搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维层间滑移铁电研究进展

钟婷婷 吴梦昊

引用本文:
Citation:

二维层间滑移铁电研究进展

钟婷婷, 吴梦昊

Research progress of two-dimensional interlayer-sliding ferroelectricity

Zhong Ting-Ting, Wu Meng-Hao
PDF
HTML
导出引用
  • 近年来有一系列二维范德瓦耳斯材料铁电性被实验证实, 层间滑移铁电体是其中重要的一类, 该机制是传统铁电所没有, 而很多二维材料普遍具有的. 本文回顾了相关研究, 介绍了这种铁电的起源: 不少二维材料双层中上下两层并不对等, 造成净层间垂直电荷转移, 而层间滑移使该垂直铁电极化得以翻转. 这种独特的滑移铁电可广泛存在于范德瓦耳斯双层、多层乃至体相结构中, 层间滑移势垒较传统铁电低几个数量级, 有望极大节约铁电翻转所需的能量. 目前这种滑移铁电机制已在WTe2β-InSe双层/多层体系得到实验证实, 不少预期极化更高的滑移铁电体系(如BN)也有望在近期实现.
    In recent years, the existence of ferroelectricity in a series of two-dimensional van der Waals materials has been experimentally confirmed, in which the ferroelectricity induced by interlayer sliding is an important type. This mechanism is not available in traditional ferroelectrics but can be applied to many two-dimensional materials. In this paper we review the relevant researches and introduce the origin of this type of ferroelectricity: in many two-dimensional van der Waals bilayers, the upper layer is not equivalent to the lower layer, thus giving rise to a net interlayer charge transfer and the inducing vertical polarization to be switchable via interlayer sliding. This unique sliding ferroelectricity can widely exist in many van der Waals bilayers, multilayers and even bulk structures. The interlayer sliding barrier is several orders of magnitude lower than that of traditional ferroelectric, which may greatly save the energy required by ferroelectric switching. At present, this type of interlayer sliding ferroelectricity has been experimentally confirmed in WTe2 and β-InSe bilayer/multilayer systems, and more systems predicted to be with much stronger interlayer sliding ferroelectricity (like BN) may be realized in near future.
      Corresponding author: Zhong Ting-Ting, zhongtt@zstu.edu.cn ; Wu Meng-Hao, wmh1987@hust.edu.cn
    [1]

    Wu M, Jena P 2018 WIREs Comput. Mol. Sci. 8 e1365Google Scholar

    [2]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2013 Phys. Rev. B 87 081406Google Scholar

    [3]

    Kou L, Ma Y, Liao T, Du A, Chen C 2018 Phys. Rev. Appl. 10 024043Google Scholar

    [4]

    Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309Google Scholar

    [5]

    Wu M, Zeng X C 2016 Nano Lett. 16 3236Google Scholar

    [6]

    Fei R X, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [7]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H 2016 Science 353 274Google Scholar

    [8]

    Bao Y, Song P, Liu Y, Chen Z, Zhu M, Abdelwahab I, Su J, Fu W, Chi X, Yu W, Liu W, Zhao X, Xu Q H, Yang M, Loh K P 2019 Nano Lett. 19 5109Google Scholar

    [9]

    Wu M, Zeng X C 2017 Nano Lett. 17 6309Google Scholar

    [10]

    Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G, Biswas K 2019 Nano Lett. 19 5703Google Scholar

    [11]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808Google Scholar

    [12]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [13]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [14]

    Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y D, Xu C, Li M, Wei Z, Zhang Y P 2018 Sci. Adv. 4 7720Google Scholar

    [15]

    Li L, Wu M 2017 ACS Nano 11 6382Google Scholar

    [16]

    Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X, Cobden D H 2018 Nature 560 336Google Scholar

    [17]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [18]

    Ribeiro R M, Peres N M R 2011 Phys. Rev. B 83 235312Google Scholar

    [19]

    Constantinescu G, Kuc A, Heine T 2013 Phys. Rev. Lett. 111 036104Google Scholar

    [20]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [21]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [22]

    Fan F R, Tian Z Q, Lin Wang Z 2012 Nano Energy 1 328Google Scholar

    [23]

    Zhang B, Chen J, Jin L, Deng W, Zhang L, Zhang H, Zhu M, Yang W, Wang Z L 2016 ACS Nano 10 6241Google Scholar

