-
Inorganic ferroelectric films exhibit excellent electric and optic properties, which have been widely used in dielectrics, memory, piezoelectric, photoelectric devices, etc. However, conventional synthesis strategies based on rigid single-crystal substrates severely limit their applications in flexible electronics. Realization of flexible inorganic ferroelectric films can introduce the excellent properties of inorganic ferroelectric materials into flexible devices, which is the developing trend for the next generation of electronic devices. In this review, the strategies to fabricate flexible inorganic perovskite structures’ ferroelectric films are summarized, including 1) direct growth on flexible substrates, 2) transferring ferroelectric film from a rigid substrate to a flexible one. Subsequently, the applications of flexible inorganic ferroelectric films are briefly introduced. Finally, research status, prospects and future development trend of flexible inorganic ferroelectric films are discussed.
-
Keywords:
- inorganic ferroelectric films /
- flexible /
- perovskite /
- fabrication
[1] Xu S, Zhang Y, Jia L, Mathewson K E, Jang K I, Kim J, Fu H, Huang X, Chava P, Wang R, Bhole S, Wang L, Na Y J, Guan Y, Flavin M, Han Z, Huang Y, Rogers J A 2014 Science 344 70
Google Scholar
[2] Lacour S P 2015 Nat. Mater. 14 659
Google Scholar
[3] Jung Y H, Hong S K, Wang H S, Han J H, Pham T X, Park H, Kim J, Kang S, Yoo C D, Lee K J 2020 Adv. Mater. 32 1904020
[4] Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682
Google Scholar
[5] Lee H N, Hesse D, Zakharov N, Gösele U 2002 Science 296 2006
Google Scholar
[6] Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578
Google Scholar
[7] Zhao P, Wang H, Wu L, Chen L, Cai Z, Li L, Wang X 2019 Adv. Energy Mater. 9 1803048
Google Scholar
[8] Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin L W 2020 Science 369 81
Google Scholar
[9] Cao H C, Evans A G 1993 J. Am. Ceram. Soc. 76 890
Google Scholar
[10] Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171
Google Scholar
[11] Kakekhani A, Ismail Beigi S, Altman E I 2016 Surf. Sci. 650 302
Google Scholar
[12] Khan M A, Nadeem M A, Idriss H 2016 Surf. Sci. Rep. 71 1
Google Scholar
[13] Han X, Chen X, Tang X, Chen Y L, Liu J H, Shen Q D 2016 Adv. Funct. Mater. 26 3640
Google Scholar
[14] Liu Y, Aziguli H, Zhang B, Xu W, Lu W, Bernholc J, Wang Q 2018 Nature 562 96
Google Scholar
[15] Zhang X, Jiang J, Shen Z, Dan Z, Li M, Lin Y, Nan C W, Chen L, Shen Y 2018 Adv. Mater. 30 1707269
Google Scholar
[16] Lim S, Son D, Kim J, Lee Y B, Song J K, Choi S, Lee D J, Kim J H, Lee M, Hyeon T, Kim D H 2015 Adv. Funct. Mater. 25 375
Google Scholar
[17] Hwang S K, Bae I, Kim R H, Park C 2012 Adv. Mater. 24 5910
Google Scholar
[18] Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T N, Wang Q 2015 Nature 523 576
Google Scholar
[19] Kim K L, Lee W, Hwang S K, Joo S H, Cho S M, Song G, Cho S H, Jeong B, Hwang I, Ahn J H, Yu Y J, Shin T J, Kwak S K, Kang S J, Park C 2016 Nano Lett. 16 334
Google Scholar
[20] Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H, Nan C W 2018 Nat. Commun. 9 1813
Google Scholar
[21] Liang Z, Liu M, Ma C, Shen L, Lu L, Jia C L 2018 J. Mater. Chem. A 6 12291
Google Scholar
[22] Jiang J, Shen Z, Qian J, Dan Z, Guo M, He Y, Lin Y, Nan C, Chen L, Shen Y 2019 Nano Energy 62 220
Google Scholar
[23] Bao Z, Hou C, Shen Z, Sun H, Zhang G, Luo Z, Dai Z, Wang C, Chen X, Li L, Yin Y, Shen Y, Li X 2020 Adv. Mater. 32 1907227
Google Scholar
[24] Li Q, Liu F, Yang T, Gadinski M R, Zhang G, Chen L, Wang Q 2016 Proc. Natl. Acad. Sci. U. S. A. 113 9995
Google Scholar
[25] Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang Q M 2020 Sci. Adv. 6 6622
Google Scholar
[26] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005
Google Scholar
[27] Rojac T, Bencan A, Malic B, Tutuncu G, Jones J L, Daniels J E, Damjanovic D 2014 J. Am. Ceram. Soc. 97 1993
Google Scholar
[28] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804
Google Scholar
[29] Li F, Cabral M J, Xu B, Cheng Z, Dickey E C, LeBeau J M, Wang J, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S 2019 Science 364 264
Google Scholar
[30] Won S S, Seo H, Kawahara M, Glinsek S, Lee J, Kim Y, Jeong C K, Kingon A I, Kim S 2019 Nano Energy 55 182
Google Scholar
[31] Palneedi H, Yeo H G, Hwang G T, Annapureddy V, Kim J W, Choi J J, Trolier McKinstry S, Ryu J 2017 APL Mater. 5 096111
Google Scholar
[32] Ko Y J, Kim D Y, Won S S, Ahn C W, Kim I W, Kingon A I, Kim S, Ko J, Jung J H 2016 ACS Appl. Mater. Interfaces 8 6504
Google Scholar
