搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑磷各向异性拉曼光谱表征及电学特性

丁燕 钟粤华 郭俊青 卢毅 罗昊宇 沈云 邓晓华

引用本文:
Citation:

黑磷各向异性拉曼光谱表征及电学特性

丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华

Anisotropic Raman characterization and electrical properties of black phosphorus

Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua
PDF
HTML
导出引用
  • 采用机械剥离法制备出层状黑磷, 通过微纳加工制备0°—360°四对对称电极并以黑磷作为沟道材料的背栅型场效应晶体管, 对层状黑磷的拉曼光谱及其场效晶体管的电学输运特性进行了研究. 偏振拉曼图谱结果表明, 黑磷的3个特征峰强度随偏振角改变呈现180°周期变化; 不同角度电极源漏电流表明, 黑磷在0° (180°)扶手椅方向附近呈现最大源漏电流, 均表现出黑磷各向异性特性. 另外, 不同电极角度栅压-源漏电流转移特性曲线表明其在45° (225°)和90° (270°)方向呈现微弱双极性, 在0° (180°)和135° (315°)方向呈现空穴型输运特性.
    As a new family member of two-dimensional materials, black phosphorus has attracted much attention due to its infrared band gap and strongly anisotropic properties, bringing new concepts and applications in different fields. In characterizing black phosphorus, optical method and electrical method are typically used to obtain structural information and fundamental properties in terms of behaviors of electrons. So far, more studies are still needed to understand in depth the physical principle and facilitate applications. In this paper, multilayered black phosphorus flakes are synthesized via mechanical exfoliation from the bulk crystal, and field-effect transistors based on few-layer black phosphorus are fabricated by micro-nano fabrication technology, which owns 0°–360° four pairs of symmetrical electrodes. We experimentally obtain the characteristics of Raman modes ${\rm{A}}_{\rm{g}}^{\rm{1}}$, $ {\rm B_{2g}} $, and ${\rm{A}}_{\rm{g}}^2$ in parallel (XX) and vertical (XY) polarization configuration. Furthermore, the angle-dependent source-drain current angle is measured through a BP field-effect transistor. The Raman spectrum results demonstrate that three characteristic peaks are located at 361, 439 and 467 cm–1 in a range of 200–500 cm–1, corresponding to the vibration modes of ${\rm{A}}_{\rm{g}}^{\rm{1}}$, $ {\rm B_{2g}}, $ and ${\rm{A}}_{\rm{g}}^2$, respectively. The fitting experimental data of polarization-dependent Raman spectra also show that the intensity for each of the three characteristic peaks has a 180° periodic variation in a parallel polarization configuration and also in a vertical polarization configuration. The maximum Raman intensity of Ag is along the AC direction, while that of B2g is along the ZZ direction. On the other hand, the electric transport curves illustrate that the largest source leakage current can be obtained near 0° (180°) armchair direction. Such results indicate the anisotropy of black phosphorus. Furthermore, transfer curves with different electrode angles show that the weak bipolarity of black phosphorus at 45° (225°), 90° (270°), and p-type performance at 0° (180°), 135° (315°) can be offered, respectively. This work is conducive to studying the properties and practical applications of devices based on black phosphorus.
      通信作者: 沈云, shenyun@ncu.edu.cn ; 邓晓华, Dengxiaohua0@gmail.com
    • 基金项目: 国家自然科学基金 (批准号: 61865009, 61927813)资助的课题
      Corresponding author: Shen Yun, shenyun@ncu.edu.cn ; Deng Xiao-Hua, Dengxiaohua0@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61865009, 61927813)
    [1]

    Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J 2014 Sci. Rep. 4 6452Google Scholar

    [2]

    Qin G, Yan Q, Qin Z, Yue S, Cui H, Zheng Q, Su G 2014 Sci. Rep. 4 6946Google Scholar

    [3]

    Fei R X, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [4]

    Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y Q, Zhang Y W 2016 Nanotechnology 27 065708Google Scholar

    [5]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phy. Rev. B 89 235319Google Scholar

    [6]

    Warschauer D 1963 J. Appl. Phys. 34 1853Google Scholar

    [7]

    Mao N, Tang J, Xie L, Wu J X, Han B, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300Google Scholar

    [8]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [9]

    Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [10]

    Li L K, Yu Y J, Ye G J, Ge Q D, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [11]

    Mittendorff M, Suess R J, Leong E, Murphy T E 2017 Nano Lett. 17 5811Google Scholar

    [12]

    Zhang G, Huang S, Chaves A, Song C, Ozcelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071Google Scholar

    [13]

    Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648Google Scholar

    [14]

    Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [15]

    Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097Google Scholar

    [16]

    Zhu W, Liang L, Roberts R H, Lin J, Akinwande D 2018 ACS Nano 12 12512Google Scholar

    [17]

    Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H D, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21Google Scholar

    [18]

    Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106Google Scholar

    [19]

    Island J O, Steele G A, Zant H S J, Castellanosgomez A 2014 2D Mater. 2 011002Google Scholar

    [20]

    Huang S, Ling X 2017 Small 13 1700823Google Scholar

    [21]

    孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒 2020 69 167803Google Scholar

