搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超级质子-质子对撞机束屏内气体密度演化规律研究

游志明 王洁 高勇 范佳锟 张静 胡耀程 王盛 许章炼 张琦

引用本文:
Citation:

超级质子-质子对撞机束屏内气体密度演化规律研究

游志明, 王洁, 高勇, 范佳锟, 张静, 胡耀程, 王盛, 许章炼, 张琦

Gas density evolution in beam screen of super proton-proton collider

You Zhi-Ming, Wang Jie, Gao Yong, Fan Jia-Kun, Zhang Jing, Hu Yao-Cheng, Wang Sheng, Xu Zhang-Lian, Zhang Qi
PDF
HTML
导出引用
  • 真空稳定性问题是粒子加速器设计中的关键问题之一, 对高能量的超级质子-质子对撞机而言更是如此. 质子束流在弯转区产生的同步辐射将会引起束屏壁面吸附的气体分子发生解吸和裂解, 从而引发真空不稳定问题, 导致束流品质和寿命的降低, 甚至引起束流的崩溃. 本文通过建立超级质子-质子对撞机束屏内的气体动态模型, 首次计算分析了束屏内气体密度随束流运行时间的演化规律, 并探究了将非蒸散型吸气剂涂层应用于束屏设计的优化方案. 结果表明: H2是束屏内的主要解吸气体, 其次是CO, 而CO2和CH4分子密度被分子裂解所限制. 束屏内最高气体密度出现在运行初期, 气体密度随时间呈下降趋势. 考虑到非蒸散型吸气剂涂层具有强化吸附降低解吸的特性, 讨论了不锈钢镀TiZrV涂层的束屏方案, 计算得到最高等效H2密度相比不锈钢镀铜降低接近两个数量级. 计算结果定性地反映束流运行过程中束屏内的动态真空演化情况, 可为真空系统设计提供参考.
    Vacuum stability is one of the key issues in the design of particle accelerators, especially high-energy super proton-proton colliders. The synchrotron radiation generated by proton beams in the bending area will desorb and crack the gas molecules which have adsorbed on the wall of the cold bore. The collision or scattering between the proton beam and the desorbed gas molecules may result in the degradation of the beam quality and the reduction of beam life time, and even the collapse of the beam. Usually a copper coated stainless steel beam screen is installed in the cold bore to intercept synchrotron radiation and reduce gas desorption. Based on the design parameters of the Super Proton-Proton Collider, in this paper the source of gas in the beam screen is analyzed. By considering the photon-induced desorption process and the gas molecule cracking process, the gas dynamic model in the beam screen is established. Moreover, the calculation of the evolution of the gas density in the beam screen with the beam operating time is carried out, and the effect of TiZrV non-evaporable getter film coated beam screen on the dynamic gas density is explored. The results show that H2 is the main desorption gas in the beam, the next is CO, while the molecular density of CO2 and CH4 are limited by molecular cracking. The maximum gas density in the beam screen appears at the initial stage of operation, and the gas density decreases with time going by. In order to strengthen adsorption and reduce desorption, TiZrV coated beam screen is discussed in this paper. In the case of TiZrV coated stainless steel beam screen, the maximum equivalent H2 density is about two order of magnitude lower than in the case of copper coated stainless steel beam screen. The non-evaporable getter(NEG) for beam screen material can significantly improve vacuum performance. The calculation results can qualitatively reflect the dynamic vacuum evolution in the beam screen during the beam operation and provide a reference for designing vacuum systems.
      通信作者: 王洁, wangjie1@xjtu.edu.cn ; 王盛, shengwang@xjtu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11905170)、中央高校基本科研业务费专项资金(批准号: XJH012019018)、陕西省自然科学基金青年科学基金(批准号: 2020JQ-001)、中国博士后科学基金(批准号: 2018M643667)、陕西省博士后科学基金(批准号: 2018BSHEDZZ05)、中国核工业集团有限公司领创科研项目、国家自然科学基金(批准号: 11775166)和广东省基础与应用基础研究基金(批准号: 2020B1515120035)
      Corresponding author: Wang Jie, wangjie1@xjtu.edu.cn ; Wang Sheng, shengwang@xjtu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11905170), the Fundamental Research Funds for the Central Universities (Grant No. XJH012019018), the Young Scientists Fund of the Natural Science Foundation of Shaanxi Province, China(Grant No. 2020JQ-001), the China Postdoctoral Science Foundation (Grant No. 2018M643667), the Shaanxi Provincial Postdoctoral Science Foundation, China (Grant No. 2018BSHEDZZ05), the Innovative Scientific Program of CNNC, the National Natural Science Foundation of China(Grant No. 11775166), and the Guangdong Provincial Basic and Applied Basic Research Foundation of China (Grant No. 2020B1515120035)
    [1]

