搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水热法制备三氧化钼纳米片的人工突触器件

郭科鑫 于海洋 韩弘 卫欢欢 龚江东 刘璐 黄茜 高清运 徐文涛

引用本文:
Citation:

基于水热法制备三氧化钼纳米片的人工突触器件

郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛

Artificial synapse based on MoO3 nanosheets prepared by hydrothermal synthesis

Guo Ke-Xin, Yu Hai-Yang, Han Hong, Wei Huan-Huan, Gong Jiang-Dong, Liu Lu, Huang Qian, Gao Qing-Yun, Xu Wen-Tao
PDF
HTML
导出引用
  • 近年来, 在神经形态电子中, 能够模拟突触功能的人工突触器件的研发引起了广泛关注. 本文利用水热法制备出高比表面积的基于MoO3纳米片的薄膜, 并将其用于人工突触器件的制备, 成功模拟了如: 突触后兴奋电流(EPSC)、双脉冲易化(PPF)、脉冲持续时间依赖可塑性(SDDP)、脉冲电压依赖可塑性(SVDP)及脉冲速率依赖可塑性(SRDP)等神经突触的重要功能.
    Recently, neuromorphic systems capable of parallel information processing have attracted increasing attention. A neuromorphic system is desired to emulate a human brain, which consists of hundreds of billions of neurons connected with even more synapses. Synapses are important connection parts between neurons to transmit information through release and reception of neurotransmitters. A neuromorphic system could replicate brain learning, cognition and computation of a human brain to process huge data with 1016 floating point numbers per second. The high computing efficiency has attracted many researchers to study artificial synapses for application in future artificial intelligence. The synaptic weight could be adjusted by the received information. This provides a basis for the learning and computing capability of artificial synapses. So far, a number of semiconductor materials have been used in artificial synaptic devices, like some organic materials, e.g. Poly(3-hexylthiophene-2,5-diyl)(P3HT), [1]Benzothieno[3,2-b][1]benzothiophene, 2,7-dioctyl-(C8-BTBT) etc, some inorganic oxides such as zinc oxide, indium zinc oxide(IZO), indium gallium zinc oxide(IGZO), transition metal oxides, etc, and two-dimensional materials, e.g. graphene, black phosphorus, and organic-inorganic hybrid perovskite materials. Among them, transition metal oxides are attractive due to their unique layered structure and inherent properties, which are important in photohydrolysis, lithium ion batteries, and field-effect transistors. MoO3, as a typical transition-metal oxide, has been used in artificial synaptic devices, with different preparation methods, such as mechanical exfoliation, chemical vapor deposition (CVD) and chemical vapor transportation (CVT), pulse-laser deposition (PLD). Here, we report the preparation of a semiconductor layer of MoO3 nanosheets by hydrothermal method, and the use of a TiO2 nanoparticle seed layer to improve the adhesion of MoO3 nanosheets. This is a cost-effective and controllable process. The high surface-to-volume ratio of the material provides large contact area at the interface to allow easy ion diffusion. The device emulates important synaptic functions, such as excitatory post-synaptic current (EPSC), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-voltage dependent plasticity (SVDP) and spike-rate dependent plasticity (SRDP). This work could be an important addition to the neuromorphic research field.
      通信作者: 徐文涛, wentao@nankai.edu.cn
    • 基金项目: 广东省重点领域研发项目(批准号: 2018B030338001)、天津市杰出青年科学基金(批准号: 19JCJQJC61000)、天津市自然科学基金(批准号: 18JCYBJC16000)和中央高校基本科研业务费(批准号: 075-63191740, 075-63191745)资助的课题
      Corresponding author: Xu Wen-Tao, wentao@nankai.edu.cn
    • Funds: Project supported by the Key Area R&D Program of Guangdong Province, China (Grant No. 2018B030338001), the Tianjin Science Foundation for Distinguished Young Scholars, China (Grant No. 19JCJQJC61000), the Natural Science Foundation of Tianjin, China (Grant No. 18JCYBJC16000), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 075-63191740, 075-63191745)
    [1]