    [24]

    Zhang L, Zhang B, Chen J, Jin L, Deng W, Tang J, Zhang H, Pan H, Zhu M, Yang W, Wang Z L 2016 Adv. Mater. 28 1650Google Scholar

    [25]

    Zhang L, Jin L, Zhang B, Deng W, Pan H, Tang J, Zhu M, Yang W 2015 Nano Energy 16 516Google Scholar

    [26]

    Jin L, Chen J, Zhang B, Deng W, Zhang L, Zhang H, Huang X, Zhu M, Yang W, Wang Z L 2016 ACS Nano 10 7874Google Scholar

    [27]

    Wang Z L, Wang X D 2015 Nano Energy 14 1Google Scholar

    [28]

    Duerloo K A N, Reed E J 2013 Nano Lett. 13 1681Google Scholar

    [29]

    Qi J S, Qian X F, Qi L, Feng J, Shi D N, Li J 2012 Nano Lett. 12 1224Google Scholar

    [30]

    Chen Y, Ke F, Ci P, Ko C, Park T, Saremi S, Liu H, Lee Y, Suh J, Martin L W, Ager J W, Chen B, Wu J 2017 Nano Lett. 17 194Google Scholar

    [31]

    Jaffe A, Lin Y, Mao W L, Karunadasa H I 2017 J. Am. Chem. Soc. 139 4330Google Scholar

    [32]

    Wu M, Qian X, Li J 2014 Nano Lett. 14 5350Google Scholar

    [33]

    Poncharal P, Ayari A, Michel T, Sauvajol J L 2008 Phys. Rev. B 78 113407Google Scholar

    [34]

    Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102Google Scholar

    [35]

    Sorokin P B, Kvashnin A G, Zhu Z, Tomanek D 2014 Nano Lett. 14 7126Google Scholar

    [36]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [37]

    Ma Y, Dai Y, Guo M, Niu C, Zhu Y, Huang B 2012 ACS Nano 6 1695Google Scholar

    [38]

    Wu F, Huang C, Wu H, Lee C, Deng K, Kan E, Jena P 2015 Nano Lett. 15 8277Google Scholar

    [39]

    Wu M 2017 2D Materials 4 021014Google Scholar

    [40]

    Rajapitamahuni A, Hoffman J, Ahn C H, Hong X 2013 Nano Lett. 13 4374Google Scholar

    [41]

    Dawber M, Rabe K, M&Scott J F 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [42]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [43]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [44]

    Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R, Seidel J 2019 Sci. Adv. 5 eaax5080Google Scholar

    [45]

    Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X, Zhang X, Lindenberg A M 2020 Nat. Phys. 1 7Google Scholar

    [46]

    Hu H, Sun Y, Chai M, Xie D, Ma J, Zhu H 2019 Appl. Phys. Lett. 114 252903Google Scholar

  • 图 1  (a) BN双层的铁电翻转路径; (b)石墨烯/BN (C/BN)异质双层不同堆叠方式会产生不同的层间电势, 可被用作纳米发电; 灰色、粉色和蓝色小球分别代表C, B和N原子, 黑色和红色箭头分别表示电荷转移和电极化的方向[15]

    Fig. 1.  (a) Ferroelectric switching pathway of BN bilayer; (b) different stacking configurations of graphene/BN heterobilayer with distinct interlayer potentials, which can be utilized as nanogenerators. Gray, pink, and blue spheres denote C, B and N atoms, and black and red arrows denote the direction of charge transfer and polarizations, respectively[15].

    图 2  (a)层间小的扭转角和(b)上层和下层之间轻微的应力差别形成的铁电莫列超晶格(黄色、绿色和红色圈住的区域分别代表AB-up, AB-down和AA畴)[15]

    Fig. 2.  Ferroelectric Moire superlattice upon (a) a small twist angle or (b) a slight difference in strain between upper and down layer. AB-up, AB-down and AA regions are marked in yellow, green and red circles, respectively[15].

    图 3  (a)体态MoS2 和InSe铁电性; (b) MXene Cr2NO2, VS2, MoN2 双层净磁矩随铁电同步翻转[15]

    Fig. 3.  (a) FE in bulk MoS2 and InSe; (b) switchable magnetization for MXene Cr2NO2, VS2 and MoN2 upon ferroelectric switching[15].