    Aad G, Abajyan T, Abbott B, Abdallah J, Khalek S A, Abdelalim A A, Abdinov O, Aben R, Abi B, Abolins M 2012 Phys. Lett. B 716 1Google Scholar

    [2]

    Chatrchyan S, Khachatryan V, Sirunyan A M, Tumasyan A, Adam W, Aguilo E, Bergauer T, Dragicevic M, Erö J, Fabjan C 2012 Phys. Lett. B 716 30Google Scholar

    [3]

    Chatrchyan S, Khachatryan V, Sirunyan A, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, Fabjan C, Friedl M 2013 J. High Energy Phys. 2013 81Google Scholar

    [4]

    Behnke T, Brau J E, Foster B, Fuster J, Harrison M, Paterson J M, Peskin M, Stanitzki M, Walker N, Yamamoto H 2013 arXiv: 1306.6327 [physics.acc-ph]

    [5]

    Mangano M, Azzi P, Benedikt M, Blondel A, Britzger D, Dainese A 2019 Eur. Phys. J. C 79 474Google Scholar

    [6]

    CEPC Study Group 2018 arXiv: 1809.00285 [ap-ph]

    [7]

    FCC collaboration 2019 Eur. Phys. J. Spec. Top. 228 755Google Scholar

    [8]

    Brüning O S, Collier P, Lebrun P, Myers S, Ostojic R, Poole J, Proudlock P 2004 LHC Design Report (Geneva, CERN, CERN-2004-003-V-1 [R])

    [9]

    Bellafont I, Morrone M, Mether L, Fernández J, Kersevan R, Garion C, Baglin V, Chiggiato P, Pérez F 2020 Phys. Rev. Accel. Beams 23 033201Google Scholar

    [10]

    Anashin V V, Malyshev O B, Calder R, Gröbner O, Mathewson A G 1997 Vacuum 48 785Google Scholar

    [11]

    Malyshev O B, Anashin V V, Collins I, Gröbner O 1999 Photon Stimulated Desorption Processes including Cracking of Molecules in a Vacuum Chamber at Cryogenic Temperatures (Geneva, CERN, VACUUM-TECHNICAL-NOTE-99-13 [R])

    [12]

    Baglin V, Tavian L, Lebrun P, van Weelderen R 2013 Cryogenic Beam Screens for High-energy Particle Accelerators (Geneva, CERN, CERN-ATS-2013-006 [R])

    [13]

    Mathewson A G, Gröbner O, Strubin P, Marin P, Souchet R 1991 AIP Conf. Proc. 236 313Google Scholar

    [14]

    Foerster C, Halama H, Lanni C 1990 J. Vac. Sci. Technol., A 8 2856Google Scholar

    [15]

    Hseuh H, Cui X 1989 J. Vac. Sci. Technol., A 7 2418Google Scholar

    [16]

    Gröbner O 1999 CAS-CERN Accelerator School: Vacuum Technology Snekersten, Denmark, May 28–Jun 3, 1999 p127

    [17]

    Baglin V, Collins I R, Gröbner O, Grünhagel C, Jenninger B 2002 Vacuum 67 421Google Scholar

    [18]

