-
螺旋相衬显微术利用螺旋相位滤波器实现了样品振幅和相位的定量测量, 可被广泛应用于生物医学成像、工业检测等领域. 然而, 传统的螺旋相衬显微术需要通过三步相移法进行相位恢复, 图像采集和处理过程相对复杂, 时间分辨率较低. 为了提升其特性, 本文提出了一种基于分数阶螺旋相位片的定量相位成像方法和系统, 通过一幅经分数阶螺旋相位滤波的样品强度图像, 利用改进的Gerchberg-Saxton迭代相位恢复算法实现了样品相位的定量重构, 简化了实验过程和相位重构步骤. 计算机模拟实验研究了基于不同拓扑荷数的螺旋相位片的相位成像和重构过程, 分析了其可行性. 最后, 通过对定制的相位型光栅和生物细胞样品进行了成像和相位重构, 验证了基于分数阶螺旋相位片的相衬显微方法可以有效地提高螺旋相衬显微成像的对比度, 能够定量获其样品的相位信息, 对于螺旋相衬显微术的发展具有重要的研究意义和应用价值.Quantitative phase imaging (QPI), which combines phase imaging with optical microscopy technology, provides a marker-free, fast, non-destructive, and high-resolution imaging method for observing transparent biological samples. It is widely used in life science, biomedicine, etc. As an emerging QPI technology, spiral phase contrast microscopy (SPCM) uses a spiral phase filter to achieve edge enhancement of amplitude or phase objects. Using the multi-step phase-shifting technology, a complex sample can be measured quantitatively, which has the advantages of high stability, high sensitivity and high precision. However, the SPCM requires at least three-step phase-shifted spiral phase filtered images to achieve the quantitative reconstruction of the amplitude and phase of a sample, and the image acquisition process and the reconstruction process are relatively complicated, which require high stability of system, and the SPCM has low temporal resolution. In order to further improve the performance of SPCM and increase the system stability, sensitivity and temporal resolution, in this paper a quantitative phase imaging method and system based on a fractional spiral phase plate is proposed. Through a sample intensity image filtered by a fractional spiral phase plate, the modified Gerchberg-Saxton iterative phase retrieval algorithm is used to quantitatively reconstruct the phase of a pure phase sample, which simplifies the experimental process and phase reconstruction steps of spiral phase contrast microsocopy. In the computer simulation experiments, the phase imaging process and the reconstruction process of spiral phase plates based on different topological charges are studied, the feasibility of which is analyzed. Finally, through imaging and phase reconstruction of the phase grating and biological cell sample, it is verified that the phase contrast microscopy method based on the fractional spiral phase plate can effectively improve the contrast of spiral phase contrast microscopy and can obtain a quantitative reconstruciton of a weak phase object. The phase information of a sample has significance in research and application for developing the spiral phase contrast microscopy.
-
Keywords:
- quantitative phase imaging /
- spiral phase contrast microscopy /
- spiral phase plate /
- phase retrieval
[1] Park Y, Depeursinge C, Popescu G 2018 Nat. Photonics 12 578Google Scholar
[2] Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165Google Scholar
[3] Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T, Depeursinge C 2005 Opt. Lett. 30 468Google Scholar
[4] Warger W C, DiMarzio C A 2009 Opt. Express 17 2400Google Scholar
[5] Zicha D, Dunn G A 1995 J. Microsc.-Oxford 179 11Google Scholar
[6] Popescu G, Deflores L P, Vaughan J C, Badizadegan K, Iwai H, Dasari R R, Feld M S 2004 Opt. Lett. 29 2503Google Scholar
[7] Popescu G, Ikeda T, Dasari R R, Feld M S 2006 Opt. Lett. 31 775Google Scholar