[33] Bretos I, Jimenez R, Wu A, Kingon A I, Vilarinho P M, Calzada M L 2014 Adv. Mater. 26 1405
Google Scholar
[34] Tomczyk M, Bretos I, Jiménez R, Mahajan A, Ramana E V, Calzada M L, Vilarinho P M 2017 J. Mater. Chem. C 5 12529
Google Scholar
[35] Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O'Connor B T, So F 2017 Adv. Funct. Mater. 27 1700461
Google Scholar
[36] Ke S, Chen C, Fu N, Zhou H, Ye M, Lin P, Yuan W, Zeng X, Chen L, Huang H 2016 ACS Appl. Mater. Interfaces 8 28406
Google Scholar
[37] Liu W Y, Liao J J, Jiang J, Zhou Y C, Chen Q, Mo S T, Yang Q, Peng Q X, Jiang L M 2020 J. Mater. Chem. C 8 3878
Google Scholar
[38] Ma B, Tong S, Narayanan M, Liu S, Chao S, Balachandran U 2011 Mater. Res. Bull. 46 1124
Google Scholar
[39] Yeo H G, Ma X, Rahn C D, Troliermckinstry S 2016 Adv. Funct. Mater. 26 5940
Google Scholar
[40] Liang W, Li Z, Bi Z, Nan T, Du H, Nan C, Chen C, Jia Q, Lin Y 2014 J. Mater. Chem. C 2 708
Google Scholar
[41] Lee H J, Won S S, Cho K H, Han C K, Mostovych N, Kingon A I, Kim S, Lee H Y 2018 Appl. Phys. Lett. 112 092901
Google Scholar
[42] Yeo H G, Xue T, Roundy S, Ma X, Rahn C, Trolier McKinstry S 2018 Adv. Funct. Mater. 28 1801327
Google Scholar
[43] Kingon A I, Srinivasan S 2005 Nat. Mater. 4 233
Google Scholar
[44] Wu A, Vilarinho P M, Reaney I, Miranda Salvado I M 2003 Chem. Mater. 15 1147
Google Scholar
[45] Bharadwaja S S N, Dechakupt T, Trolier McKinstry S, Beratan H 2008 J. Am. Ceram. Soc. 91 1580
Google Scholar
[46] Wang Z J, Cao Z P, Otsuka Y, Yoshikawa N, Kokawa H, Taniguchi S 2008 Appl. Phys. Lett. 92 222905
Google Scholar
[47] Bretos I, Jiménez R, Tomczyk M, Rodríguez Castellón E, Vilarinho P M, Calzada M L 2016 Sci. Rep. 6 20143
Google Scholar
[48] Bretos I, Jiménez R, Ricote J, Sirera R, Calzada M L 2020 Adv. Funct. Mater. 30 2001897
Google Scholar
[49] Arthur J R 2002 Surf. Sci. 500 189
Google Scholar
[50] Kourkoutis L F, Song J H, Hwang H Y, Muller D A 2010 Proc. Natl. Acad. Sci. U. S. A. 107 11682
Google Scholar
[51] Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118
Google Scholar
[52] Koma A, Yoshimura K 1986 Surf. Sci. 174 556
Google Scholar
[53] Koma A, Ueno K, Saiki K 1991 J. Cryst. Growth 111 1029
Google Scholar
[54] Koma A 1999 J. Cryst. Growth 201 236
Google Scholar
[55] Bitla Y, Chu Y H 2017 FlatChem 3 26
Google Scholar
[56] Reichelt K, Lutz H O 1971 J. Cryst. Growth 10 103
Google Scholar
[57] Derose J A, Thundat T, Nagahara L A, Lindsay S 1991 Surf. Sci. 256 102
Google Scholar
[58] Baski A A, Fuchs H 1994 Surf. Sci. 313 275
Google Scholar
[59] Dishner M H, Ivey M M, Gorer S, Hemminger J C, Feher F J 1998 J. Vac. Sci. Technol. 16 3295
Google Scholar
[60] Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan P H, Kan M, Feng J, Sun Q, Liu Z 2013 Nano Lett. 13 3870
Google Scholar
[61] Zhou Y, Nie Y, Liu Y, Yan K, Hong J, Jin C, Zhou Y, Yin J, Liu Z, Peng H 2014 ACS Nano 8 1485
Google Scholar
[62] Xia J, Zhu D, Wang L, Huang B, Huang X, Meng X 2015 Adv. Funct. Mater. 25 4255
Google Scholar
[63] Bitla Y, Chu Y H 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS) August 1–5, 2016, Tainan, China p18162406
[64] Amrillah T, Bitla Y, Shin K, Yang T, Hsieh Y H, Chiou Y Y, Liu H J, Do T H, Su D, Chen Y C, Jen S U, Chen L Q, Kim K H, Juang J Y, Chu Y H 2017 ACS Nano 11 6122
Google Scholar
[65] Jiang J, Bitla Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai Y H, Chiu P W, Wu W W, Chen Y C, Zhou Y C, Chu Y H 2017 Sci. Adv. 3 1700121
Google Scholar
[66] Liang Z, Liu M, Shen L, Lu L, Ma C, Lu X, Lou X, Jia C L 2019 ACS Appl. Mater. Interfaces 11 5247
Google Scholar
[67] Qian J, Han Y, Yang C, Lv P, Zhang X, Feng C, Lin X, Huang S, Cheng X, Cheng Z 2020 Nano Energy 74 104862
Google Scholar
[68] Yang Y, Yuan G, Yan Z, Wang Y, Lu X, Liu J M 2017 Adv. Mater. 29 1700425
Google Scholar
[69] Konagai M, Sugimoto M, Takahashi K 1978 J. Cryst. Growth 45 277
Google Scholar
[70] Park K I, Xu S, Liu Y, Hwang G T, Kang S J, Wang Z L, Lee K J 2010 Nano Lett. 10 4939
Google Scholar
[71] Gan Q, Rao R A, Eom C B, Garrett J L, Lee M 1998 Appl. Phys. Lett. 72 978
Google Scholar
[72] Deneke C, Wild E, Boldyreva K, Baunack S, Cendula P, Monch I, Simon M, Malachias A, Dorr K, Schmidt O G 2011 Nanoscale Res. Lett. 6 621
Google Scholar
[73] Qi Y, Jafferis N T, Jr Lyons K, Lee C M, Ahmad H, McAlpine M C 2010 Nano Lett. 10 524
Google Scholar
[74] Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331
Google Scholar
[75] Bakaul S R, Serrao C R, Lee M, Yeung C W, Sarker A, Hsu S L, Yadav A K, Dedon L, You L, Khan A I, Clarkson J D, Hu C, Ramesh R, Salahuddin S 2016 Nat. Commun. 7 10547
Google Scholar