    Malyshev O B 2012 Vacuum 86 1669Google Scholar

    [19]

    Bellafont I, Mether L, Kersevan R, Malyshev O B, Baglin V, Chiggiato P, Pérez F 2020 Phys. Rev. Accel. Beams 23 043201Google Scholar

    [20]

    Perez Rodriguez F J, Garion C, Chiggiato P, Fernandez Topham J 2017 Preliminary Beam Screen and Beam Pipe Engineering Design: Deliverable D4.3 (Geneva, CERN, CERN-ACC-2019-0023 [R])

    [21]

    Gan P P, Fu Q, Li H P, Liu Y D, Lu Y R, Tang J Y, Xu Q J, Zhu K 2017 the 8th International Particle Accelerator Conference (IPAC'17) Copenhagen, Denmark, May 14−19, 2017 p2974

    [22]

    范佳锟, 王洁, 高勇, 游志明, 严涛, 张静, 王盛, 许章炼 2019 原子能科学技术 53 1670Google Scholar

    Fan J K, Wang J, Gao Y, You Z M, Yan T, Zhang J, Wang S, Xu Z L 2019 Atom. Energ. Sci. Technol. 53 1670Google Scholar

    [23]

    Anashin V V, Malyshev O B, Collins I R, Gröbner O 2001 Vacuum 60 15Google Scholar

    [24]

    Collins I R, Malyshev O 2001 Dynamic Gas Density in the LHC Interaction Regions 1&5 and 2&8 for Optics version 6.3 (Geneva, CERN, LHC-PROJECT-NOTE-274 [R])

    [25]

    Anashin V V, Malyshev O B, Osipov V N, Maslennikov I L, Turner W C 1994 J. Vac. Sci. Technol., A 12 2917Google Scholar

    [26]

    Malyshev O B 2020 Vacuum in Particle Accelerators: Modelling, Design and Operation of Beam Vacuum Systems (USA: John Wiley & Sons) p96

    [27]

    Billy J C, Bojon J P, Henrist B, Hilleret N, Jimenez M J, Laugier I, Strubin P 2001 Vacuum 60 183Google Scholar

    [28]

    Andritschky M, Gröbner O, Mathewson A, Schumann F, Strubin P, Souchet R 1988 Vacuum 38 933Google Scholar

    [29]

    Gröbner O, Calder R 1973 IEEE Trans. Nucl. Sci. 20 760Google Scholar

    [30]

    Malyshev O B, Rossi A 1999 Ion desorption stability in the LHC (Geneva, CERN, VACUUM-TECHNICAL-NOTE-99-20 [R])

    [31]

    Anashin V V, Malyshev O B, Calder R, Gröbner O, Mathewson A G 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 405 258Google Scholar

    [32]

    Bellafont I, Mether L, Kersevan R 2019 the 10th International Particle Accelerator Conference (IPAC'19) Melbourne, Australia, May 19−24, 2019 TUPMP038

    [33]

    Baglin V, Grünhagel C, Collins I R, Gröbner O, Jenninger B 2002 Synchrotron Radiation Studies of the LHC Dipole Beam Screen with COLDEX (Geneva, CERN, LHC-Project-Report-584 [R])

    [34]

    Baglin V, Collins I R, Grünhagel C, Gröbner O, Jenninger B 2000 First Results from COLDEX Applicable to the LHC Cryogenic Vacuum System (Geneva, CERN, LHC-Project-Report-435 [R])

    [35]

    Baglin V, Bregliozzi G, Lanza G, Jimenez J M 2011 Synchrotron Radiation in the LHC Vacuum System (Geneva, CERN, CERN-ATS-2011-245 [R])

    [36]

    Rathjen C 2002 Mechanical Behaviour of Vacuum Chambers and Beam Screens under Quench Conditions in Dipole and Quadrupole Fields (Geneva, CERN, LHC-Project-Report-582 [R])

    [37]

    Malyshev O B, Scott D, Bailey I, Barber D, Baynham E, Bradshaw T, Brummitt A, Carr S, Clarke J, Cooke P 2007 J. Vac. Sci. Technol., A 25 791Google Scholar