    王洋昊, 刘昌, 黄如, 杨玉超 2020 科学通报 65 46

    Wang Y H, Liu C, Huang R, Yang Y C 2020 Chin. Sci. Bull. 65 46

    [2]

    姜珊珊, 聂莎, 何勇礼, 刘锐, 万青 2019 现代电子技术 42 181

    Jiang S S, Nie S, He Y L, Liu R, Wan Q 2019 Modern Electronic Technology 42 181

    [3]

    Yao Y, Huang X, Peng S, Zhang D, Shi J, Yu G, Liu Q, Jin Z 2019 Adv. Electron. Mater. 5 1800887Google Scholar

    [4]

    Kim S G, Kim S H, Park J, Kim G S, Park J H, Saraswat K C, Kim J, Yu H Y 2019 ACS Nano 13 10294Google Scholar

    [5]

    Shi C, Wang J, Sushko M L, Qiu W, Yan X, Liu X Y 2019 Adv. Funct. Mater. 29 1904777Google Scholar

    [6]

    Kandel E R 2001 Science 294 1030Google Scholar

    [7]

    Yang S N, Tang Y G, Zucker R S 1999 J. Neurophysiol. 81 781Google Scholar

    [8]

    Shouval H Z, Bear M F, Cooper L N 2002 Proc. Natl. Acad. Sci. 99 10831Google Scholar

    [9]

    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar

    [10]

    Fuller E J, Keene S T, Melianas A, Wang Z, Agarwal S, Li Y, Tuchman Y, Jame C D, Marinella M J, Yang J J, Salleo A 2019 Science 364 570Google Scholar

    [11]

    Lee Y, Lee T W 2019 Accounts Chem. Res. 52 964Google Scholar

    [12]

    Wan C, Chen G, Fu Y, Wang M, Matsuhisa N, Pan S, Pan L, Yang H, Wan Q, Zhu L, Chen X 2018 Adv. Mater. 30 1801291Google Scholar

    [13]

    Han H, Xu Z, Guo K, Ni Y, Ma M, Yu H, Wei H, Gong J, Zhang S, Xu W 2020 Adv. Intell. Syst. 2 1900176Google Scholar

    [14]

    Balakrishna Pillai P, De Souza M M 2017 ACS Appl. Mater. Interfaces 9 1609Google Scholar

    [15]

    Wan C J, Liu Y H, Zhu L Q, Feng P, Shi Y, Wan Q 2016 ACS Appl. Mater. Interfaces 8 9762Google Scholar

    [16]

    Yang Y, Wen J, Guo L, Wan X, Du P, Feng P, Wan Q 2016 ACS Appl. Mater. Interfaces 8 30281Google Scholar

    [17]

    Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H, Park J H 2018 Adv. Funct. Mater. 28 1804397Google Scholar

    [18]

    Yan X, Zhao J, Liu S, Zhou Z, Liu, Q, Chen J, Liu X Y 2018 Adv. Funct. Mater. 28 1705320Google Scholar

    [19]

    Murase S, Yang Y 2012 Adv. Mater. 24 2459Google Scholar

    [20]

    Yang Y, Brenner K, Murali R 2012 Carbon 50 1727Google Scholar

    [21]

    Schedin F, Lidorikis E, Lombardo A, Kravets V G, Geim A K, Grigorenko A N, Novoselov K S, Ferrari A C 2010 ACS Nano 4 5617Google Scholar

    [22]

    Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D 2010 Adv. Mater. 22 2743Google Scholar

    [23]

    Tian H, Guo Q, Xie Y, Zhao H, Li C, Cha J J, Xia F, Wang H 2016 Adv. Mater. 28 4991Google Scholar

    [24]

    Kim S I, Lee Y, Park M H, Go G T, Kim Y H, Xu W, Lee H D, Kim H, Seo D G, Lee W, Lee T W 2019 Adv. Electron. Mater. 5 1900008Google Scholar

    [25]

    Li M., Cui Z, Li E 2019 Ceram. Int. 45 14449Google Scholar

    [26]

    Ji W, Shen R, Yang R, Yu G, Guo X, Peng L, Ding W 2014 J. Mater. Chem. A 2 699Google Scholar