    图 4  (a)最上边的两个结构为双层WTe2的态I和相对态I的中心水平面进行镜像操作得到极化方向相反的态II, 下边的图表示滑移的过程; (b)采用层间滑移的方式使态I翻转为态II的翻转势垒; 图中天蓝色和橙色的小球分别表示W和Te原子, 红色箭头代表电极化的方向[17]

    Fig. 4.  (a) Geometric structure of state I of WTe2 bilayer and state II obtained by reflecting state I across the central horizontal plane, which can be also obtained by interlayer translation; (b) ferroelectricity switching pathway of WTe2 bilayer from state I to state II. Blue and orange spheres denote W and Te atoms respectively, and red arrows denote the polarization direction[17].

    图 5  (a)当y = 0时, 沿着–x方向进行层间平移, 能量和电极化与滑移距离x的关系; (b)在x = –(a + b)/2时, 沿着–y方向进行层间平移, 能量和电极化与滑移距离y的关系; (c)双层WTe2被压缩时, 电极化与层间距被压缩比例的关系[17]

    Fig. 5.  (a) Dependence of energy and polarization on x along the –x direction at y = 0; (b) dependence of energy and polarization on y along the –y direction at x = –(a + b)/2; (c) dependence of polarization on the compression of interlayer distance of the WTe2 bilayer[17].

    图 6  (a) β-InSe纳米片的晶体结构, 紫色和蓝色的箭头分别表示电荷转移和电极化的方向; 7 nm厚纳米片的(b) PFM振幅曲线和(c) PFM相滞回线[46]

    Fig. 6.  (a) Crystal structure of β-InSe. Purple and blue arrows denote the direction of charge transfer and polarizations, respectively; (b) PFM amplitude and (c) PFM phase hysteresis loops on a 7-nm-thick flake[46].

    表 1  BN, ZnO, AlN等双层的电极化值[15]

    Table 1.  Polarization of bilayer binary compounds such as BN, ZnO, AlN, etc[15].

    Compounds
    BNZnOAlNGaNSiCMoS2InSeGaSe
    Polarization/
    10–12 C·m–1
    2.088.2210.299.726.170.970.240.46
    下载: 导出CSV
    Baidu
  • [1]

    Wu M, Jena P 2018 WIREs Comput. Mol. Sci. 8 e1365Google Scholar

    [2]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2013 Phys. Rev. B 87 081406Google Scholar

    [3]

    Kou L, Ma Y, Liao T, Du A, Chen C 2018 Phys. Rev. Appl. 10 024043Google Scholar

    [4]

    Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309Google Scholar

    [5]

    Wu M, Zeng X C 2016 Nano Lett. 16 3236Google Scholar

    [6]

    Fei R X, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [7]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H 2016 Science 353 274Google Scholar

    [8]

    Bao Y, Song P, Liu Y, Chen Z, Zhu M, Abdelwahab I, Su J, Fu W, Chi X, Yu W, Liu W, Zhao X, Xu Q H, Yang M, Loh K P 2019 Nano Lett. 19 5109Google Scholar

    [9]

    Wu M, Zeng X C 2017 Nano Lett. 17 6309Google Scholar

    [10]

    Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G, Biswas K 2019 Nano Lett. 19 5703Google Scholar

    [11]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808Google Scholar

    [12]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [13]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [14]

    Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y D, Xu C, Li M, Wei Z, Zhang Y P 2018 Sci. Adv. 4 7720Google Scholar

    [15]

    Li L, Wu M 2017 ACS Nano 11 6382Google Scholar

    [16]

    Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X, Cobden D H 2018 Nature 560 336Google Scholar

    [17]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [18]

    Ribeiro R M, Peres N M R 2011 Phys. Rev. B 83 235312Google Scholar

    [19]

    Constantinescu G, Kuc A, Heine T 2013 Phys. Rev. Lett. 111 036104Google Scholar

    [20]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [21]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [22]

    Fan F R, Tian Z Q, Lin Wang Z 2012 Nano Energy 1 328Google Scholar

    [23]

    Zhang B, Chen J, Jin L, Deng W, Zhang L, Zhang H, Zhu M, Yang W, Wang Z L 2016 ACS Nano 10 6241Google Scholar

    [24]