    [38]

    Calder R, Gröbner O, Mathewson A G, Anashin V, Dranichnikov A, Malyshev O B 1996 J. Vac. Sci. Technol., A 14 2618Google Scholar

    [39]

    Spallino L, Angelucci M, Larciprete R, Cimino R 2019 Appl. Phys. Lett. 114 153103Google Scholar

    [40]

    Anashin V V, Derevyankin G, Dudnikov V, Malyshev O B, Osipov V, Foerster C, Jacobsen F, Ruckman M, Strongin M, Kersevan R 1994 J. Vac. Sci. Technol., A 12 1663Google Scholar

    [41]

    La Francesca E, Angelucci M, Liedl A, Spallino L, Gonzalez L A, Bellafont I, Siewert F, Sertsu M G, Sokolov A, Schäfers F, Cimino R 2020 Phys. Rev. Accel. Beams 23 083101Google Scholar

    [42]

    Alamgir M K, Ikram M, Mughal G H, Asghar G, ur Rehman S, Qaseem S, Kamran M, Ullah A, Khan S 2019 J. Korean Phys. Soc. 75 373Google Scholar

    [43]

    Anashin V V, Collins I R, Dostovalov R V, Fedorov N V, Krasnov A A, Malyshev O B, Ruzinov V L 2004 Vacuum 75 155Google Scholar

    [44]

    Širvinskaitė R, Malyshev O B, Valizadeh R, Hannah A, Cropper M D 2020 Vacuum 179 109510Google Scholar

    [45]

    Ady M 2016 Monte Carlo Simulations of ultra High Vacuum and Synchrotron Radiation for Particle Accelerators (Lausanne, EPFL, BEL-EPFL-Thesis7063-7 [R])

    [46]

    Malyshev O B, Smith A, Valizadeh R, Hannah A 2010 J. Vac. Sci. Technol., A 28 1215Google Scholar

    [47]

    Chiggiato P, Costa Pinto P 2006 Thin Solid Films 515 382Google Scholar

  • 图 1  COLDEX束屏内气体分压的实验测试结果与计算结果对比 (a) 实验测试结果; (b)计算结果

    Fig. 1.  Comparisons of experimental results and calculated results of gas partial pressure in COLDEX beam screen: (a) Experimental test results; (b) calculated results.

    图 2  FCC-hh束屏设计方案示意图[9]

    Fig. 2.  FCC-hh beam screen design schematic diagram.

    图 3  一次解吸产额关于临界光子能量的函数[37]

    Fig. 3.  Primary photon desorption yield as function of critical photon energy[37].

    图 4  镀铜涂层的不锈钢束屏内 (a) 气体体密度n; (b) 一次解吸产额 η; (c) 二次解吸产额$\eta '$随光子累积剂量D演化的规律

    Fig. 4.  (a) The gas density n, (b) primary photodesorption yieldη and (c) secondary photodesorption yield $\eta '$ as function of accumulated photon dose D in a copper coated stainless steel beam screen.

    图 5  镀TiZrV涂层的不锈钢束屏内 (a) 气体体密度n; (b) 一次解吸产额η; (c) 二次解吸产额$\eta '$随光子累积剂量D演化的规律

    Fig. 5.  (a) The gas density n, (b) primary photodesorption yield η and (c) secondary photodesorption yield $\eta '$ as function of accumulated photon dose D in a TiZrV coated stainless steel beam screen.

    表 1  SPPC, LHC与FCC-hh主要参数对比

    Table 1.  Main parameters of SPPC, LHC and FCC-hh.

    主要参数LHC[8]FCC-hh[7,9]SPPC[6]
    质心系能量/TeV1410075
    环周长/km28100100
    二极磁场强度 B/T8.31612
    束流电流 I/mA580500730
    SR线功率密度 P/(W·m–1)0.2235.412.8
    临界光子能量 $ {\varepsilon }_{\rm{c}} $/eV4442691814
    光子通量密度 Γ/(m-1·s–1)10171.7 × 10171.8 × 1017
    下载: 导出CSV

    表 2  二次解吸和裂解参数的上限值[11]

    Table 2.  Maximal values of secondary desorption and cracking parameters[11].