    [27]

    Wu F, Tian J, Su Y, Guan Y, Jin Y, Wang Z, He T, Bao L, Chen S 2014 J. Power Sources 269 747Google Scholar

    [28]

    Liu E, Fu Y, Wang Y, et al. 2015 Nat. Commun. 6 1Google Scholar

    [29]

    Li H, Wu J, Yin Z, Zhang H 2014 Accounts Chem. Res. 47 1067Google Scholar

    [30]

    Yang C S, Shang D S, Chai Y S, Yan L Q, Shen B G, Sun Y 2017 Phys. Chem. Chem. Phys. 19 4190Google Scholar

    [31]

    Yang C S, Shang D S, Liu N, Fuller E J, Agrawal S, Talin A A, Li Y Q, Shen B G, Sun Y 2018 Adv. Funct. Mater. 28 1804170Google Scholar

    [32]

    Wang Z, Yang R, Huang H M, He H K, Shaibo J, Guo X 2020 Adv. Electron. Mater. 6 1901290Google Scholar

    [33]

    于焕芹 2018 硕士学位论文 (山东: 济南大学)

    Yu H Q 2018 M. S. Thesis (Shandong: Jinan University) (in Chinese)

    [34]

    Galatsis K, Li Y X, Wlodarski W, Comini E, Faglia G, Sberveglieri G 2001 Sens. Actuators B Chem. 77 472Google Scholar

    [35]

    Liu Y, Yang S, Lu Y, Chen W, Zakharova G S 2015 Appl. Surf. Sci. 359 114Google Scholar

    [36]

    徐英明, 王敏, 程晓丽, 霍丽华, 张现发 2016 中国专利 CN 105439202A

    Xu Y M, Wang M, Cheng X L, Huo L H, Zhang X F 2016 CN Patent CN 105439202A (in Chinese)

    [37]

    Zhang C, Chen Y, Yi M. Zhu Y, Li T, Liu L, Wang L, Xie L, Huang W 2018 Scientia Sinica Informationis 48 115Google Scholar

    [38]

    Zucker R S, Regehr W G 2002 Annu. Rev. Physiol. 64 355Google Scholar

    [39]

    Jiang J, Hu W, Xie D, Yang J, He J, Gao Y, Wan Q 2019 Nanoscale 11 1360Google Scholar

    [40]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [41]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, L Y Q, Sun Y 2017 Adv. Mater. 29 1700906Google Scholar

    [42]

    Bi G Q, Poo M M 2001 Annu. Rev. Neurosci. 24 139Google Scholar

    [43]

    Yu H Y, Gong J D, Wei H H, Huang W, Xu W T 2019 Mater. Chem. Front. 3 941Google Scholar

    [44]

    Yu S, Wu Y, Jeyasingh R, Kuzum D, Wong P H S 2011 IEEE Trans Electron Devices 58 2729Google Scholar

    [45]

    Gao B, Kang J, Zhou Z, Chen Z, Huang P, Liu L F, Liu X Y 2016 Jpn. J. Appl. Phys. 55 04EA06Google Scholar

    [46]

    Hsieh C C, Roy A, Chang Y F, Shahrjerdi D, Banerjee S K 2016 Appl. Phys. Lett. 109 223501Google Scholar

    [47]

    Zhu Y, Shin B, Liu G, Shan F 2019 IEEE Electron Device Lett. 40 1776Google Scholar

    [48]

    Zhu L Q, Wan C J, Guo L Q, Shi Y, Wan Q 2014 Nat. Commun. 5 1

  • 图 1  (a) 生物神经元及神经突触示意图; (b) 人工突触器件结构示意图; (c) MoO3结构示意图

    Fig. 1.  (a) Schematic diagram of biological neurons and synapse; (b) schematic diagram of artificial synapse device; (c) schematic diagram of MoO3 structure.

    图 2  (a) MoO3纳米材料XRD测试图; (b) MoO3纳米材料扫描电镜图; (c) MoO3纳米材料的N2等温吸脱附曲线

    Fig. 2.  (a) XRD of MoO3 nanomaterials; (b) scanning electron microscope image of MoO3 nanomaterials; (c) nitrogen Isothermal absorption and desorption curve of MoO3 nanomaterials.