[76] An F, Qu K, Zhong G, Dong Y, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z, Gao X, Xie S, Gao P, Li J 2020 Adv. Funct. Mater. 31 2003495
Google Scholar
[77] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255
Google Scholar
[78] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87
Google Scholar
[79] Dong G, Li S, Yao M, Zhou Z, Zhang Y Q, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye Z G, Ding X, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475
Google Scholar
[80] Han L, Fang Y, Zhao Y, Zang Y, Gu Z, Nie Y, Pan X 2020 Adv. Mater. Interfaces 7 1901604
Google Scholar
[81] Takahashi R, Lippmaa M 2020 ACS Appl. Mater. Interfaces 12 25042
Google Scholar
[82] Zhang Y, Ma C, Lu X, Liu M 2019 Mater. Horizons 6 911
Google Scholar
[83] Do Y H, Kang M G, Kim J S, Kang C Y, Yoon S J 2012 Sens. Actuator A Phys. 184 124
Google Scholar
[84] Delmdahl R, Patzel R, Brune J 2013 Phys. Procedia 41 241
Google Scholar
[85] Lee H S, Chung J, Hwang G T, Jeong C K, Jung Y, Kwak J H, Kang H, Byun M, Kim W D, Hur S, Oh S H, Lee K J 2014 Adv. Funct. Mater. 24 6914
Google Scholar
[86] Park K I, Son J H, Hwang G T, Jeong C K, Ryu J, Koo M, Choi I, Lee S H, Byun M, Wang Z L, Lee K J 2014 Adv. Mater. 26 2514
Google Scholar
[87] Jeong C K, Park K, Son J H, Hwang G T, Lee S H, Park D Y, Lee H E, Lee H K, Byun M, Lee K J 2014 Energy Environ. Sci. 7 4035
Google Scholar
[88] Kim S, Son J H, Lee S H, You B K, Park K I, Lee H K, Byun M, Lee K J 2014 Adv. Mater. 26 7480
Google Scholar
[89] Lee H E, Kim S J, Ko J, Yeom H, Byun C, Lee S H, Joe D J, Im T, Park S K, Lee K J 2016 Adv. Funct. Mater. 26 6170
Google Scholar
[90] Peng Y, Que M, Lee H E, Bao R, Wang X, Lu J, Yuan Z, Li X, Tao J, Sun J, Zhai J, Lee K J, Pan C 2019 Nano Energy 58 633
Google Scholar
[91] Tsakalakos L, Sands T 2000 Appl. Phys. Lett. 76 227
Google Scholar
[92] Kim J, Park H, Hannon J B, Bedell S W, Fogel K, Sadana D K, Dimitrakopoulos C 2013 Science 342 833
Google Scholar
[93] Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836
Google Scholar
[94] Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W, Choi S, Qiao K, Almansouri I, Fitzgerald E A, Kong J, Kolpak A M, Hwang J, Kim J 2017 Nature 544 340
Google Scholar
[95] Kong W, Li H, Qiao K, Kim Y, Lee K, Nie Y, Lee D, Osadchy T, Molnar R J, Gaskill D K, Myers Ward R L, Daniels K M, Zhang Y, Sundram S, Yu Y, Bae S H, Rajan S, Shao Horn Y, Cho K, Ougazzaden A, Grossman J C, Kim J 2018 Nat. Mater. 17 999
Google Scholar
[96] Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B, Kim J 2020 Nature 578 75
Google Scholar
[97] Scott J F 2007 Science 315 954
Google Scholar
[98] Gao W, You L, Wang Y, Yuan G, Chu Y, Liu Z, Liu J 2017 Adv. Electron. Mater. 3 1600542
Google Scholar
[99] Gao D, Tan Z, Fan Z, Guo M, Hou Z, Chen D, Qin M, Zeng M, Zhou G, Gao X, Lu X, Liu J M 2019 ACS Appl. Mater. Interfaces 11 27088
Google Scholar
[100] Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727
Google Scholar
[101] Palneedi H, Peddigari M, Hwang G, Jeong D, Ryu J 2018 Adv. Funct. Mater. 28 1803665
Google Scholar
[102] Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, He Y 2019 Mater. Res. Bull. 113 190
Google Scholar
[103] Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J F, Zhang S 2019 Prog. Mater. Sci. 102 72
Google Scholar
[104] Ma B, Kwon D K, Narayanan M, Balachandran U 2009 J. Electroceram. 22 383
Google Scholar
[105] Zhang Y, Li Y, Hao X, Jiang H, Zhai J 2019 J. Am. Ceram. Soc. 102 6107
Google Scholar
[106] Zhang Y, Li Y, Du J, Sun N, Hao X, Jiang H, Zhai J 2019 J. Mater. Sci.: Mater. Electron. 30 11945
Google Scholar
[107] Michael Sapia E K, Li H U, Jackson T N, Trolier Mckinstry S 2015 J. Appl. Phys. 118 13574
Google Scholar
[108] Sun Z, Ma C, Liu M, Cui J, Lu L, Lu J, Lou X, Jin L, Wang H, Jia C L 2017 Adv. Mater. 29 1604427
Google Scholar
[109] Ma B, Hu Z, Koritala R E, Lee T H, Dorris S E, Balachandran U 2015 J. Mater. Sci.: Mater. Electron. 26 9279
Google Scholar
[110] Yang C, Lv P, Qian J, Han Y, Ouyang J, Lin X, Huang S, Cheng Z 2019 Adv. Energy Mater. 9 1803949
Google Scholar
[111] Lv P, Yang C, Qian J, Wu H, Huang S, Cheng X, Cheng Z 2020 Adv. Energy Mater. 10 1904229
Google Scholar
[112] Liang Z, Ma C, Shen L, Lu L, Lu X, Lou X, Liu M, Jia C L 2019 Nano Energy 57 519
Google Scholar
[113] Shen B z, Li Y, Hao X 2019 ACS Appl. Mater. Interfaces 11 34117
Google Scholar
[114] Han S, Zhou Y, Roy V A L 2013 Adv. Mater. 25 5425
Google Scholar
[115] Gao H, Yang Y, Wang Y, Chen L, Wang J, Yuan G, Liu J 2019 ACS Appl. Mater. Interfaces 11 35169
Google Scholar
[116] Arimoto Y, Ishiwara H 2004 MRS Bull. 29 823