    气体种类H2CH4COCO2O2
    $\eta ' _{ {\rm{r} }\;{\rm{max} } }$0.550.40.040.450.04
    $\eta '_{\rm{max} }$0.550.040.040.040.04
    $ {\kappa }_{\rm{max}} $$ {\kappa }_{{{\rm{C}}{\rm{H}}}_{4}\stackrel{}{\to }2{{\rm{H}}}_{2}+{\rm{C}}}\approx 0.36 $$ {\kappa }_{{{\rm{C}}{\rm{O}}}_{2}\stackrel{}{\to }{\rm{C}}{\rm{O}}+{\rm{O}}}\approx 0.41 $
    $ {\chi }_{\rm{max}} $$ {\chi }_{{{\rm{H}}}_{2}}\left({s}_{{{\rm{C}}{\rm{H}}}_{4}}\right)\approx 0.72 $$ {\rm{\chi }}_{{\rm{C}}{\rm{O}}}\left({s}_{{{\rm{C}}{\rm{O}}}_{2}}+{s}_{{{\rm{C}}{\rm{H}}}_{4}}\right)\approx 0.41+0.36 $$ {\chi }_{{{\rm{O}}}_{2}}\left({s}_{{{\rm{C}}{\rm{O}}}_{2}}\right)\approx 0.2 $
    下载: 导出CSV

    表 3  LHC型铜样品、锯齿形铜样品及激光刻蚀铜样品的光子反射率及光电子产额[41]

    Table 3.  Photon reflectivity and photoelectron yield of LHC type samples, sawtooth copper samples and laser treated copper samples[41]

    样品类型反射率R光电子产额${Y_{{\rm{pe}}}}$
    LHC型铜样品(LHC)0.750.25
    锯齿形铜样品(ST)0.070.08
    激光刻蚀铜样品(LASE)0.0060.09
    下载: 导出CSV
    术语
    A (cm2) 真空腔室轴向单位长度壁面面积
    $u = {A_{\rm{c}}}{D_{\rm{k}}}$(cm4/s) 轴向单位长度真空流导
    ${A_{\rm{c}}}$(cm2) 真空腔室横截面积
    V (cm3) 真空腔室体积
    $C = \rho {k_{\rm{t}}}S$ (cm3/s) 束屏孔的抽气速率
    v (cm/s) 平均分子速率
    ${D_{\rm{k}}}$(cm2/s) 努森扩散系数
    α 分子在壁面的黏附系数
    ${k_{\rm{t}}}$ 束屏开孔率(束屏抽气孔面积与束屏表面积之比)
    Γ (photons/(s·m)) 光子通量密度
    n (molecules/cm3) 气体体密度
    η (molecules/photon) 一次解吸产额
    $S = Av/4$(cm3/s) 壁面理想抽气速率
    $\eta '$(molecules/photon) 二次解吸产额
    s (molecules/cm2) 气体表面密度
    ρ 束屏孔的克劳辛系数
    下载: 导出CSV
    Baidu
  • [1]

    Aad G, Abajyan T, Abbott B, Abdallah J, Khalek S A, Abdelalim A A, Abdinov O, Aben R, Abi B, Abolins M 2012 Phys. Lett. B 716 1Google Scholar

    [2]

    Chatrchyan S, Khachatryan V, Sirunyan A M, Tumasyan A, Adam W, Aguilo E, Bergauer T, Dragicevic M, Erö J, Fabjan C 2012 Phys. Lett. B 716 30Google Scholar

    [3]

    Chatrchyan S, Khachatryan V, Sirunyan A, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, Fabjan C, Friedl M 2013 J. High Energy Phys. 2013 81Google Scholar

    [4]