    图 3  (a) 单个幅值为1 V的刺激在MoO3人工神经突触上引起的EPSC; (b)一对幅值为1 V的刺激在MoO3人工神经突触上引起的PPF; (c)和(d) 多对时间间隔不同, 幅值为1 V的脉冲引起的PPF及PPF Index

    Fig. 3.  (a) EPSC triggered by a single 1 V spike at a MoO3 artificial synapse; (b) PPF triggered by a pair of 1 V spikes at a MoO3 artificial synapse; (c) and (d) PPF and PPF index triggered by spikes with different time intervals and same amplitudes of 1 V.

    图 4  (a) 施加幅值为1 V刺激个数分别为1, 2, 3, 5, 8在MoO3突触器件上引起的的SRDP; (b) 相同幅值不同刺激持续时间造成的SDDP; (c) 幅值分别为0.5, 1.0, 1.5, 2.0 V的刺激在突触器件上引起的SVDP; (d)为施加幅值为0.2 V时所获得的兴奋性突触后电流及完成一次信号传递所消耗的能量

    Fig. 4.  (a) SRDP on MoO3 synapses triggered by the number of spikes of 1 V applied at 1, 2, 3, 5, and 8; (b) SDDP triggered by different spike duration time with the same amplitude; (c) SVDP triggered by spikes with amplitudes of 0.5, 1.0, 1.5 V, and 2.0 V on synaptic devices; (d) the excitatory postsynaptic current when the applied spike is 0.2 V and the energy consumed to complete a signal transmission.

    表 1  不同金属氧化物人工突触器件能量消耗

    Table 1.  Energy consumption of different metal oxide artificial synaptic devices.

    序号活性层制备方法能量消耗/pJ文献
    1MoO3水热法1.47本文
    2MoO3化学气相沉积9.60[30]
    3HfOx/AlOx溶液法6.00[44]
    4Pt/HfOx/TiOy/HfOx/ TiOy/TiN磁控溅射0.30[45]
    5HfOx/CeOx等离子体辅助原子层沉积
    (plasma-assisted atomic layer deposition)
    ~8.00[46]
    6ZnSnO静电纺丝0.44[47]
    7IZO/SiO2射频磁控溅射45.00[48]
    8IZO/GO滴涂3.70[16]
    下载: 导出CSV
    Baidu
  • [1]

    王洋昊, 刘昌, 黄如, 杨玉超 2020 科学通报 65 46

    Wang Y H, Liu C, Huang R, Yang Y C 2020 Chin. Sci. Bull. 65 46

    [2]

    姜珊珊, 聂莎, 何勇礼, 刘锐, 万青 2019 现代电子技术 42 181

    Jiang S S, Nie S, He Y L, Liu R, Wan Q 2019 Modern Electronic Technology 42 181

    [3]

    Yao Y, Huang X, Peng S, Zhang D, Shi J, Yu G, Liu Q, Jin Z 2019 Adv. Electron. Mater. 5 1800887Google Scholar

    [4]

    Kim S G, Kim S H, Park J, Kim G S, Park J H, Saraswat K C, Kim J, Yu H Y 2019 ACS Nano 13 10294Google Scholar

    [5]

    Shi C, Wang J, Sushko M L, Qiu W, Yan X, Liu X Y 2019 Adv. Funct. Mater. 29 1904777Google Scholar

    [6]

    Kandel E R 2001 Science 294 1030Google Scholar

    [7]

    Yang S N, Tang Y G, Zucker R S 1999 J. Neurophysiol. 81 781Google Scholar

    [8]

    Shouval H Z, Bear M F, Cooper L N 2002 Proc. Natl. Acad. Sci. 99 10831Google Scholar

    [9]

    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar

    [10]

    Fuller E J, Keene S T, Melianas A, Wang Z, Agarwal S, Li Y, Tuchman Y, Jame C D, Marinella M J, Yang J J, Salleo A 2019 Science 364 570Google Scholar

