Scholar

    [108]

    Dou S, Tao L, Huo J, Wang S, Dai L 2016 Energy Environ. Sci. 9 1320Google Scholar

    [109]

    Ji W, Liu Y, Shan Z, Zhang X, Ding F, Li X 2019 Ceram. Int. 45 7095Google Scholar

    [110]

    Elumalai S, Su C Y, Yoshimura M 2019 Front. Mater. 6 216Google Scholar

    [111]

    Abdelkader-Fernández V K, Domingo Garcia M, Lopez Garzon F J, Fernandes D M, Freire C, de la Torre M D L, Melguizo M, Godino Salido M L, Perez Mendoza M 2019 Carbon 144 269Google Scholar

    [112]

    Wong C H A, Sofer Z, Klímová K, Pumera M 2016 ACS Appl. Mater. Interfaces 8 31849Google Scholar

    [113]

    Denis P A 2010 Chem. Phys. Lett. 492 251Google Scholar

    [114]

    Denis P A 2013 Comput. Mater. Sci. 67 203Google Scholar

    [115]

    Chu K, Wang F, Tian Y, Wei Z 2017 Electrochim. Acta 231 557Google Scholar

    [116]

    Chen X J, Bo X, Ren W H, Chen S, Zhao C 2019 Mater. Chem. Front. 3 1433Google Scholar

    [117]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196Google Scholar

    [118]

    Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S 2018 Adv. Mater. 30 1705850Google Scholar

    [119]

    Bazaka K, Baranov O, Cvelbar U, Podgornik B, Wang Y, Huang S, Xu L, Lim J W M, Levchenko I, Xu S 2018 Nanoscale 10 17494Google Scholar

    [120]

    Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28Google Scholar

  • [1] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用.  , 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [2] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展.  , 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [3] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术.  , 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [4] 胡钧, 高嶷. 界面水与催化.  , 2019, 68(1): 016803. doi: 10.7498/aps.68.20182180
    [5] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究.  , 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [6] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [7] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [8] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [9] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质.  , 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [10] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究.  , 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [11] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究.  , 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [12] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质.  , 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [13] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台.  , 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [14] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应.  , 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [15] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境下孤立导体表面充电时域特性研究.  , 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [16] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展.  , 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [17] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状.  , 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [18] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [19] 顾伟超, 吕国华, 陈 睆, 陈光良, 冯文然, 张谷令, 杨思泽. 管状铝质材料的等离子体电解沉积行为研究.  , 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [20] 满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, L. Guzman, M. Adami, A. Miotello. N+离子注入聚四氟乙烯表面改性研究.  , 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
计量
  • 文章访问数:  12411
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-01-30
  • 上网日期:  2021-04-26
  • 刊出日期:  2021-05-05

/

返回文章
返回
Baidu
map