    Behnke T, Brau J E, Foster B, Fuster J, Harrison M, Paterson J M, Peskin M, Stanitzki M, Walker N, Yamamoto H 2013 arXiv: 1306.6327 [physics.acc-ph]

    [5]

    Mangano M, Azzi P, Benedikt M, Blondel A, Britzger D, Dainese A 2019 Eur. Phys. J. C 79 474Google Scholar

    [6]

    CEPC Study Group 2018 arXiv: 1809.00285 [ap-ph]

    [7]

    FCC collaboration 2019 Eur. Phys. J. Spec. Top. 228 755Google Scholar

    [8]

    Brüning O S, Collier P, Lebrun P, Myers S, Ostojic R, Poole J, Proudlock P 2004 LHC Design Report (Geneva, CERN, CERN-2004-003-V-1 [R])

    [9]

    Bellafont I, Morrone M, Mether L, Fernández J, Kersevan R, Garion C, Baglin V, Chiggiato P, Pérez F 2020 Phys. Rev. Accel. Beams 23 033201Google Scholar

    [10]

    Anashin V V, Malyshev O B, Calder R, Gröbner O, Mathewson A G 1997 Vacuum 48 785Google Scholar

    [11]

    Malyshev O B, Anashin V V, Collins I, Gröbner O 1999 Photon Stimulated Desorption Processes including Cracking of Molecules in a Vacuum Chamber at Cryogenic Temperatures (Geneva, CERN, VACUUM-TECHNICAL-NOTE-99-13 [R])

    [12]

    Baglin V, Tavian L, Lebrun P, van Weelderen R 2013 Cryogenic Beam Screens for High-energy Particle Accelerators (Geneva, CERN, CERN-ATS-2013-006 [R])

    [13]

    Mathewson A G, Gröbner O, Strubin P, Marin P, Souchet R 1991 AIP Conf. Proc. 236 313Google Scholar

    [14]

    Foerster C, Halama H, Lanni C 1990 J. Vac. Sci. Technol., A 8 2856Google Scholar

    [15]

    Hseuh H, Cui X 1989 J. Vac. Sci. Technol., A 7 2418Google Scholar

    [16]

    Gröbner O 1999 CAS-CERN Accelerator School: Vacuum Technology Snekersten, Denmark, May 28–Jun 3, 1999 p127

    [17]

    Baglin V, Collins I R, Gröbner O, Grünhagel C, Jenninger B 2002 Vacuum 67 421Google Scholar

    [18]

    Malyshev O B 2012 Vacuum 86 1669Google Scholar

    [19]

    Bellafont I, Mether L, Kersevan R, Malyshev O B, Baglin V, Chiggiato P, Pérez F 2020 Phys. Rev. Accel. Beams 23 043201Google Scholar

    [20]

    Perez Rodriguez F J, Garion C, Chiggiato P, Fernandez Topham J 2017 Preliminary Beam Screen and Beam Pipe Engineering Design: Deliverable D4.3 (Geneva, CERN, CERN-ACC-2019-0023 [R])

    [21]

    Gan P P, Fu Q, Li H P, Liu Y D, Lu Y R, Tang J Y, Xu Q J, Zhu K 2017 the 8th International Particle Accelerator Conference (IPAC'17) Copenhagen, Denmark, May 14−19, 2017 p2974

    [22]

    范佳锟, 王洁, 高勇, 游志明, 严涛, 张静, 王盛, 许章炼 2019 原子能科学技术 53 1670Google Scholar

    Fan J K, Wang J, Gao Y, You Z M, Yan T, Zhang J, Wang S, Xu Z L 2019 Atom. Energ. Sci. Technol. 53 1670Google Scholar

    [23]

    Anashin V V, Malyshev O B, Collins I R, Gröbner O 2001 Vacuum 60 15Google Scholar

    [24]

    Collins I R, Malyshev O 2001 Dynamic Gas Density in the LHC Interaction Regions 1&5 and 2&8 for Optics version 6.3 (Geneva, CERN, LHC-PROJECT-NOTE-274 [R])