Google Scholar
[117] Sun J, Zheng X 2011 IEEE Trans. Electron Devices 58 3559
Google Scholar
[118] Vasilopoulou M, Kim B S, Kim H P, da Silva W J, Schneider F K, Mat Teridi M A, Gao P, Mohd Yusoff A R b, Nazeeruddin M K 2020 Nano Lett. 20 5081
Google Scholar
[119] Bakaul S R, Serrao C R, Lee O, Lu Z, Yadav A, Carraro C, Maboudian R, Ramesh R, Salahuddin S 2017 Adv. Mater. 29 1605699
Google Scholar
[120] Su L, Lu X, Chen L, Wang Y, Yuan G, Liu J 2018 ACS Appl. Mater. Interfaces 10 21428
Google Scholar
[121] Yang B, Li C, Liu M, Wei R, Tang X, Hu L, Song W, Zhu X, Sun Y 2020 Journal of Materiomics 6 600
Google Scholar
[122] Yang C, Han Y, Qian J, Lv P, Lin X, Huang S, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 12647
Google Scholar
[123] Lee W, Kahya O, Toh C T, Özyilmaz B, Ahn J H 2013 Nanotechnology 24 475202
Google Scholar
[124] Ren C, Zhong G, Xiao Q, Tan C, Feng M, Zhong X, An F, Wang J, Zi M, Tang M, Tang Y, Jia T, Li J 2019 Adv. Funct. Mater. 30 1906131
Google Scholar
[125] Wang Z L, Song J 2006 Science 312 242
Google Scholar
[126] Chang C, Tran V H, Wang J, Fuh Y, Lin L 2010 Nano Lett. 10 726
Google Scholar
[127] Martins P, Lopes A C, Lancerosmendez S 2014 Prog. Polym. Sci. 39 683
Google Scholar
[128] Kwon J, Seung W, Sharma B K, Kim S, Ahn J 2012 Energy Environ. Sci. 5 8970
Google Scholar
[129] Hwang G T, Park H, Lee J H, Oh S, Park K I, Byun M, Park H, Ahn G, Jeong C K, No K, Kwon H, Lee S G, Joung B, Lee K J 2014 Adv. Mater. 26 4880
Google Scholar
[130] Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim Y S, Huang Y, Damadoran A R, Xia J, Martin L W, Huang Y, Rogers J A 2014 Nat. Commun. 5 4496
Google Scholar
[131] Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J 2011 Proc. Natl. Acad. Sci. U. S. A. 108 18390
Google Scholar
[132] Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, Ye M, Wang Y, Lu W, Niu H, Scott J F, Zeng X, Huang H 2015 Adv. Electron. Mater. 1 1500052
Google Scholar
[133] Fan Z, Fan H, Lu Z, Li P, Huang Z, Tian G, Yang L, Yao J, Chen C, Chen D, Yan Z, Lu X, Gao X, Liu J M 2017 Phys. Rev. Appl. 7 014020
Google Scholar
[134] Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375
Google Scholar
[135] Wang J J, Su Y J, Wang B, Ouyang J, Ren Y H, Chen L Q 2020 Nano Energy 72 104665
Google Scholar
-
图 1 PZT/LNO/Ni-Cr柔性薄膜的(a)照片(插图为薄膜结构示意图)和(b)室温10 kHz下的电滞回线[32]; (c) PLZO柔性薄膜在1000次弯折前后的电滞回线对比(插图为柔性薄膜弯折照片)[41]; (d) 不同双氧水预处理时长的柔性BTO/Ni膜磁电耦合系数随磁场的变化[40]
Fig. 1. (a) Photograph of a flexible PZT film (inset: schematic structure illustration) and (b) P-E loop of the PZT film measured at 10 kHz[32]; (c) P-E loops of a flexible PLZO film before and after 1000 bending cycles (inset: photograph of the bending state of the PLZO film)[41]; (d) magneto-electric (ME) voltage coefficients of the flexible BTO/Ni assemblies as a function of dc magnetic field[40]. Plane (a), (b) reprinted with permission from Ref. [32]. Copyright 2016 American Chemical Society. Plane (c) reprinted from Ref. [41], with the permission of AIP Publishing.
图 2 (a) PhS方法的示意图[34]; (b) 400 ℃退火的PZT薄膜的P-E回线, 下方插图为非开关部分的贡献, 上方插图为开关部分[47]; (c) 不同工艺制备的BFO薄膜在140 K, 10 kHz条件下的P-E回线[34]
Fig. 2. (a) Schematic illustration of the PhS method[34]; (b) P-E loop of the PZT film annealed at 400 °C, the lower inset of (b) correspond to the non-switching contribution to the polarization, the upper inset correspond to the compensated ferroelectric hysteresis loop[47]; (c) P-E loops for seeded and seeded + UV-irradiated BFO films measured at 140 K and 10 kHz[34].
图 3 PZT(Zr/Ti = 20:80)/SRO/CFO/mica柔性铁电存储器[65] (a) 实物图及局部AFM图; (b) 面外θ-2θ扫面结果; (c) 面内Φ扫; (d) RSM图; (e) 断面TEM图像, PZT/SRO和SRO/CFO/mica界面局部放大图以及PZT, SRO和云母的选定区域衍射模式
Fig. 3. PZT(Zr/Ti = 20∶80)/SRO/CFO/mica flexible ferroelectric memory[65]: (a) Photograph of the flexible ferroelectric device on mica with corresponding AFM image of PZT surface; (b) θ-2θ scan of the heterostructure; (c) Φ scans at PZT {002}, SRO {002}, CFO {004}, and mica {202} diffraction peaks (a.u., arbitrary units); (d) reciprocal space mapping of the heterostructure around the PZT (002) peak (r.l.u., relative lattice units); (e) cross-sectional TEM images of PZT/SRO and SRO/CFO/mica interfaces, and the corresponding selected area electron diffraction patterns.
图 5 (a) LLO剥离-转印示意图[87]; (b), (c)使用不同能量激光的LLO工艺转印到PET基底上的PZT薄膜表面的SEM照片, 图(b)和(c)对应的激光能量分别为420和 500 mJ/cm2, 标尺为3 μm[87]
Fig. 5. (a) Schematic diagram of the LLO fabrication process[87]; (b), (c) SEM images of surfaces of the PZT films transferred to a PET substrate by the LLO process using different energy laser: (b) 420 and (c) 500 mJ/cm2[87]. Scale bars, 3 μm.