    [11]

    Lee Y, Lee T W 2019 Accounts Chem. Res. 52 964Google Scholar

    [12]

    Wan C, Chen G, Fu Y, Wang M, Matsuhisa N, Pan S, Pan L, Yang H, Wan Q, Zhu L, Chen X 2018 Adv. Mater. 30 1801291Google Scholar

    [13]

    Han H, Xu Z, Guo K, Ni Y, Ma M, Yu H, Wei H, Gong J, Zhang S, Xu W 2020 Adv. Intell. Syst. 2 1900176Google Scholar

    [14]

    Balakrishna Pillai P, De Souza M M 2017 ACS Appl. Mater. Interfaces 9 1609Google Scholar

    [15]

    Wan C J, Liu Y H, Zhu L Q, Feng P, Shi Y, Wan Q 2016 ACS Appl. Mater. Interfaces 8 9762Google Scholar

    [16]

    Yang Y, Wen J, Guo L, Wan X, Du P, Feng P, Wan Q 2016 ACS Appl. Mater. Interfaces 8 30281Google Scholar

    [17]

    Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H, Park J H 2018 Adv. Funct. Mater. 28 1804397Google Scholar

    [18]

    Yan X, Zhao J, Liu S, Zhou Z, Liu, Q, Chen J, Liu X Y 2018 Adv. Funct. Mater. 28 1705320Google Scholar

    [19]

    Murase S, Yang Y 2012 Adv. Mater. 24 2459Google Scholar

    [20]

    Yang Y, Brenner K, Murali R 2012 Carbon 50 1727Google Scholar

    [21]

    Schedin F, Lidorikis E, Lombardo A, Kravets V G, Geim A K, Grigorenko A N, Novoselov K S, Ferrari A C 2010 ACS Nano 4 5617Google Scholar

    [22]

    Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D 2010 Adv. Mater. 22 2743Google Scholar

    [23]

    Tian H, Guo Q, Xie Y, Zhao H, Li C, Cha J J, Xia F, Wang H 2016 Adv. Mater. 28 4991Google Scholar

    [24]

    Kim S I, Lee Y, Park M H, Go G T, Kim Y H, Xu W, Lee H D, Kim H, Seo D G, Lee W, Lee T W 2019 Adv. Electron. Mater. 5 1900008Google Scholar

    [25]

    Li M., Cui Z, Li E 2019 Ceram. Int. 45 14449Google Scholar

    [26]

    Ji W, Shen R, Yang R, Yu G, Guo X, Peng L, Ding W 2014 J. Mater. Chem. A 2 699Google Scholar

    [27]

    Wu F, Tian J, Su Y, Guan Y, Jin Y, Wang Z, He T, Bao L, Chen S 2014 J. Power Sources 269 747Google Scholar

    [28]

    Liu E, Fu Y, Wang Y, et al. 2015 Nat. Commun. 6 1Google Scholar

    [29]

    Li H, Wu J, Yin Z, Zhang H 2014 Accounts Chem. Res. 47 1067Google Scholar

    [30]

    Yang C S, Shang D S, Chai Y S, Yan L Q, Shen B G, Sun Y 2017 Phys. Chem. Chem. Phys. 19 4190Google Scholar

    [31]

    Yang C S, Shang D S, Liu N, Fuller E J, Agrawal S, Talin A A, Li Y Q, Shen B G, Sun Y 2018 Adv. Funct. Mater. 28 1804170Google Scholar

    [32]

    Wang Z, Yang R, Huang H M, He H K, Shaibo J, Guo X 2020 Adv. Electron. Mater. 6 1901290Google Scholar

    [33]

    于焕芹 2018 硕士学位论文 (山东: 济南大学)

    Yu H Q 2018 M. S. Thesis (Shandong: Jinan University) (in Chinese)

    [34]

    Galatsis K, Li Y X, Wlodarski W, Comini E, Faglia G, Sberveglieri G 2001 Sens. Actuators B Chem. 77 472Google Scholar

    [35]

    Liu Y, Yang S, Lu Y, Chen W, Zakharova G S 2015 Appl. Surf. Sci. 359 114Google Scholar