    [25]

    Anashin V V, Malyshev O B, Osipov V N, Maslennikov I L, Turner W C 1994 J. Vac. Sci. Technol., A 12 2917Google Scholar

    [26]

    Malyshev O B 2020 Vacuum in Particle Accelerators: Modelling, Design and Operation of Beam Vacuum Systems (USA: John Wiley & Sons) p96

    [27]

    Billy J C, Bojon J P, Henrist B, Hilleret N, Jimenez M J, Laugier I, Strubin P 2001 Vacuum 60 183Google Scholar

    [28]

    Andritschky M, Gröbner O, Mathewson A, Schumann F, Strubin P, Souchet R 1988 Vacuum 38 933Google Scholar

    [29]

    Gröbner O, Calder R 1973 IEEE Trans. Nucl. Sci. 20 760Google Scholar

    [30]

    Malyshev O B, Rossi A 1999 Ion desorption stability in the LHC (Geneva, CERN, VACUUM-TECHNICAL-NOTE-99-20 [R])

    [31]

    Anashin V V, Malyshev O B, Calder R, Gröbner O, Mathewson A G 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 405 258Google Scholar

    [32]

    Bellafont I, Mether L, Kersevan R 2019 the 10th International Particle Accelerator Conference (IPAC'19) Melbourne, Australia, May 19−24, 2019 TUPMP038

    [33]

    Baglin V, Grünhagel C, Collins I R, Gröbner O, Jenninger B 2002 Synchrotron Radiation Studies of the LHC Dipole Beam Screen with COLDEX (Geneva, CERN, LHC-Project-Report-584 [R])

    [34]

    Baglin V, Collins I R, Grünhagel C, Gröbner O, Jenninger B 2000 First Results from COLDEX Applicable to the LHC Cryogenic Vacuum System (Geneva, CERN, LHC-Project-Report-435 [R])

    [35]

    Baglin V, Bregliozzi G, Lanza G, Jimenez J M 2011 Synchrotron Radiation in the LHC Vacuum System (Geneva, CERN, CERN-ATS-2011-245 [R])

    [36]

    Rathjen C 2002 Mechanical Behaviour of Vacuum Chambers and Beam Screens under Quench Conditions in Dipole and Quadrupole Fields (Geneva, CERN, LHC-Project-Report-582 [R])

    [37]

    Malyshev O B, Scott D, Bailey I, Barber D, Baynham E, Bradshaw T, Brummitt A, Carr S, Clarke J, Cooke P 2007 J. Vac. Sci. Technol., A 25 791Google Scholar

    [38]

    Calder R, Gröbner O, Mathewson A G, Anashin V, Dranichnikov A, Malyshev O B 1996 J. Vac. Sci. Technol., A 14 2618Google Scholar

    [39]

    Spallino L, Angelucci M, Larciprete R, Cimino R 2019 Appl. Phys. Lett. 114 153103Google Scholar

    [40]

    Anashin V V, Derevyankin G, Dudnikov V, Malyshev O B, Osipov V, Foerster C, Jacobsen F, Ruckman M, Strongin M, Kersevan R 1994 J. Vac. Sci. Technol., A 12 1663Google Scholar

    [41]

    La Francesca E, Angelucci M, Liedl A, Spallino L, Gonzalez L A, Bellafont I, Siewert F, Sertsu M G, Sokolov A, Schäfers F, Cimino R 2020 Phys. Rev. Accel. Beams 23 083101Google Scholar

    [42]

    Alamgir M K, Ikram M, Mughal G H, Asghar G, ur Rehman S, Qaseem S, Kamran M, Ullah A, Khan S 2019 J. Korean Phys. Soc. 75 373Google Scholar

    [43]

    Anashin V V, Collins I R, Dostovalov R V, Fedorov N V, Krasnov A A, Malyshev O B, Ruzinov V L 2004 Vacuum 75 155Google Scholar

    [44]