图 7 BST[99]柔性薄膜在(a)不同半径弯折时与弯折后的介电频谱(flat-1为初始态, flat-2为r = 5 mm弯折之后; flat-3为r = 2 mm弯折之后)和(b) r = 5 mm时18.6 GHz的介电常数和损耗随弯折次数的变化
Fig. 7. (a) Frequency domain spectroscopy of BST flexible film in the bending states and flat states after bending with different radii (flat 1−3: initial state and flat states after bending at r = 5 mm and 2 mm, respectively); (b) εr and tanδ of BST flexible film at 18.6 GHz as a function of bending cycle (r = 5 mm)[99]. Reprinted with permission from Ref. [99]. Copyright 2019 American Chemical Society.
图 8 FeRAM[115]和FeFET[118]的示意图 (a) P-E回线, 插图为FeRAM结构示意图; (b) FeRAM1疲劳特性; (c) FeFET结构示意图; (d) FeFET的转移特性
Fig. 8. Schematic of FeRAM[115] and FeFET[118]: (a) P-E loop and the insert is the schematic illustration of FeRAM; (b) fatigue characterization of FeRAM; (c) the schematic illustration of FeFET; (d) transfer characteristics of the FeFET. Plane (a), (b) reprinted with permission from Ref [115]. Copyright 2019 American Chemical Society. Plane (c), (d) reprinted with permission from Ref [118]. Copyright 2020 American Chemical Society.
图 9 几种云母基柔性铁电存储器的性能数据对比 (a), (d) PZT (Zr/Ti = 20:80)[65], (a)不同弯折半径时的P-E回线和(d) 1000次弯折前后拉伸、压缩和平整状态的疲劳性能; (b), (e) BLT[120], (b) 10000次弯折前后及弯折时的P-E回线和(e)疲劳性能; (c), (f) BFO[122], (c)不同弯折半径时拉伸、压缩条件下的P-E回线和(f)1000次弯折前后的疲劳性能
Fig. 9. Performance of mica-based flexible ferroelectric memories. (a) P-E loops of PZT (Zr/Ti = 20:80) -based memories with various tensile and compressive radii and (d) fatigue performance at unbent, compressively bent and tensilely bent before and after 1000 cycle conditions[65]; (b) P-E loops of BLT-based memories at bending state and flat states before and after 10000 cycle conditions and (e) fatigue performance[120]; (c) P-E loops of BFO-based memories with various compressive and tensile bending radii and (f) fatigue performance an unbent and compressively and tensilely bent for 1000 cycle conditions[122]. Plane (b), (e) reprinted with permission from Ref. [120]. Copyright 2018 American Chemical Society. Plane (c), (f) reprinted with permission from Ref. [122]. Copyright 2019 American Chemical Society.
表 1 最近报道的有代表性的柔性和刚性基底的介电薄膜的储能性能
Table 1. Energy storage properties of recently-reported representative dielectrics on rigid and flexible substrates.
材料 基底 Ue/J·cm–3 η/% Eb/MV·m–1 Tw/℃ 疲劳次数 弯折次数 0.25BFO-0.3BTO-0.45STO[6] Nb:STO 112 80 490 –100—150 108 — BCT/BZT multilayer[108] Nb:STO 83.9 78.4 800 –100—200 106 — BZT[21] Nb:STO 78.7 80.5 697 –150—200 106 — PLZT[109] LNO/Ni 85 65 450 — — — Mn:NBT-BT-BFO[110] Pt/F-mica 81.9 64.4 229 25—200 109 103 (r = 4 mm) NKBT/BSMT multilayer[111] Pt/F-mica 91 68 303 –50—200 108 104 (r = 4 mm) BZT[112] LSMO/STO/F-mica 65.1 72.9 615 –100—200 106 103 (r = 4 mm) PLZT[113] LNO/F-mica 40.2 58 200 30—180 107 2 × 103 (r = 4 mm) -
[1] Xu S, Zhang Y, Jia L, Mathewson K E, Jang K I, Kim J, Fu H, Huang X, Chava P, Wang R, Bhole S, Wang L, Na Y J, Guan Y, Flavin M, Han Z, Huang Y, Rogers J A 2014 Science 344 70
Google Scholar
[2] Lacour S P 2015 Nat. Mater. 14 659
Google Scholar
[3] Jung Y H, Hong S K, Wang H S, Han J H, Pham T X, Park H, Kim J, Kang S, Yoo C D, Lee K J 2020 Adv. Mater. 32 1904020
[4] Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682
Google Scholar
[5] Lee H N, Hesse D, Zakharov N, Gösele U 2002 Science 296 2006
Google Scholar
[6] Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578
Google Scholar
[7] Zhao P, Wang H, Wu L, Chen L, Cai Z, Li L, Wang X 2019 Adv. Energy Mater. 9 1803048
Google Scholar
[8] Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin L W 2020 Science 369 81
Google Scholar
[9] Cao H C, Evans A G 1993 J. Am. Ceram. Soc. 76 890
Google Scholar
[10] Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171
Google Scholar
[11] Kakekhani A, Ismail Beigi S, Altman E I 2016 Surf. Sci. 650 302
Google Scholar
[12] Khan M A, Nadeem M A, Idriss H 2016 Surf. Sci. Rep. 71 1
Google Scholar
[13] Han X, Chen X, Tang X, Chen Y L, Liu J H, Shen Q D 2016 Adv. Funct. Mater. 26 3640
Google Scholar
[14] Liu Y, Aziguli H, Zhang B, Xu W, Lu W, Bernholc J, Wang Q 2018 Nature 562 96
Google Scholar
[15] Zhang X, Jiang J, Shen Z, Dan Z, Li M, Lin Y, Nan C W, Chen L, Shen Y 2018 Adv. Mater. 30 1707269
Google Scholar
[16] Lim S, Son D, Kim J, Lee Y B, Song J K, Choi S, Lee D J, Kim J H, Lee M, Hyeon T, Kim D H 2015 Adv. Funct. Mater. 25 375
Google Scholar
[17] Hwang S K, Bae I, Kim R H, Park C 2012 Adv. Mater. 24 5910
Google Scholar