[8] Barty A, Nugent K A, Paganin D, Roberts A 1998 Opt. Lett. 23 817Google Scholar
[9] Wang Z, Millet L, Mir M, Ding H F, Unarunotai S, Rogers J, Gillette M U, Popescu G 2011 Opt. Express 19 1016Google Scholar
[10] Ding H F, Wang Z, Nguyen F, Boppart S A, Popescu G 2008 Phys. Rev. Lett. 101 238102Google Scholar
[11] Davis J A, McNamara D E, Cottrell D M, Campos J 2000 Opt. Lett. 25 99Google Scholar
[12] Crabtree K, Davis J A, Moreno I 2004 Appl. Opt. 43 1360Google Scholar
[13] Swartzlander G A 2001 Opt. Lett. 26 497Google Scholar
[14] 刘婷婷, 洪正平, 国承山 2008 光电子·激光 19 96Google Scholar
Liu T T, Hong Z P, Guo C S 2008 J. Optoelectron.·Laser 19 96Google Scholar
[15] Furhapter S, Jesacher A, Bernet S, Ritsch-Marte M 2005 Opt. Lett. 30 1953Google Scholar
[16] Wang J, Zhang W, Qi Q, Zheng S, Chen L 2015 Sci. Rep. 5 15826Google Scholar
[17] 顾忠政, 殷达, 聂守平, 冯少彤, 邢芳俭, 马骏, 袁操今 2019 红外与激光工程 48 0603015Google Scholar
Gu Z Z, Yin D, Nie S P, Feng S T, Xing F J, Ma J, Yuan C J 2019 Infrared Laser Eng. 48 0603015Google Scholar
[18] Situ G, Pedrini G, Osten W 2009 J. Opt. Soc. Am. A: 26 1788Google Scholar
[19] Hai N, Rosen J 2020 Opt. Lett. 45 5812Google Scholar
[20] Fienup J R 1982 Appl. Opt. 21 2758Google Scholar
[21] 周意 2017 硕士学位论文 (南京: 南京师范大学)
Zhou Y 2017 M. S. Thesis (Nanjing: Nanjing Normal University) (in Chinese)
[22] 黄妙娜, 黄佐华 2009 大学物理 28 6Google Scholar
Huang M N, Huang Z H 2009 Coll. Phys. 28 6Google Scholar
-
图 5 螺旋相位滤波成像及恢复结果对比 (a) 相位型样品原图; (b) 传统整数阶螺旋相位片滤波图像; (c) 对图(b)用SGSA恢复的样品相位图; (d) 分数阶螺旋相位片滤波图像; (e) 对图(d)用SGSA恢复的样品相位图
Fig. 5. Comparisons of the recorded images and the recovered results: (a) The ground truth phase sample image; (b) the recorded image via traditional integer order spiral phase plate filtering; (c) the recovered phase sample image using SGSA for panel (b); (d) the recorded image via fractional spiral phase plate filtering; (e) the recovered phase sample image using SGSA for panel (d).
图 6 分数拓扑荷l取不同值时的直接相位成像结果
$\left( {\rm{a}} \right)\;l = 1$ ;$\left( {\rm{b}} \right)\;l = {\rm{0}}.{\rm{8}}$ ;$\left( {\rm{c}} \right)\;l = {\rm{0}}.{\rm{6}}$ ;$\left( {\rm{d}} \right)\;l = {\rm{0}}.{\rm{5}}$ ;$\left( {\rm{e}} \right)\;l = {\rm{0}}.{\rm{4}}$ ;$\left( {\rm{f}} \right)\;l = {\rm{0}}.{\rm{2}}$ ;$\left( {\rm{g}} \right)\;l = {\rm{0}}.1$ ;$\left( {\rm{h}} \right)\;l = {\rm{0}}.{\rm{08}}$ Fig. 6. Direct phase imaging results for different fractional topological charge l :
$\left( {\rm{a}} \right)\;l = 1{{ ;}}$ $\left( {\rm{b}} \right)\;l = {\rm{0}}.{{8 ;}}$ $\left( {\rm{c}} \right)\;l = {\rm{0}}.{{6 ;}}$ $\left( {\rm{d}} \right)\;l = {\rm{0}}.{{5 ;}}$ $\left( {\rm{e}} \right)\;l = {\rm{0}}.{\rm{4}}$ ;$\left( {\rm{f}} \right)\;l = {\rm{0}}.{\rm{2}}$ ;$\left( {\rm{g}} \right)\;l = {\rm{0}}.1$ ;$\left( {\rm{h}} \right)\;l = {\rm{0}}.{\rm{08}}$ .图 10 定制相位型光栅的成像 (a) 相位型光栅未滤波明场强度图; (b) 整数阶螺旋相位片滤波成像边缘增强图; (c) 恢复相位图; (d) 恢复深度图, 横纵坐标数值为像素值, 每个像素代表0.325 μm, 总长度为332.8 μm
Fig. 10. Imaging of a custom phase gratinig: (a) The unfiltered bright field image of the phase grating; (b) the recorded integer-order spiral phase filtered edge enhancement image; (c) the recovered phase image; (d) the recovered depth image, the abscissa and ordinate values are pixel values, each pixel represents 0.325 μm, and the total length is 332.8 μm.