    Širvinskaitė R, Malyshev O B, Valizadeh R, Hannah A, Cropper M D 2020 Vacuum 179 109510Google Scholar

    [45]

    Ady M 2016 Monte Carlo Simulations of ultra High Vacuum and Synchrotron Radiation for Particle Accelerators (Lausanne, EPFL, BEL-EPFL-Thesis7063-7 [R])

    [46]

    Malyshev O B, Smith A, Valizadeh R, Hannah A 2010 J. Vac. Sci. Technol., A 28 1215Google Scholar

    [47]

    Chiggiato P, Costa Pinto P 2006 Thin Solid Films 515 382Google Scholar

  • [1] 万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, ReinholdSchuch, 张红强. 基于玻璃毛细管的大气环境MeV质子微束的产生与测量.  , 2024, 73(10): 104101. doi: 10.7498/aps.73.20240301
    [2] 王辉林, 廖艳林, 赵艳, 章文, 谌正艮. 基于多激光束驱动准单能高能质子束模拟研究.  , 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [3] 何民卿, 张华, 李明强, 彭力, 周沧涛. 快点火中质子的能量沉积和神光II升级装置上的质子束的产生.  , 2023, 72(9): 095201. doi: 10.7498/aps.72.20222005
    [4] 黄华, 李江涛, 王倩男, 孟令彪, 齐伟, 洪伟, 张智猛, 张博, 贺书凯, 崔波, 伍艺通, 张航, 吉亮亮, 周维民, 胡建波. 星光III装置上材料动态压缩过程的激光质子照相实验研究.  , 2022, 71(19): 195202. doi: 10.7498/aps.71.20220919
    [5] 王季康, 李华, 彭宇飞, 李晓燕, 张新宇. 质子交换膜燃料电池多时间尺度下的动态特性.  , 2022, 71(15): 158802. doi: 10.7498/aps.71.20212015
    [6] 朱军高, 卢海洋, 赵媛, 赖美福, 古永力, 徐世祥, 周沧涛. 面向激光驱动质子束应用的弱聚焦磁场束线设计研究.  , 2022, 71(19): 194102. doi: 10.7498/aps.71.20220599
    [7] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案.  , 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [8] 范佳锟, 王洁, 高勇, 游志明, 王盛, 张静, 胡耀程, 许章炼, 王斌. 超级质子-质子对撞机中束流热屏的热-结构耦合模拟分析.  , 2021, 70(1): 012901. doi: 10.7498/aps.70.20200830
    [9] 李昂, 余金清, 陈玉清, 颜学庆. 光子对撞机产生正负电子对的数值方法.  , 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [10] 白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄. 20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程.  , 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [11] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应.  , 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [12] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应.  , 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [13] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究.  , 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [14] 滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋. 激光加速质子束对电磁孤立子的照相模拟研究.  , 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [15] 谢朝, 邹炼, 侯氢, 郑霞. 质子束治疗中非均匀组织的等效水厚度修正研究.  , 2013, 62(6): 068701. doi: 10.7498/aps.62.068701
    [16] 余金清, 周维民, 金晓林, 李斌, 赵宗清, 曹磊峰, 董克攻, 刘东晓, 范伟, 魏来, 闫永宏, 钱凤, 杨祖华, 洪伟, 谷渝秋. 鞘场加速机理中质子束的特性与其初始尺寸的关系.  , 2012, 61(17): 175202. doi: 10.7498/aps.61.175202
    [17] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究.  , 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [18] 鞠志萍, 曹午飞, 刘小伟. 蒙特卡罗模拟单阻止柱双散射体质子束流扩展方法.  , 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [19] 黄金书, 罗鹏晖, 鲁公儒. 关于光子对撞机上底夸克对产生的研究.  , 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [20] 冯勋立, 何林生, 柳永亮. 压缩真空态光场中两能级原子的双光子荧光的反聚束效应.  , 1997, 46(9): 1718-1724. doi: 10.7498/aps.46.1718
计量
  • 文章访问数:  4247
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 修回日期:  2021-04-12
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回
Baidu
map