[18] Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T N, Wang Q 2015 Nature 523 576
Google Scholar
[19] Kim K L, Lee W, Hwang S K, Joo S H, Cho S M, Song G, Cho S H, Jeong B, Hwang I, Ahn J H, Yu Y J, Shin T J, Kwak S K, Kang S J, Park C 2016 Nano Lett. 16 334
Google Scholar
[20] Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H, Nan C W 2018 Nat. Commun. 9 1813
Google Scholar
[21] Liang Z, Liu M, Ma C, Shen L, Lu L, Jia C L 2018 J. Mater. Chem. A 6 12291
Google Scholar
[22] Jiang J, Shen Z, Qian J, Dan Z, Guo M, He Y, Lin Y, Nan C, Chen L, Shen Y 2019 Nano Energy 62 220
Google Scholar
[23] Bao Z, Hou C, Shen Z, Sun H, Zhang G, Luo Z, Dai Z, Wang C, Chen X, Li L, Yin Y, Shen Y, Li X 2020 Adv. Mater. 32 1907227
Google Scholar
[24] Li Q, Liu F, Yang T, Gadinski M R, Zhang G, Chen L, Wang Q 2016 Proc. Natl. Acad. Sci. U. S. A. 113 9995
Google Scholar
[25] Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang Q M 2020 Sci. Adv. 6 6622
Google Scholar
[26] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005
Google Scholar
[27] Rojac T, Bencan A, Malic B, Tutuncu G, Jones J L, Daniels J E, Damjanovic D 2014 J. Am. Ceram. Soc. 97 1993
Google Scholar
[28] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804
Google Scholar
[29] Li F, Cabral M J, Xu B, Cheng Z, Dickey E C, LeBeau J M, Wang J, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S 2019 Science 364 264
Google Scholar
[30] Won S S, Seo H, Kawahara M, Glinsek S, Lee J, Kim Y, Jeong C K, Kingon A I, Kim S 2019 Nano Energy 55 182
Google Scholar
[31] Palneedi H, Yeo H G, Hwang G T, Annapureddy V, Kim J W, Choi J J, Trolier McKinstry S, Ryu J 2017 APL Mater. 5 096111
Google Scholar
[32] Ko Y J, Kim D Y, Won S S, Ahn C W, Kim I W, Kingon A I, Kim S, Ko J, Jung J H 2016 ACS Appl. Mater. Interfaces 8 6504
Google Scholar
[33] Bretos I, Jimenez R, Wu A, Kingon A I, Vilarinho P M, Calzada M L 2014 Adv. Mater. 26 1405
Google Scholar
[34] Tomczyk M, Bretos I, Jiménez R, Mahajan A, Ramana E V, Calzada M L, Vilarinho P M 2017 J. Mater. Chem. C 5 12529
Google Scholar
[35] Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O'Connor B T, So F 2017 Adv. Funct. Mater. 27 1700461
Google Scholar
[36] Ke S, Chen C, Fu N, Zhou H, Ye M, Lin P, Yuan W, Zeng X, Chen L, Huang H 2016 ACS Appl. Mater. Interfaces 8 28406
Google Scholar
[37] Liu W Y, Liao J J, Jiang J, Zhou Y C, Chen Q, Mo S T, Yang Q, Peng Q X, Jiang L M 2020 J. Mater. Chem. C 8 3878
Google Scholar
[38] Ma B, Tong S, Narayanan M, Liu S, Chao S, Balachandran U 2011 Mater. Res. Bull. 46 1124
Google Scholar
[39] Yeo H G, Ma X, Rahn C D, Troliermckinstry S 2016 Adv. Funct. Mater. 26 5940
Google Scholar
[40] Liang W, Li Z, Bi Z, Nan T, Du H, Nan C, Chen C, Jia Q, Lin Y 2014 J. Mater. Chem. C 2 708
Google Scholar
[41] Lee H J, Won S S, Cho K H, Han C K, Mostovych N, Kingon A I, Kim S, Lee H Y 2018 Appl. Phys. Lett. 112 092901
Google Scholar
[42] Yeo H G, Xue T, Roundy S, Ma X, Rahn C, Trolier McKinstry S 2018 Adv. Funct. Mater. 28 1801327
Google Scholar
[43] Kingon A I, Srinivasan S 2005 Nat. Mater. 4 233
Google Scholar
[44] Wu A, Vilarinho P M, Reaney I, Miranda Salvado I M 2003 Chem. Mater. 15 1147
Google Scholar
[45] Bharadwaja S S N, Dechakupt T, Trolier McKinstry S, Beratan H 2008 J. Am. Ceram. Soc. 91 1580
Google Scholar
[46] Wang Z J, Cao Z P, Otsuka Y, Yoshikawa N, Kokawa H, Taniguchi S 2008 Appl. Phys. Lett. 92 222905
Google Scholar
[47] Bretos I, Jiménez R, Tomczyk M, Rodríguez Castellón E, Vilarinho P M, Calzada M L 2016 Sci. Rep. 6 20143
Google Scholar
[48] Bretos I, Jiménez R, Ricote J, Sirera R, Calzada M L 2020 Adv. Funct. Mater. 30 2001897
Google Scholar
[49] Arthur J R 2002 Surf. Sci. 500 189
Google Scholar
[50] Kourkoutis L F, Song J H, Hwang H Y, Muller D A 2010 Proc. Natl. Acad. Sci. U. S. A. 107 11682
Google Scholar
[51] Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118
Google Scholar
[52] Koma A, Yoshimura K 1986 Surf. Sci. 174 556
Google Scholar
[53] Koma A, Ueno K, Saiki K 1991 J. Cryst. Growth 111 1029
Google Scholar
[54] Koma A 1999 J. Cryst. Growth 201 236
Google Scholar
[55] Bitla Y, Chu Y H 2017 FlatChem 3 26
Google Scholar
[56] Reichelt K, Lutz H O 1971 J. Cryst. Growth 10 103
Google Scholar
[57] Derose J A, Thundat T, Nagahara L A, Lindsay S 1991 Surf. Sci. 256 102
Google Scholar
[58] Baski A A, Fuchs H 1994 Surf. Sci. 313 275
Google Scholar
[59] Dishner M H, Ivey M M, Gorer S, Hemminger J C, Feher F J 1998 J. Vac. Sci. Technol. 16 3295
Google Scholar