图 12 定制相位型光栅的成像 (a) 相位型光栅未滤波明场强度图; (b) 拓扑荷l取0.1时分数阶螺旋相位片滤波成像强度图; (c) 恢复相位图; (d) 恢复深度图(坐标同图10(d))
Fig. 12. Imaging of a custom phase grating: (a) The unfiltered phase grating bright field image; (b) the fractional spiral phase plate filtered image when the topological charge l is 0.1; (c) the recovered phase image; (d) the recovered depth image (the coordinates are the same as Fig. 10. (d)).
图 14 SH-SY5Y细胞成像 (a) SH-SY5Y细胞未滤波明场强度图; (b) 拓扑荷l取0.1时分数阶螺旋相位片滤波神经元细胞成像强度图; (c) 恢复相位图; (d) 定量相移图(坐标同图10(d))
Fig. 14. SH-SY5Y cell imaging: (a) The unfiltered SH-SY5Y cell bright field image; (b) the intensity image of the neuron cell using the fractional spiral phase filter when the topological charge l is 0.1; (c) the recoverd phase image; (d) the quantitative phase image (the coordinates are the same as Fig. 10. (d)).
表 1 三种分数拓扑荷下恢复相位图与原图的SSIM值
Table 1. The SSIM between the recovered phase image and the ground truth phase image for three fractional topological values.
拓扑荷取值 SSIM 1.0 0.1918 0.1 0.4394 0.08 0.2034 -
[1] Park Y, Depeursinge C, Popescu G 2018 Nat. Photonics 12 578Google Scholar
[2] Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165Google Scholar
[3] Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T, Depeursinge C 2005 Opt. Lett. 30 468Google Scholar
[4] Warger W C, DiMarzio C A 2009 Opt. Express 17 2400Google Scholar
[5] Zicha D, Dunn G A 1995 J. Microsc.-Oxford 179 11Google Scholar
[6] Popescu G, Deflores L P, Vaughan J C, Badizadegan K, Iwai H, Dasari R R, Feld M S 2004 Opt. Lett. 29 2503Google Scholar
[7] Popescu G, Ikeda T, Dasari R R, Feld M S 2006 Opt. Lett. 31 775Google Scholar
[8] Barty A, Nugent K A, Paganin D, Roberts A 1998 Opt. Lett. 23 817Google Scholar
[9] Wang Z, Millet L, Mir M, Ding H F, Unarunotai S, Rogers J, Gillette M U, Popescu G 2011 Opt. Express 19 1016Google Scholar
[10] Ding H F, Wang Z, Nguyen F, Boppart S A, Popescu G 2008 Phys. Rev. Lett. 101 238102Google Scholar
[11] Davis J A, McNamara D E, Cottrell D M, Campos J 2000 Opt. Lett. 25 99Google Scholar
[12] Crabtree K, Davis J A, Moreno I 2004 Appl. Opt. 43 1360Google Scholar
[13] Swartzlander G A 2001 Opt. Lett. 26 497Google Scholar
[14] 刘婷婷, 洪正平, 国承山 2008 光电子·激光 19 96Google Scholar
Liu T T, Hong Z P, Guo C S 2008 J. Optoelectron.·Laser 19 96Google Scholar
[15] Furhapter S, Jesacher A, Bernet S, Ritsch-Marte M 2005 Opt. Lett. 30 1953Google Scholar
[16] Wang J, Zhang W, Qi Q, Zheng S, Chen L 2015 Sci. Rep. 5 15826Google Scholar
[17] 顾忠政, 殷达, 聂守平, 冯少彤, 邢芳俭, 马骏, 袁操今 2019 红外与激光工程 48 0603015Google Scholar
Gu Z Z, Yin D, Nie S P, Feng S T, Xing F J, Ma J, Yuan C J 2019 Infrared Laser Eng. 48 0603015Google Scholar
[18] Situ G, Pedrini G, Osten W 2009 J. Opt. Soc. Am. A: 26 1788Google Scholar
[19] Hai N, Rosen J 2020 Opt. Lett. 45 5812Google Scholar
[20] Fienup J R 1982 Appl. Opt. 21 2758Google Scholar
[21] 周意 2017 硕士学位论文 (南京: 南京师范大学)
Zhou Y 2017 M. S. Thesis (Nanjing: Nanjing Normal University) (in Chinese)
[22] 黄妙娜, 黄佐华 2009 大学物理 28 6Google Scholar
Huang M N, Huang Z H 2009 Coll. Phys. 28 6Google Scholar
计量
- 文章访问数: 5564
- PDF下载量: 123
- 被引次数: 0