    Meng D, Cong X, Len Y Z, Lin M L, Wang J H, Yu B L, Liu X F, Yu X F, Tan P H 2020 Acta Phys. Sin. 69 167803Google Scholar

    [22]

    Pant A, Torun E, Chen B, Bhat S, Fan X, Wu K, Wright D P, Peeters F M, Soignard E, Sahin H, Tongav S 2016 Nanoscale 8 16259Google Scholar

    [23]

    Wang X, Jones A M, Seyler K L, Vv T, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F 2015 Nat. Nanotechnol. 10 517Google Scholar

    [24]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS nano 8 4033Google Scholar

  • 图 1  黑磷 (a) 晶体结构; (b) 光学显微图; (c) 拉曼图谱

    Fig. 1.  Black phosphorus: (a) Crystal structure; (b) microscopic image; (c) Raman spectrum.

    图 2  在平行(XX)和垂直(XY)极化配置下, 黑磷${\rm{A}}_{\rm{g}}^{\rm{1}}$, B2g${\rm{A}}_{\rm{g}}^2$拉曼模的偏振特性(点为实验数据, 红色曲线对应数据的拟合)

    Fig. 2.  Polarization characteristics of Raman modes ${\rm{A}}_{\rm{g}}^{\rm{1}}$, B2g, and ${\rm{A}}_{\rm{g}}^2$ in parallel (XX) and vertical (XY) polarization configurations. Dots and red curves correspond to experiment and fitting data, respectively.

    图 3  BP-FETs (a)结构示意图; (b)光学显微图

    Fig. 3.  (a) Schematic and (b) microscopic image of BP-FET.

    图 4  (a) 角度依赖性的源漏电流; (b) 角度依赖性的${\rm{A}}_{\rm{g}}^2$振动模式拉曼强度

    Fig. 4.  Dependence of (a) source-drain current and (b) ${\rm{A}}_{\rm{g}}^2$ Raman intensity on angular, respectively.

    图 5  不同角度下的转移特性曲线

    Fig. 5.  Transfer curves at different degrees.

    Baidu
  • [1]

    Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J 2014 Sci. Rep. 4 6452Google Scholar

    [2]

    Qin G, Yan Q, Qin Z, Yue S, Cui H, Zheng Q, Su G 2014 Sci. Rep. 4 6946Google Scholar

    [3]

    Fei R X, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [4]

    Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y Q, Zhang Y W 2016 Nanotechnology 27 065708Google Scholar

    [5]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phy. Rev. B 89 235319Google Scholar

    [6]

    Warschauer D 1963 J. Appl. Phys. 34 1853Google Scholar

    [7]

    Mao N, Tang J, Xie L, Wu J X, Han B, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300Google Scholar

    [8]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [9]

    Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [10]

    Li L K, Yu Y J, Ye G J, Ge Q D, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [11]

    Mittendorff M, Suess R J, Leong E, Murphy T E 2017 Nano Lett. 17 5811Google Scholar

    [12]

    Zhang G, Huang S, Chaves A, Song C, Ozcelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071Google Scholar

    [13]

    Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648Google Scholar

    [14]

    Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [15]

    Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097Google Scholar

    [16]

    Zhu W, Liang L, Roberts R H, Lin J, Akinwande D 2018 ACS Nano 12 12512Google Scholar

    [17]

    Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H D, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21Google Scholar

    [18]

    Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106Google Scholar

    [19]

    Island J O, Steele G A, Zant H S J, Castellanosgomez A 2014 2D Mater. 2 011002Google Scholar

    [20]

    Huang S, Ling X 2017 Small 13 1700823Google Scholar

    [21]

    孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒 2020 69 167803Google Scholar

    Meng D, Cong X, Len Y Z, Lin M L, Wang J H, Yu B L, Liu X F, Yu X F, Tan P H 2020 Acta Phys. Sin. 69 167803Google Scholar

    [22]

    Pant A, Torun E, Chen B, Bhat S, Fan X, Wu K, Wright D P, Peeters F M, Soignard E, Sahin H, Tongav S 2016 Nanoscale 8 16259Google Scholar

    [23]

    Wang X, Jones A M, Seyler K L, Vv T, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F 2015 Nat. Nanotechnol. 10 517Google Scholar

    [24]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS nano 8 4033Google Scholar

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱.  , 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [4] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性.  , 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [5] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器.  , 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [6] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型.  , 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [7] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射.  , 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [8] 张忠强, 刘汉伦, 范晋伟, 丁建宁, 程广贵. 黑磷纳米通道内压力驱动流体流动特性.  , 2019, 68(17): 170202. doi: 10.7498/aps.68.20190531
    [9] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [10] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性.  , 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [11] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究.  , 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [12] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性.  , 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [13] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性.  , 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [14] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性.  , 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [15] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究.  , 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [16] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量.  , 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [17] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究.  , 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [18] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究.  , 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [19] 庄飞, 肖三水, 何江平, 何赛灵. 二维正方各向异性碲圆柱光子晶体完全禁带中缺陷模的FDTD计算分析和设计.  , 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
    [20] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体.  , 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
计量
  • 文章访问数:  13890
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 修回日期:  2020-09-02
  • 上网日期:  2021-01-24
  • 刊出日期:  2021-02-05

/

返回文章
返回
Baidu
map