[60] Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan P H, Kan M, Feng J, Sun Q, Liu Z 2013 Nano Lett. 13 3870
Google Scholar
[61] Zhou Y, Nie Y, Liu Y, Yan K, Hong J, Jin C, Zhou Y, Yin J, Liu Z, Peng H 2014 ACS Nano 8 1485
Google Scholar
[62] Xia J, Zhu D, Wang L, Huang B, Huang X, Meng X 2015 Adv. Funct. Mater. 25 4255
Google Scholar
[63] Bitla Y, Chu Y H 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS) August 1–5, 2016, Tainan, China p18162406
[64] Amrillah T, Bitla Y, Shin K, Yang T, Hsieh Y H, Chiou Y Y, Liu H J, Do T H, Su D, Chen Y C, Jen S U, Chen L Q, Kim K H, Juang J Y, Chu Y H 2017 ACS Nano 11 6122
Google Scholar
[65] Jiang J, Bitla Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai Y H, Chiu P W, Wu W W, Chen Y C, Zhou Y C, Chu Y H 2017 Sci. Adv. 3 1700121
Google Scholar
[66] Liang Z, Liu M, Shen L, Lu L, Ma C, Lu X, Lou X, Jia C L 2019 ACS Appl. Mater. Interfaces 11 5247
Google Scholar
[67] Qian J, Han Y, Yang C, Lv P, Zhang X, Feng C, Lin X, Huang S, Cheng X, Cheng Z 2020 Nano Energy 74 104862
Google Scholar
[68] Yang Y, Yuan G, Yan Z, Wang Y, Lu X, Liu J M 2017 Adv. Mater. 29 1700425
Google Scholar
[69] Konagai M, Sugimoto M, Takahashi K 1978 J. Cryst. Growth 45 277
Google Scholar
[70] Park K I, Xu S, Liu Y, Hwang G T, Kang S J, Wang Z L, Lee K J 2010 Nano Lett. 10 4939
Google Scholar
[71] Gan Q, Rao R A, Eom C B, Garrett J L, Lee M 1998 Appl. Phys. Lett. 72 978
Google Scholar
[72] Deneke C, Wild E, Boldyreva K, Baunack S, Cendula P, Monch I, Simon M, Malachias A, Dorr K, Schmidt O G 2011 Nanoscale Res. Lett. 6 621
Google Scholar
[73] Qi Y, Jafferis N T, Jr Lyons K, Lee C M, Ahmad H, McAlpine M C 2010 Nano Lett. 10 524
Google Scholar
[74] Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331
Google Scholar
[75] Bakaul S R, Serrao C R, Lee M, Yeung C W, Sarker A, Hsu S L, Yadav A K, Dedon L, You L, Khan A I, Clarkson J D, Hu C, Ramesh R, Salahuddin S 2016 Nat. Commun. 7 10547
Google Scholar
[76] An F, Qu K, Zhong G, Dong Y, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z, Gao X, Xie S, Gao P, Li J 2020 Adv. Funct. Mater. 31 2003495
Google Scholar
[77] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255
Google Scholar
[78] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87
Google Scholar
[79] Dong G, Li S, Yao M, Zhou Z, Zhang Y Q, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye Z G, Ding X, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475
Google Scholar
[80] Han L, Fang Y, Zhao Y, Zang Y, Gu Z, Nie Y, Pan X 2020 Adv. Mater. Interfaces 7 1901604
Google Scholar
[81] Takahashi R, Lippmaa M 2020 ACS Appl. Mater. Interfaces 12 25042
Google Scholar
[82] Zhang Y, Ma C, Lu X, Liu M 2019 Mater. Horizons 6 911
Google Scholar
[83] Do Y H, Kang M G, Kim J S, Kang C Y, Yoon S J 2012 Sens. Actuator A Phys. 184 124
Google Scholar
[84] Delmdahl R, Patzel R, Brune J 2013 Phys. Procedia 41 241
Google Scholar
[85] Lee H S, Chung J, Hwang G T, Jeong C K, Jung Y, Kwak J H, Kang H, Byun M, Kim W D, Hur S, Oh S H, Lee K J 2014 Adv. Funct. Mater. 24 6914
Google Scholar
[86] Park K I, Son J H, Hwang G T, Jeong C K, Ryu J, Koo M, Choi I, Lee S H, Byun M, Wang Z L, Lee K J 2014 Adv. Mater. 26 2514
Google Scholar
[87] Jeong C K, Park K, Son J H, Hwang G T, Lee S H, Park D Y, Lee H E, Lee H K, Byun M, Lee K J 2014 Energy Environ. Sci. 7 4035
Google Scholar
[88] Kim S, Son J H, Lee S H, You B K, Park K I, Lee H K, Byun M, Lee K J 2014 Adv. Mater. 26 7480
Google Scholar
[89] Lee H E, Kim S J, Ko J, Yeom H, Byun C, Lee S H, Joe D J, Im T, Park S K, Lee K J 2016 Adv. Funct. Mater. 26 6170
Google Scholar
[90] Peng Y, Que M, Lee H E, Bao R, Wang X, Lu J, Yuan Z, Li X, Tao J, Sun J, Zhai J, Lee K J, Pan C 2019 Nano Energy 58 633
Google Scholar
[91] Tsakalakos L, Sands T 2000 Appl. Phys. Lett. 76 227
Google Scholar
[92] Kim J, Park H, Hannon J B, Bedell S W, Fogel K, Sadana D K, Dimitrakopoulos C 2013 Science 342 833
Google Scholar
[93] Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836
Google Scholar
[94] Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W, Choi S, Qiao K, Almansouri I, Fitzgerald E A, Kong J, Kolpak A M, Hwang J, Kim J 2017 Nature 544 340
Google Scholar
[95] Kong W, Li H, Qiao K, Kim Y, Lee K, Nie Y, Lee D, Osadchy T, Molnar R J, Gaskill D K, Myers Ward R L, Daniels K M, Zhang Y, Sundram S, Yu Y, Bae S H, Rajan S, Shao Horn Y, Cho K, Ougazzaden A, Grossman J C, Kim J 2018 Nat. Mater. 17 999
Google Scholar