    Zhang L, Zhang B, Chen J, Jin L, Deng W, Tang J, Zhang H, Pan H, Zhu M, Yang W, Wang Z L 2016 Adv. Mater. 28 1650Google Scholar

    [25]

    Zhang L, Jin L, Zhang B, Deng W, Pan H, Tang J, Zhu M, Yang W 2015 Nano Energy 16 516Google Scholar

    [26]

    Jin L, Chen J, Zhang B, Deng W, Zhang L, Zhang H, Huang X, Zhu M, Yang W, Wang Z L 2016 ACS Nano 10 7874Google Scholar

    [27]

    Wang Z L, Wang X D 2015 Nano Energy 14 1Google Scholar

    [28]

    Duerloo K A N, Reed E J 2013 Nano Lett. 13 1681Google Scholar

    [29]

    Qi J S, Qian X F, Qi L, Feng J, Shi D N, Li J 2012 Nano Lett. 12 1224Google Scholar

    [30]

    Chen Y, Ke F, Ci P, Ko C, Park T, Saremi S, Liu H, Lee Y, Suh J, Martin L W, Ager J W, Chen B, Wu J 2017 Nano Lett. 17 194Google Scholar

    [31]

    Jaffe A, Lin Y, Mao W L, Karunadasa H I 2017 J. Am. Chem. Soc. 139 4330Google Scholar

    [32]

    Wu M, Qian X, Li J 2014 Nano Lett. 14 5350Google Scholar

    [33]

    Poncharal P, Ayari A, Michel T, Sauvajol J L 2008 Phys. Rev. B 78 113407Google Scholar

    [34]

    Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102Google Scholar

    [35]

    Sorokin P B, Kvashnin A G, Zhu Z, Tomanek D 2014 Nano Lett. 14 7126Google Scholar

    [36]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [37]

    Ma Y, Dai Y, Guo M, Niu C, Zhu Y, Huang B 2012 ACS Nano 6 1695Google Scholar

    [38]

    Wu F, Huang C, Wu H, Lee C, Deng K, Kan E, Jena P 2015 Nano Lett. 15 8277Google Scholar

    [39]

    Wu M 2017 2D Materials 4 021014Google Scholar

    [40]

    Rajapitamahuni A, Hoffman J, Ahn C H, Hong X 2013 Nano Lett. 13 4374Google Scholar

    [41]

    Dawber M, Rabe K, M&Scott J F 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [42]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [43]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [44]

    Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R, Seidel J 2019 Sci. Adv. 5 eaax5080Google Scholar

    [45]

    Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X, Zhang X, Lindenberg A M 2020 Nat. Phys. 1 7Google Scholar

    [46]

    Hu H, Sun Y, Chai M, Xie D, Ma J, Zhu H 2019 Appl. Phys. Lett. 114 252903Google Scholar

  • [1] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料.  , 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [2] 熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙. 二维范德瓦耳斯异质结Cs3X2I9/InSe (X = Bi, Sb)的光电性能.  , 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [3] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用.  , 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [4] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应.  , 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [5] 肖聪, 姚望. 范德瓦耳斯体系中的量子层电子学.  , 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [6] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用.  , 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [7] 李耀华, 董耀勇, 董辉, 郑学军. 二维MoS2压痕过程异质界面范德瓦耳斯力引起的撕裂行为.  , 2022, 71(19): 194601. doi: 10.7498/aps.71.20220875
    [8] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控.  , 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [9] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展.  , 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [10] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能.  , 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [11] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱.  , 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [12] 李听昕. 二维范德瓦耳斯半导体莫尔超晶格实验研究进展.  , 2022, 71(12): 127309. doi: 10.7498/aps.71.20220347
    [13] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用.  , 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [14] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用.  , 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [15] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件.  , 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [16] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱.  , 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [17] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件.  , 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [18] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展.  , 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [19] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能.  , 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [20] 孙家钟, 蒋栋成. 非对称陀螺分子间的范德瓦耳斯引力问题.  , 1961, 17(12): 559-568. doi: 10.7498/aps.17.559
计量
  • 文章访问数:  16698
  • PDF下载量:  1662
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-29
  • 修回日期:  2020-09-15
  • 上网日期:  2020-10-29
  • 刊出日期:  2020-11-05

/

返回文章
返回
Baidu
map