    [36]

    徐英明, 王敏, 程晓丽, 霍丽华, 张现发 2016 中国专利 CN 105439202A

    Xu Y M, Wang M, Cheng X L, Huo L H, Zhang X F 2016 CN Patent CN 105439202A (in Chinese)

    [37]

    Zhang C, Chen Y, Yi M. Zhu Y, Li T, Liu L, Wang L, Xie L, Huang W 2018 Scientia Sinica Informationis 48 115Google Scholar

    [38]

    Zucker R S, Regehr W G 2002 Annu. Rev. Physiol. 64 355Google Scholar

    [39]

    Jiang J, Hu W, Xie D, Yang J, He J, Gao Y, Wan Q 2019 Nanoscale 11 1360Google Scholar

    [40]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [41]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, L Y Q, Sun Y 2017 Adv. Mater. 29 1700906Google Scholar

    [42]

    Bi G Q, Poo M M 2001 Annu. Rev. Neurosci. 24 139Google Scholar

    [43]

    Yu H Y, Gong J D, Wei H H, Huang W, Xu W T 2019 Mater. Chem. Front. 3 941Google Scholar

    [44]

    Yu S, Wu Y, Jeyasingh R, Kuzum D, Wong P H S 2011 IEEE Trans Electron Devices 58 2729Google Scholar

    [45]

    Gao B, Kang J, Zhou Z, Chen Z, Huang P, Liu L F, Liu X Y 2016 Jpn. J. Appl. Phys. 55 04EA06Google Scholar

    [46]

    Hsieh C C, Roy A, Chang Y F, Shahrjerdi D, Banerjee S K 2016 Appl. Phys. Lett. 109 223501Google Scholar

    [47]

    Zhu Y, Shin B, Liu G, Shan F 2019 IEEE Electron Device Lett. 40 1776Google Scholar

    [48]

    Zhu L Q, Wan C J, Guo L Q, Shi Y, Wan Q 2014 Nat. Commun. 5 1

  • [1] 陈开辉, 樊贞, 董帅, 李文杰, 陈奕宏, 田国, 陈德杨, 秦明辉, 曾敏, 陆旭兵, 周国富, 高兴森, 刘俊明. 钙钛矿相界面插层对SrFeOx基忆阻器的性能提升.  , 2023, 72(9): 097301. doi: 10.7498/aps.72.20221934
    [2] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变.  , 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [3] 刘强, 倪尧, 刘璐, 孙林, 刘甲奇, 徐文涛. 基于层状多元金属氧化物的人造突触.  , 2022, 71(14): 148501. doi: 10.7498/aps.71.20220303
    [4] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器.  , 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [5] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算.  , 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [6] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. 三氧化钨晶体拓扑结构生长行为及其电致变色性能.  , 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [7] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件.  , 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [8] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用.  , 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [9] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制.  , 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [10] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现.  , 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [11] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究.  , 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [12] 袁野, 田博博, 段纯刚. 四方相多铁BiMnO3电控磁性的理论研究.  , 2018, 67(15): 157511. doi: 10.7498/aps.67.20180946
    [13] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征.  , 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [14] 王美丽, 王俊松. 基于抑制性突触可塑性的反馈神经回路兴奋性与抑制性动态平衡.  , 2015, 64(10): 108701. doi: 10.7498/aps.64.108701
    [15] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析.  , 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [16] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性.  , 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [17] 夏小飞, 王俊松. 基于分岔理论的突触可塑性对神经群动力学特性调控规律研究.  , 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [18] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响.  , 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [19] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性.  , 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [20] 吴 荣, 郑毓峰, 张校刚, 孙言飞, 徐金宝. EDTA辅助水热合成FeS2/NiSe2复合纳米晶及其薄膜光电性质.  , 2004, 53(10): 3493-3497. doi: 10.7498/aps.53.3493
计量
  • 文章访问数:  8457
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 修回日期:  2020-10-26
  • 上网日期:  2020-11-30
  • 刊出日期:  2020-12-05

/

返回文章
返回
Baidu
map