[96] Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B, Kim J 2020 Nature 578 75
Google Scholar
[97] Scott J F 2007 Science 315 954
Google Scholar
[98] Gao W, You L, Wang Y, Yuan G, Chu Y, Liu Z, Liu J 2017 Adv. Electron. Mater. 3 1600542
Google Scholar
[99] Gao D, Tan Z, Fan Z, Guo M, Hou Z, Chen D, Qin M, Zeng M, Zhou G, Gao X, Lu X, Liu J M 2019 ACS Appl. Mater. Interfaces 11 27088
Google Scholar
[100] Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727
Google Scholar
[101] Palneedi H, Peddigari M, Hwang G, Jeong D, Ryu J 2018 Adv. Funct. Mater. 28 1803665
Google Scholar
[102] Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, He Y 2019 Mater. Res. Bull. 113 190
Google Scholar
[103] Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J F, Zhang S 2019 Prog. Mater. Sci. 102 72
Google Scholar
[104] Ma B, Kwon D K, Narayanan M, Balachandran U 2009 J. Electroceram. 22 383
Google Scholar
[105] Zhang Y, Li Y, Hao X, Jiang H, Zhai J 2019 J. Am. Ceram. Soc. 102 6107
Google Scholar
[106] Zhang Y, Li Y, Du J, Sun N, Hao X, Jiang H, Zhai J 2019 J. Mater. Sci.: Mater. Electron. 30 11945
Google Scholar
[107] Michael Sapia E K, Li H U, Jackson T N, Trolier Mckinstry S 2015 J. Appl. Phys. 118 13574
Google Scholar
[108] Sun Z, Ma C, Liu M, Cui J, Lu L, Lu J, Lou X, Jin L, Wang H, Jia C L 2017 Adv. Mater. 29 1604427
Google Scholar
[109] Ma B, Hu Z, Koritala R E, Lee T H, Dorris S E, Balachandran U 2015 J. Mater. Sci.: Mater. Electron. 26 9279
Google Scholar
[110] Yang C, Lv P, Qian J, Han Y, Ouyang J, Lin X, Huang S, Cheng Z 2019 Adv. Energy Mater. 9 1803949
Google Scholar
[111] Lv P, Yang C, Qian J, Wu H, Huang S, Cheng X, Cheng Z 2020 Adv. Energy Mater. 10 1904229
Google Scholar
[112] Liang Z, Ma C, Shen L, Lu L, Lu X, Lou X, Liu M, Jia C L 2019 Nano Energy 57 519
Google Scholar
[113] Shen B z, Li Y, Hao X 2019 ACS Appl. Mater. Interfaces 11 34117
Google Scholar
[114] Han S, Zhou Y, Roy V A L 2013 Adv. Mater. 25 5425
Google Scholar
[115] Gao H, Yang Y, Wang Y, Chen L, Wang J, Yuan G, Liu J 2019 ACS Appl. Mater. Interfaces 11 35169
Google Scholar
[116] Arimoto Y, Ishiwara H 2004 MRS Bull. 29 823
Google Scholar
[117] Sun J, Zheng X 2011 IEEE Trans. Electron Devices 58 3559
Google Scholar
[118] Vasilopoulou M, Kim B S, Kim H P, da Silva W J, Schneider F K, Mat Teridi M A, Gao P, Mohd Yusoff A R b, Nazeeruddin M K 2020 Nano Lett. 20 5081
Google Scholar
[119] Bakaul S R, Serrao C R, Lee O, Lu Z, Yadav A, Carraro C, Maboudian R, Ramesh R, Salahuddin S 2017 Adv. Mater. 29 1605699
Google Scholar
[120] Su L, Lu X, Chen L, Wang Y, Yuan G, Liu J 2018 ACS Appl. Mater. Interfaces 10 21428
Google Scholar
[121] Yang B, Li C, Liu M, Wei R, Tang X, Hu L, Song W, Zhu X, Sun Y 2020 Journal of Materiomics 6 600
Google Scholar
[122] Yang C, Han Y, Qian J, Lv P, Lin X, Huang S, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 12647
Google Scholar
[123] Lee W, Kahya O, Toh C T, Özyilmaz B, Ahn J H 2013 Nanotechnology 24 475202
Google Scholar
[124] Ren C, Zhong G, Xiao Q, Tan C, Feng M, Zhong X, An F, Wang J, Zi M, Tang M, Tang Y, Jia T, Li J 2019 Adv. Funct. Mater. 30 1906131
Google Scholar
[125] Wang Z L, Song J 2006 Science 312 242
Google Scholar
[126] Chang C, Tran V H, Wang J, Fuh Y, Lin L 2010 Nano Lett. 10 726
Google Scholar
[127] Martins P, Lopes A C, Lancerosmendez S 2014 Prog. Polym. Sci. 39 683
Google Scholar
[128] Kwon J, Seung W, Sharma B K, Kim S, Ahn J 2012 Energy Environ. Sci. 5 8970
Google Scholar
[129] Hwang G T, Park H, Lee J H, Oh S, Park K I, Byun M, Park H, Ahn G, Jeong C K, No K, Kwon H, Lee S G, Joung B, Lee K J 2014 Adv. Mater. 26 4880
Google Scholar
[130] Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim Y S, Huang Y, Damadoran A R, Xia J, Martin L W, Huang Y, Rogers J A 2014 Nat. Commun. 5 4496
Google Scholar
[131] Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J 2011 Proc. Natl. Acad. Sci. U. S. A. 108 18390
Google Scholar
[132] Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, Ye M, Wang Y, Lu W, Niu H, Scott J F, Zeng X, Huang H 2015 Adv. Electron. Mater. 1 1500052
Google Scholar
[133] Fan Z, Fan H, Lu Z, Li P, Huang Z, Tian G, Yang L, Yao J, Chen C, Chen D, Yan Z, Lu X, Gao X, Liu J M 2017 Phys. Rev. Appl. 7 014020
Google Scholar
[134] Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375
Google Scholar
[135] Wang J J, Su Y J, Wang B, Ouyang J, Ren Y H, Chen L Q 2020 Nano Energy 72 104665
Google Scholar
计量
- 文章访问数: 16140
- PDF下载量: 725
- 被引次数: 0